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QUANTUM ROTATING BLACK HOLES
(RECOVERING GEOMETRY IN A QUANTUM WORLD) 1

Classical geometries for spherically symmetric systems can be effectively obtained from quan-
tum coherent states for the relevant degrees of freedom. This description replaces the classical
singularity of black holes with integrable structures in which tidal forces remain finite, and
there is no inner Cauchy horizon. It is then shown how the extension to rotating systems can
avoid the classical inner horizon provided the rotation is not ultra-rigid.
K e yw o r d s: classical geometry, quantum rotating black holes, quantum gravity, Planck scale,
gravitational collapse, Schwarzschild geometry.

1. Quantum Gravity and the Planck Scale

For a particle of proper mass 𝑚, the Compton–
de Broglie length 𝜆𝑚 = ~/𝑚𝑐 is comparable with the
gravitational (Schwarzschild) radius 𝑅H = 2𝐺N𝑚, if
the mass is near the Planck mass

𝑚p =
√︀
𝑐 ~/𝐺N ≃ 10−8 kg, (1.1)

corresponding to the Planck length

ℓp =
√︀
~𝐺N/𝑐3 ≃ 10−35 m. (1.2)

Quantum gravity is, therefore, usually associated
with processes occurring at the Planck mass 𝑚p and
length ℓp. However, the Compton length is relevant
only in the scatterings of (asymptotically free stan-
dard model) particle excitations [1], whereas pro-
cesses involving bound states are usually charac-
terised by (significantly) larger length scales. For ex-
ample, the hydrogen atom is a few orders of magni-
tude bigger than the Compton length of the electron,
superconductors and Bose–Einstein condensates can
be macroscopic in size, and neutron stars are quan-
tum objects of several kilometres in radius.
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The situation is more complicated in General Rela-
tivity, because the nonlinearity of the Einstein equa-
tions makes it difficult to separate (mass or length)
scales like we can do in electrodynamics or in the
weak-field approximation of gravity. For compact ob-
jects of ADM [2] mass 𝑀 and radius 𝑅s, we can-
not discard nonlinear effects, when the compactness
𝑋 = 𝐺N𝑀/𝑅s ∼ 1. In fact, 𝑋 ≃ 1 for a particle
of mass 𝑚 = 𝑚p and Compton length 𝜆𝑚 = ℓp,
which is, therefore, expected to be a quantum black
hole [3, 4]. One might, therefore, wonder, if quan-
tum physics becomes generically relevant for self-
gravitating systems of compactness 𝑋 ∼ 1, leading
to a departures from classical expectations similar to
the case of the hydrogen atom.

2. Quantum Gravity
and the Gravitational Collapse

Objects with compactness 𝑋 ∼ 1 should appear
in the Nature during the gravitational collapse that
would classically end with a black hole geometry char-
acterised by the existence of a (outer) event horizon.
Such geometries, however, suffer of serious physical
issues: once the horizon forms, the interior becomes
geodesically incomplete, with regions, where tidal
forces diverge [5]; moreover, the evolution of quan-

1 This work is based on the results presented at the XII
Bolyai–Gauss–Lobachevskii (BGL-2024) Conference: Non-
Euclidean Geometry in Modern Physics and Mathematics.
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tum fields on such classical backgrounds leads to pos-
sible violations of unitarity [6]. We expect the quan-
tum theory will fix this inconsistent (semi)classical
picture, much in the same way that quantum mechan-
ics explains the stability of atoms by not admitting
quantum states corresponding to the classical ultra-
violet catastrophe.

The problem at hand is again much more involved,
because reaching 𝑋 ∼ 1 requires (several) solar mass
amounts of matter. In terms of the Standard Model of
particles, this means 𝑀 ≃ 𝑀⊙ ≃ 1057 neutrons and,
according to Bekenstein’s counting of gravitational
excitations involved in the corresponding geometry,
𝑀2

⊙/𝑚
2
p ≃ 1076 gravitons [7]. These numbers clearly

put the gravitational collapse beyond any present and
future possibility of detailed modelling, and we must
do what we always do: find a simplified description
which allows for mathematical treatment, like the
Oppenheimer–Snyder model [8]. In Refs. [9, 10], the
quantum theory of a ball of dust was studied to show
that a ground state core of size 𝑅s ≃ 𝐺N𝑀 might in-
deed replace the classical singularity (see Fig. 1). This
conclusion is also required by a consistent quantum
description of the geometry.

3. Coherent States for Classical Geometry

We will first review how to describe a spherically sym-
metric metric
d𝑠2 = − (1 + 2𝑉 ) d𝑡2 +

d𝑟2

1 + 2𝑉
+ 𝑟2 dΩ2, (3.1)

where 𝑉 = 𝑉 (𝑟) is recovered as the mean field of
the coherent state of a scalar field (for more de-
tails, see, e.g., Ref. [11–15]). We define the canoni-
cally normalised real scalar field Φ =

√︀
𝑚p/ℓp 𝑉 and

then quantize Φ as a massless field satisfying the free
wave equation 2[︂
− 𝜕2

𝜕𝑡2
+

1

𝑟2
𝜕

𝜕𝑟

(︂
𝑟2

𝜕

𝜕𝑟

)︂]︂
Φ(𝑡, 𝑟) = 0. (3.2)

Normal modes of Eq. (3.2) can be written as
𝑢𝑘(𝑡, 𝑟) = 𝑒−𝑖 𝑘 𝑡 𝑗0(𝑘 𝑟), (3.3)

where 𝑗0 = sin(𝑘 𝑟)/𝑘 𝑟 are spherical Bessel functions
with 𝑘 > 0. The quantum field operator and its con-
jugate momentum read

Φ̂(𝑡, 𝑟) =

∞∫︁
0

𝑘2 d𝑘

2𝜋2
×

2 Units with 𝑐 = 1 will be used from now, so that 𝐺N = ℓp/𝑚p

and ~ = ℓp 𝑚p [16].

×
√︂

~
2 𝑘

[︁
𝑎̂𝑘 𝑢𝑘(𝑡, 𝑟) + 𝑎̂†𝑘 𝑢

*
𝑘(𝑡, 𝑟)

]︁
, (3.4)

Π̂(𝑡, 𝑟) = 𝑖

∞∫︁
0

𝑘2 d𝑘

2𝜋2
×

×
√︂

~ 𝑘
2

[︁
𝑎̂𝑘 𝑢𝑘(𝑡, 𝑟)− 𝑎̂†𝑘 𝑢

*
𝑘(𝑡, 𝑟)

]︁
(3.5)

and satisfy the equal time commutation relations[︁
Φ̂(𝑡, 𝑟), Π̂(𝑡, 𝑠)

]︁
=

𝑖 ~
4𝜋 𝑟2

𝛿(𝑟 − 𝑠), (3.6)

provided the creation and annihilation operators obey
the commutation rules[︀
𝑎̂𝑘, 𝑎̂

†
𝑝

]︀
=

2𝜋2

𝑘2
𝛿(𝑘 − 𝑝). (3.7)

The Fock space of quantum states can now be built
starting from the vacuum 𝑎̂𝑘 |0⟩ = 0 for all 𝑘 > 0. It
is very important to remark that the flat Minkowski
metric in Eq. (3.2) corresponds to this vacuum state
representing a completely empty spacetime, devoid
of any matter source and without excitations of the
gravitational field. In this respect, the number of
space and time dimensions in Eq. (3.2) is formal and
arbitrary, what matters is that only those modes and
corresponding dimensions of relevance to the geom-
etry (3.1) will be assumed to get excited above the
vacuum. On the other hand, the choice (3.2) is also
consistent with the weak field expansion in which the
Newtonian potential in three spatial dimension is ob-
tained from longitudinally polarized gravitons [17].

Fig. 1. Black hole formation in classical General Relativity
(left panel) versus quantum gravity (right panel)
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Fig. 2. Quantum metric function 𝑉Q𝑀 in Eq. (4.6) (solid line)
compared to 𝑉𝑀 (dashed line) for 𝑅s = 𝐺N 𝑀 . The horizontal
thin line marks the location of the horizon, where 𝑉 = −1/2

We next assume that classical configurations (3.1)
of the metric can be realized in the quantum theory
by coherent states 𝑎̂𝑘 |𝑔⟩ = 𝑔𝑘 𝑒

𝑖 𝛾𝑘(𝑡) |𝑔⟩ such that√︃
ℓp
𝑚p

⟨𝑔| Φ̂(𝑡, 𝑟) |𝑔⟩ = 𝑉 (𝑟). (3.8)

From the expansion (3.4), we obtain

⟨𝑔| Φ̂(𝑡, 𝑟) |𝑔⟩ =
∞∫︁
0

𝑘2 d𝑘

2𝜋2
×

×
√︂

2 ℓp𝑚p

𝑘
𝑔𝑘 cos[𝛾𝑘(𝑡)− 𝑘 𝑡] 𝑗0(𝑘 𝑟). (3.9)

We can eliminate the time dependence from the nor-
mal modes (3.3) by setting 𝛾𝑘 = 𝑘 𝑡, and the coherent
state finally reads [15]

|𝑔⟩ = 𝑒−𝑁G/2 exp

⎧⎨⎩
∞∫︁
0

𝑘2 d𝑘

2𝜋2
𝑔𝑘 𝑎̂

†
𝑘

⎫⎬⎭ |0⟩ , (3.10)

where the coefficients

𝑔𝑘 =

√︂
𝑘

2

𝑉 (𝑘)

ℓp
(3.11)

are determined from

𝑉 =

∞∫︁
0

𝑘2 d𝑘

2𝜋2
𝑉 (𝑘) 𝑗0(𝑘 𝑟). (3.12)

The normalization factor

𝑁G =

∞∫︁
0

𝑘2 d𝑘

2𝜋2
𝑔2𝑘 (3.13)

can be interpreted as the total occupation number of
the state |𝑔⟩, and it is a measure of its distance from
the vacuum of the Fock space |0⟩ [15].

4. Coherent States
for Schwarzschild Geometry

The Schwarzschild geometry is given by Eq. (3.1) with

𝑉 = 𝑉𝑀 = −𝐺N𝑀

𝑟
, (4.1)

from which we find

𝑉𝑀 = −4𝜋𝐺N
𝑀

𝑘2
(4.2)

and the coefficients

𝑔𝑘 = − 4𝜋𝑀√
2 𝑘3𝑚p

. (4.3)

The total occupation number now reads

𝑁G = 4
𝑀2

𝑚2
p

∞∫︁
0

d𝑘

𝑘
, (4.4)

which diverges logarithmically in the infrared (IR)
and the ultraviolet (UV) [13, 15]. The latter diver-
gence is due to the vanishing size of the source in the
classical Schwarzschild geometry, and the very exis-
tence of a proper quantum state |𝑔⟩ requires the co-
efficients 𝑔𝑘 to depart from their purely classical ex-
pression (4.3) for 𝑘 → 0 and 𝑘 → ∞. We, therefore,
remove the UV divergence by introducing a cut-off
𝑘UV ∼ 1/𝑅s, where 𝑅s could be the finite radius
of the matter core at the end of the collapse dis-
played in Fig. 1. Likewise, we introduce a IR cut-off
𝑘IR = 1/𝑅∞ to account for the finite size 𝑅∞ of the
Universe, so that

𝑁G = 4
𝑀2

𝑚2
p

𝑘UV∫︁
𝑘IR

d𝑘

𝑘
= 4

𝑀2

𝑚2
p

ln

(︂
𝑅∞

𝑅s

)︂
. (4.5)

This yields an effective (quantum) metric (3.1) with

𝑉 = 𝑉Q𝑀 ≃
𝑘UV∫︁
𝑘IR

𝑘2 d𝑘

2𝜋2
𝑉𝑀 (𝑘) 𝑗0(𝑘 𝑟) ≃

≃ 𝑉𝑀

{︂
1−

[︂
1− 2

𝜋
Si

(︂
𝑟

𝑅s

)︂]︂}︂
, (4.6)

where Si denotes the sine integral function (see Fig. 2
for an example).
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5. Quantum Integrable Black Holes

In the classical Schwarzschild spacetime, the
Kretschmann scalar 𝑅𝛼𝛽𝜇𝜈 𝑅

𝛼𝛽𝜇𝜈 ∼ 𝑅2 ∼ 𝑟−6 for
𝑟 → 0, whereas, for the above quantum corrected
metric, we have

𝑅𝛼𝛽𝜇𝜈 𝑅
𝛼𝛽𝜇𝜈 ≃ 𝑅2 ≃ 64𝐺2

N𝑀
2

𝜋 𝑅2
s 𝑟

4
. (5.1)

This ensures that tidal forces remain finite all the way
to 𝑟 = 0, and the spatial integration of the Einstein–
Hilbert Lagrangian density is also finite, since the
Ricci scalar 𝑅 ∼ 𝑟−2. The point at 𝑟 = 0 can, there-
fore, be seen as an integrable singularity [18], where
some geometric invariants diverge with no harmful
effects on matter.

From the Einstein tensor, one can find the effective
energy density and pressure

𝜀 =
𝑀

2𝜋2 𝑟3
sin

(︂
𝑟

𝑅s

)︂
= −𝑝r (5.2)

and the effective tension

𝑝t =
𝑀

4𝜋2 𝑟3

[︂
sin

(︂
𝑟

𝑅s

)︂
− 𝑟

𝑅s
cos

(︂
𝑟

𝑅s

)︂]︂
. (5.3)

Note, in particular, that the effective energy density
can be interpreted in terms of a normalizable wave-
function 𝜓 = 𝜓(𝑟) for the matter in the core,

𝜀 ∼ |𝜓(𝑟)|2 ∼ 𝑟−2, for 𝑟 → 0, (5.4)

and the Misner–Sharp–Hernandez mass function [19,
20] is given by

𝑚(𝑟) = 4𝜋

𝑟∫︁
0

𝑥2 𝜀(𝑥) d𝑥 ≃ 2𝑀 𝑟

𝜋𝑅s
, for 𝑟 → 0, (5.5)

with 𝑚(𝑟 → ∞) =𝑀 .
Another good feature of this quantum corrected ge-

ometry that follows from Eq. (5.5) is that there is
no (inner) Cauchy horizon (whenever there exists the
outer event horizon). The locations of horizons are,
in fact, given by solutions of

Δ ≡ 𝑟2 (1 + 2𝑉 ) = 𝑟2 − 2 𝑟 𝐺N𝑚(𝑟) = 0. (5.6)

If there is an outer (event) horizon Δ(𝑟+) = 0 at
𝑟 = 𝑟+ > 0, the function Δ becomes negative for
𝑟 < 𝑟+ and remains negative all the way to 𝑟 = 0 pro-
vided 𝑅s . 4𝐺N𝑀/𝜋 (see solid line in Fig. 3). Note
that, for a regular black hole solution with 𝑚(𝑟) ∼ 𝑟3,

Fig. 3. Behaviour of Δ in Eq. (5.6) for integrable black holes
(solid line) and regular black holes (dotted line)

Fig. 4. Behaviour of Δ in Eq. (6.2) for integrable black holes
with differential rotation (solid line) and rigid rotation (dotted
line)

the function Δ will necessarily becomes positive in
a neighborhood of the center (see dotted line in
Fig. 3). The absence of inner horizons can be gen-
eralized to electrically charged black holes [21] and
excludes potentially serious casual issues which are
often present in regular black hole candidates (see,
e.g., Ref. [22] and references therein).

6. Rotating Integrable Black Holes

The ultra-rigid rotating black-hole-geometry for con-
stant specific angular momentum 𝑎 = 𝐽/𝑀 can be
written as

𝑑𝑠2 =

[︂
1− 2 𝑟𝑚

𝜌2

]︂
𝑑𝑡2+

4 𝑎 𝑟𝑚 sin2 𝜃

𝜌2
𝑑𝑡 𝑑𝜑−𝜌

2

Δ
𝑑𝑟2 −
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− 𝜌2 𝑑𝜃2 − Σ sin2 𝜃

𝜌2
𝑑𝜑2, (6.1)

where 𝜌2 = 𝑟2 + 𝑎2 sin2 𝜃 and Σ = (𝑟2 + 𝑎2)2 −
− 𝑎2 Δ sin2 𝜃. Horizons are located so that

Δ = 𝑎2 + 𝑟2 − 2 𝑟 𝐺N𝑚(𝑟) = 0, (6.2)

in which we assumed a mass function that depends
only on the radial coordinate like in the spherically
symmetric case [23].

A mass function which behaves itself like the one in
Eq. (5.5) near 𝑟 = 0 will again removes the (ring) sin-
gularity of the Kerr geometry that arises for 𝑚 =𝑀
[24]. However, Δ(0) = 𝑎2 > 0, and one necessarily
encounters an inner horizon at 0 < 𝑟 = 𝑟− < 𝑟+ (see
dotted line in Fig. 4). In order to eliminate the zero
of Δ at 𝑟 = 𝑟− > 0, we must consider a differential
rotation 𝑎 = 𝑎(𝑟) such that 𝑎 ∼ 𝑟𝛼 with 𝛼 ≥ 1 for
𝑟 → 0 [25] (see the solid line in Fig. 4).

Building coherent states for differentially rotating
geometries (6.1) with 𝑚 = 𝑚(𝑟) and 𝑎 = 𝑎(𝑟) repre-
sents a huge complication with respect to the spheri-
cally symmetric cases. As of now, only slowly rotating
geometries with 𝑎≪𝑀 were investigated in Ref. [26].
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КВАНТОВI ОБЕРТОВI ЧОРНI ДIРИ
(ВIДНОВЛЕННЯ ГЕОМЕТРIЇ В КВАНТОВОМУ СВIТI

Класичнi геометрiї для сферично-симетричних систем мо-
жуть бути ефективно отриманi з квантових когерентних

станiв для вiдповiдних ступенiв вiльностi. Даний опис замi-
нює класичну сингулярнiсть чорних дiр iнтегровними стру-
ктурами, в яких припливнi сили залишаються скiнченними
i немає внутрiшнього горизонту Кошi. Потiм показано, як
узагальнення на обертовi системи може уникнути класи-
чного внутрiшнього горизонту за умови, що обертання не є
наджорстким.

Ключ о в i с л о в а: класична геометрiя, квантовi обертовi
чорнi дiри, квантова ґравiтацiя, шкала Планка, ґравiтацiй-
ний колапс, геометрiя Шварцшильда.
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