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U-NET BASED METHOD
FOR ARPES SPECTRA PROCESSING

Angle-resolved photoemission spectroscopy (ARPES) is a powerful tool for investigating the
electronic structure of materials. However, resolving the electronic dispersion from ARPES
spectra can be challenging due to the broadening effects, presence of different types of noise,
resolution limitations, etc. This paper proposes a mew approach for determining dispersion
from ARPES spectra based on the U-Net neural network. The energy band extraction problem
is regarded as the semantic segmentation task. We will show that the U-Net trained only with
generated data can determine band structure from the experimentally obtained spectra, without

prior denoising.

Keywords: ARPES, neural networks, electronic structure, U-Net.

1. Introduction

The importance of machine learning and neural net-
works in physics is rapidly increasing. These technolo-
gies prove their ability to tackle complex problems
that were previously considered intractable. The ar-
eas, where they impact significantly are quite vast:
from astronomy [1] to high-energy physics [2]. The
problems solved using these approaches also differ
dramatically: from simple image denoising to iden-
tification of the Higgs boson [1,2].

Angle-resolved photoemission spectroscopy is one
of the experimental techniques that, in recent years,
has developed many upgrades such as time-resolved
ARPES, spin-resolved APRES, spatially resolved
ARPES ete. [3, 4]. However, the classical methods,
such as EDC-, MDC-analysis [5, 6], or different im-
age processing methods (the second-derivative [7],
curvature [8], minimum gradient [9]) are not feasi-
ble for processing large amounts of data with com-
plicated dimensionality. So, nowadays, to cope with
more complex experimental data different machine
learning methods have been proposed. Such methods
give the ability to denoise images using various ap-
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proaches (based on the convolutional neural network
[10], training set-free methods [11,12]), extract (visu-
alize) spectra features [13] or extract the features and
denoise simultaneously using the autoencoder [14].

In this paper, we propose a novel approach for
electronic band dispersion determination from the
experimentally obtained ARPES spectra. The prob-
lem of the electronic dispersion determination is re-
garded as the semantic segmentation task. The goal
is to categorize each image pixel into a particular
class. The proposed method utilizes a U-Net neu-
ral network with an attention block to discriminate
between ’background’ and electronic dispersion pix-
els. As has been shown, such a network can handle
experimentally obtained spectra without preprocess-
ing, even though only generated data are used for the
training and validation.

2. Method

ARPES enables the direct observation of the elec-
tronic band structure [4]. However, the band struc-
ture can be distorted and broadened due to various
factors, including electron-electron, electron-phonon
interactions, and crystal impurities. These factors can
cause energy shifts and peak broadening. In addition,
the resulting spectra are affected by noises (shot,
Shirley background) and resolution limitations. To
extract the pure electronic dispersion, several meth-
ods are used. They include analytic methods such as
the MDC-,EDC- methods and different image pro-
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cessing techniques such as second derivative, curva-
ture, and minimum gradient methods.

Recently, there were proposed different neural
network-based methods for electronic dispersion de-
termination [13, 14].

For example, the determination of the electronic
band dispersion from noisy and broadened spectra
is approached by solving an inverse transformation
problem [13]. The idea is to use a convolutional neu-
ral network to find the appropriate inverse transfor-
mation for the spectrum. However, despite the ten-
dency of the proposed method to outperform the
aforementioned traditional methods, this approach
has some disadvantages. First, the image should be
preprocessed (denoised) to determine the dispersion,
so, certain details can be lost. Second, CNN consid-
ers the connections between the neighboring pixels
but does not consider long-range dependencies. The
limited receptive field of CNN (each output pixel is
only influenced by its 13-by-13 neighborhood) may
not capture all the crucial relationships between dis-
tant pixels that influence electronic dispersion [13].

Our approach treats the task of electronic disper-
sion determination as a segmentation task. The spec-
trum is regarded as a segmentation map, where each
pixel is classified into one of two classes. The first
class represents pixels belonging to electronic disper-
sion. The second class encompasses background pix-
els associated with broadening, noise and other ar-
tifacts. This task is similar to the background re-
moval task. In our case, the “background” includes all
pixels that are not directly related to the electronic
dispersion.

2.1. U-Net with Attention

One of the most frequently used neural-network-ba-
sed approaches for semantic segmentation is the U-
Net neural network, and its variations [15]. U-Net was
originally proposed for biomedical image segmenta-
tion. To visualize the positions of the electronic en-
ergy bands, we employed a modified Attention U-Net
network[16]. This network incorporates an additional
attention block that captures a sufficiently large re-
ceptive field, enabling the consideration of long-range
dependencies without significantly complicating the
U-Net model [16].

The U-Net architecture is composed of three main
parts: the encoder (or contracting path), the sym-
metric decoder (or expansive path), and a “latent”
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layer situated between the encoder and decoder. The
core building block of this neural network involves
the repeated application of two unpadded 3 x 3 con-
volutions, each followed by batch normalization and
a ReLU activation.

The encoder consists of four blocks, each followed
by a max-pooling layer for downsampling. The num-
ber of kernels in the convolutional layers follows the
pattern of 64 x m, where n represents the block
number.

The latent layer applies two unpadded convolu-
tional layers with 64 x 16 kernels, each followed by
batch normalization and ReL.U activation.

The decoder mirrors the encoder with four blocks.
At each step in the decoder, an attention gate pro-
cesses the corresponding feature map from the en-
coder. The output of the attention gate is concate-
nated with the upsampled features (obtained using
2 x 2 upsampling) and further processed by the de-
coder block. The number of kernels in the convolu-
tional layers follows the pattern of 64 x 8/2"~1, where
n represents the decoder’s block number.

The final layer 1 x 1 convolution with 2 kernels
followed by the batch normalization and sigmoid ac-
tivation. It is used to map the decoder’s output to the
classes segmentation map.

Image pixels associated with electronic band dis-
persion occupy only a small portion of the image, so
there is a significant imbalance in pixels belonging to
different classes. To address the issue of class imbal-
ance, focal loss was used as the loss function[17]. Its
main advantage is the division of samples into easy
and hard. The easy sample is already well-classified
(the predicted probability is in a vicinity of 1), so, its
contribution can significantly be decreased or down-
weighted. In this case, easy samples contribution to
the total loss function is small even if their number is
large. The model focuses on training a subset of hard
examples, for which the predicted probability is much
lesser than 1. [17] This allows one to avoid situations
when the model achieves nearly 100% accuracy by
simply assigning everything to the class that occurs
most frequently in the image.

2.2. Training process

A major obstacle in the training process is the lack
of available training data derived from experimental
spectra. This is primarily attributed to the inherent
difficulty of accurately determining dispersion, a task
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that cannot be automated and is not accurate enough
if performed by “human guess” [13]. Therefore, the
generated dataset has been used, where the position
of the electronic dispersion can be precisely deter-
mined [10, 13, 14]. Typically, the training set used
for neural network training for APRES spectra pro-
cessing is quite small (less than 10,000 examples)
[10, 13, 14].

The generated data set was used to train the pro-
posed U-Net neural network. The training data set
of the neural network consists of pairs of images: as
the input — the generated spectra, which can contain
up to 2 zones, as the output corresponding labeled
image (segmentation map), where each pixel within
an image has a specific label. The dimensionality of
the input image is 128 x 128 x 1 and the output is
128 x 128 x 2. Each pixel of the output is labeled us-
ing a one-hot encoded vector (?) or ((1)) (electronic
band dispersion pixel). It uses a binary vector, where
only one element is set to 1, indicating whether the
pixel belongs to the electronic dispersion or back-
ground class. A one-particle spectral function, the
imaginary part of Green’s function for one-electron
excitations (quasiparticles), has been used to simu-
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late the detected experimental one-band spectra:
Z/I (UJ)
(w—e(k) = ¥'(w))? + X" (w)?’

Alw, k) =

where ¥'(w), X (w) — are the real and the imaginary
parts of the quasiparticle self-energy, respectively, re-
flects all the interaction of electrons in the crystal,
e(k) = mk? + 1 — “bare” electron dispersion(is ap-
proximated by simple parabola). ¥'(w) = Aw and
¥ (w) = aw? + Imp, where constant parameter Imp
is added to consider the scattering on impurities. The
values of the parameters have been randomly gener-
ated from the range of values presented in Table.

Due to the spectrum’s resolution exceeding 128 x
x 128 pixels, it will be divided into smaller, more
manageable sub-regions during analysis. Compared
to the entire spectrum, the relatively small size of
these sub-regions implies a low probability of any
given sub-region containing more than two electronic
bands. So, we employed training data that included
spectra containing up to 2 zones. The resulting two-
band spectra were obtained by adding two one-band
spectra.

Since the experiment data are always noisy, two
types of noise have been added to the simulated spec-
tra namely:

e Shirley noise to describe the background related
to inelastically scattered electrons (Bw?, where 3 in
the range from 0 to 1.5).

¢ Poisson noise multiplying each generated image
pixel by uniformly distributed random value (from 0
to 0.5) and adding to the image.

The generated spectra were multiplied by the
Fermi-Dirac distribution with temperatures ranging
from 0 to 300 Kelvin to simulate the effects related
to the Fermi level.

To make the training process of the neural network
less time and memory-consuming we trained the neu-
ral network in several phases

1. Initial Training (20 Epochs). The initial training
phase utilizes a dataset of 1000 examples (training set
900 examples, validation 100 examples).

2. The second phase introduces an expansion of the
dataset. The initial 1000 examples are replaced with
a new dataset of 1500 examples (1350 for training and
150 for validation).

3. New dataset consists of another 1500 examples
(1350 for training and 150 for validation) and was
used during 30 epochs.
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Fig. 2. The ARPES spectra of the Brillouin zone Z point of Fe(Se, Te) obtained using linear vertical
polarization for temperature 20 K (a) and 220 K (d) and the corresponding results of its procession
using our U-Net (b, e) and the curvature method (¢, f)

4. Final Dataset Expansion and Training Comple-
tion (20 Epochs). The training duration is reduced to
20 epochs and the dataset is extended to 2,000 exam-
ples (1,800 for training and 200 for validation).

That dataset expansions and changes expose the
network to a wider range of examples, enhancing its
generalization ability and preventing the neural net-
work from overfitting. This ensures that the network
has sufficient time to learn from the new dataset and
maintain its overall performance.

The Adam optimizer is adopted to train the net-
work for 90 epochs. Figure 1 shows that the value of
the loss function for training and the validation set de-
creases monotonically and becomes almost constant
in the last 10 epochs, indicating good convergence. In
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particular, the values of the loss functions for both
sets are very similar.

3. Results

To compare the method’s performance and reliabil-
ity, it has been applied to the experimentally ob-
tained spectra of the Brillouin zone Z point of Fe(Se,
Te). The spectra were obtained at various temper-
atures (from 20 K to 220 K), allowing us to track
the network’s performance under different noise lev-
els. Additionally, the spectra encompass both single
and double-zone configurations. Since the image size
is larger than 128 by 128 pixels, model predictions
were calculated for all possible 128 by 128 image
patches. The pixel with the highest value (the high-
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Fig. 3. The ARPES spectrum of the Brillouin zone Z point of Fe(Se, Te) obtained using linear
horizontal polarization for temperature 160 K (a) and the corresponding results of its procession

using our U-Net (b) and the curvature method (c)
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Fig. 4. The ARPES spectrum of the Brillouin zone Z point

of Fe(Se, Te) obtained using linear horizontal polarization for

temperature 220 K results (left image) and the results of its

procession using our U-Net (right)

est of all possible probabilities that the pixel belongs
to electronic dispersion) was selected for overlapping
patches. This approach helps considering all possible
long-range dependencies between image pixels avail-
able for such neural network resolution.

We compared our method’s results to those ob-
tained using the curvature method from [18] to eval-
uate its performance. However, in [18] each spectrum
was pre-processed by smoothing to reduce noise be-
fore applying the curvature method. The curvature
method’s results were optimized by tuning the pa-
rameter Cy to achieve the best result [8]. As shown in
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Fig. 2, our method enables the visualization of disper-
sion across a broader energy range, showing greater
resilience to the noise introduced by inelastically
scattered electrons. By considering long-range pixel
dependencies, the network can capture the band-
like nature of electronic dispersion. As illustrated in
Fig. 2, e, the network extends the dispersion pattern
based on previously predicted pixels. Unlike the cur-
vature and most other methods, our neural network
approach directly processes the raw spectra without
requiring a prior smoothing.

The ability of neural networks to bypass smooth-
ing is essential, when dealing with spectra contain-
ing multiple, adjacent zones. In such cases, smooth-
ing often leads to a loss of information, so, it is quite
hard to find trade-offs between noise reduction and
zone information loss. Especially for high tempera-
tures, the signal becomes weaker compared to the
noise, making it more difficult to extract or interpret
the desired information from spectra. For example,
for spectra obtained at 160 K, the curvature method
reveals only a single discernible zone (Fig. 3, ¢), while
the other zone is barely detectable. At 220 K, the
curvature method fails to extract meaningful infor-
mation about the zone positions. Unlike the curva-
ture method, our proposed neural network effectively
visualizes bands even in complex scenarios. As seen
in Figs. 3, and 4, the neural network enables visual-
ization of the bands. High noise levels significantly
hinder the model’s ability to classify pixels accu-
rately. This is evident in the drop in prediction ac-
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curacy, where the probability of a pixel belonging to
electronic dispersion barely exceeds 0.5. In contrast,
lower temperatures typically yield probabilities closer
to 0.8, indicating a much clearer distinction between
dispersion and non-dispersion regions.

4. Conclusions

The paper proposes to regard the problem of deter-
mining electronic dispersion from ARPES spectra as
a semantic segmentation task. We trained the U-Net
with an attention mechanism to solve this problem,
using a small dataset of generated spectra and corre-
sponding segmentation maps (2,000 examples). Pro-
cessing experimentally obtained spectra of Fe(Se, Te)
(with different radiation polarizations, temperature
interval 20-200 K) demonstrated the effectiveness
of the proposed network. Compared to the curva-
ture method, the proposed network is more robust
to noise and, thus, achieves better results in compli-
cated situations (multiple bands close to each other,
high noise levels). Additionally, since no spectra pre-
processing is required, the U-Net-based method can
be used for the automated processing of large volumes
of data.
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METO/, OBPOBKI ARPES
CIIEKTPIB HA OCHOBI U-NET

®doroeMiciiiHa CIHEKTPOCKOIsS 3 KYTY

(ARPES) - ne nory:kHuWii iHCTpYMEHT Il JOCJIZKEHHS

pO3ﬂiJIeHH§II\/I (e

€JIEKTPOHHOI CTPYKTypu MarepiamiB. OJHAK BU3HAYEHHS €Jie-
KTPOHHOI JUCHEPCil 3 IUX CIEKTPiB MoKe O6yTH YCKJIaTHEHUM
4qepe3 eEKTH YIIUPEHHs!, HASBHICTb PI3HUX TUIIIB IIIyMy, 0OMe-
JKEHHSI PO3/iJIbHOI 3aTHOCTI TOmio. ¥ Iiff CTaTTi MPOIOHY-
€ThbCsI HOBUU HinXis [0 BU3HAYEHHs JMCIepcil 31 crekTpis
ARPES na ocHosi Heiipornol mepexi U-Net. 3ajagua Bujiien-
HSI €HEePreTUYHUX 30H PO3IVISIAETHCS sIK 33J1a9a CEMaHTUIHOL
cermenTariili. Mu nokasyemo, o U-Net, HaBdena Jinire Ha oc-
HOBI 3reHepOBaHUX JAHUX, MOXKE BU3HAYUTHU 30HHY CTPYKTYPY
3 EeKCIIEPUMEHTAJbHO OTPUMAaHUX CIEKTPIB 0€3 IomepeHbOro
3HEIILYy MJIEHHS.

Karwwoei caoea: ARPES, neiiponni mepexi, eeKTpoHHA
crpykrypa, U-Net.
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