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DEVELOPMENT AND ANALYSIS OF NOVEL
INTEGRABLE NONLINEAR DYNAMICAL SYSTEMS
ON QUASI-ONE-DIMENSIONAL LATTICES.
PARAMETRICALLY DRIVEN NONLINEAR

SYSTEM OF PSEUDO-EXCITATIONS

ON A TWO-LEG LADDER LATTICE

1. Introduction

Following the main principles of developing the evolutionary nonlinear integrable systems on
quasi-one-dimensional lattices, we suggest a novel nonlinear integrable system of parametri-
cally driven pseudo-excitations on a regular two-leg ladder lattice. The initial (prototype) form
of the system is derivable in the framework of semi-discrete zero-curvature equation with the
spectral and evolution operators specified by the properly organized 3 X 8 square matrices. Al-
though the lowest conserved local densities found via the direct recursive method do not prompt
us the algebraic structure of system’s Hamiltonian function, but the heuristically substantiated
search for the suitable two-stage transformation of prototype field functions to the physically
motivated ones has allowed to disclose the physically meaningful nonlinear integrable system
with time-dependent longitudinal and transverse inter-site coupling parameters. The time de-
pendencies of inter-site coupling parameters in the transformed system are consistently defined
in terms of the accompanying parametric driver formalized by the set of four homogeneous or-
dinary linear differential equations with the time-dependent coefficients. The physically mean-
ingful parametrically driven nonlinear system permits its concise Hamiltonian formulation
with the two pairs of field functions serving as the two pairs of canonically conjugated field
amplitudes. The explicit example of oscillatory parametric drive is described in full mathe-
matical details.

Keywords: nonlinear dynamics, integrable system, two-leg ladder lattice, parametric drive,
Hamiltonian dynamics.

purely linear descriptions became more and more

Since the middle of the last century the trend to
switch the physical and mathematical consideration
of multi-component physical systems beyond the
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pronounced. Here it is worth noticing the pioneering
nonlinear approach initiated by Landau and Pekar
on the polaron theory [1] as well as the near non-
linear consideration suggested by Bogolyubov on
the adiabatic perturbation theory in the problem of
particle interaction with a quantum field [2]. These
and a number of other forthcoming researches [3—
6] have given rise to the very generative concept
of completely integrable nonlinear Schrédinger mod-
els both in their differential-differential (continuous)
[7-9] and differential-difference (semi-discrete) [9-16]
embodiments.
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Due to the recent technological progress in syn-
thesizing the low-dimensional nanoscale superstruc-
tures [17-21], treated as metamaterials prospective
for the microelectronic devices, we believe the semi-
discrete completely integrable models of nonlinear ex-
citations and nonlinear pseudo-excitations on quasi-
one-dimensional lattices will be in a considerable ap-
plicative demand.

In the present paper, we suggest a novel paramet-
rically driven nonlinear integrable system of pseudo-
excitations on a two-leg ladder lattice. To proceed
with this task, we rely upon the basic principles of
developing the semi-discrete nonlinear integrable sys-
tems on quasi-one-dimensional lattices, scrupulously
listed in our previous article [22]. Additionally, we
outline the main steps for generating the infinite hi-
erarchy of local conservation laws in terms of direct
recurrence technique [13,23-26]. The heuristic pecu-
liarities concerning the proper adjustment of origi-
nally unfixed sampling functions are also elucidated.

It is remarkable, that the ultimate form of devel-
oped semi-discrete nonlinear integrable system ad-
mits a concise Hamiltonian dynamical formulation
characterized by the standard Poisson bracket. Ho-
wever, the very procedure of standardization turned
out to be absolutely distinct from that related to the
integrable nonlinear Schédinger system on a two-leg
ladder lattice with the background-controlled inter-
site resonant coupling [27, 28].

2. Matrix-Valued Auxiliary Linear
Problem and the Appropriate Ansétze
for the Spectral and Evolution Matrices

Following the general rules of developing the integ-
rable semi-discrete nonlinear systems on regular qua-
si-one-dimensional lattices [12, 22, 29], let us start
with the set of two auxiliary matrix-valued equations

X(n+1JA) = L(n|A) X (n|) (2.1)
%XWM:AMWXWM, (2.2)

that are linear with respect to the auxiliary matrix-
function X (n|\A). Here, the symbol n denotes the dis-
crete spatial coordinate variable running from minus
infinity to plus infinity. The symbol 7 stands for the
continuous time variable. The symbol A marks the
time-independent spectral parameter. For our present
purpose, all three involved entities X (n|A), L(n|\),
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A(n|A) are assumed to be 3 x 3 square matrices. The
spectral equation (2.1) is governed by the spectral op-
erator L(n|)\), while the evolutionary equation (2.2)
is governed by the evolution operator A(n|\).

The set of auxiliary linear equations (2.1)—(2.2) is
overdetermined. To ensure the compatibility of this
overdetermined set, the operation of differentiation
over the time variable 7 and the operation of shifting
along the spatial variable n as applied to the auxiliary
matrix-function X (n|\) within the auxiliary linear set
(2.1)—(2.2) must commutate, i.e. [12]

Li_X(mM)} = iX(n + 1[A). (2:3)

m=n+1 dT

As a consequence of such a commutative procedure,
we come to the matrix-valued semi-discrete zero-
curvature condition [29, 30]

E%MMM:AM+HMMMM—LWMMWM)@@

on the permissible forms of spectral L(n|\) and evo-
lution A(n|\) operators.

Below, we propose one of successful variants in-
vented to satisfy the zero-curvature condition (2.4).
Namely, our suggestion is based upon the following
ansétze

fin(n)  fia(n)  fis(n)

L(n[A) = | far(n) fe2(n)+ A fas(n) (2.5)
fai(n)  fsa(n)  faz(n)

and
0,11(’/1) alg(n) alg(n)

A(’I’L‘)\) = 0,21(77,) a2 (n) + b22 (n)/\ a23 (n) (26)
agl(n) as2 (n) ass (TL)

for the spectral L(n|A) and evolution A(n|\) opera-
tors under the nonsingularity condition det L(n|\) #
# 0. Here, the space-and-time-dependent ingredients
fik(n) = fir(n|T) of the spectral matrix L(n|\)
should be treated as the prototype field functions
of future nonlinear integrable system encoded in the
zero-curvature equation (2.4). On the other hand,
the space-and-time-dependent ingredients a;x(n) =
= a;jx(n|7) and boa(n) = baa(n|T) of the evolution
matrix A(n|\) must be specifiable relying upon the
zero-curvature condition (2.4) and on certain reason-
able assumptions about the physically meaningful lo-
cal conservation laws.
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3. Integrable Semi-Discrete
Nonlinear System in Terms
of Prototype Field Functions

Thus, having inserted the above suggested ansitze
(2.5)—(2.6) into the zero-curvature equation (2.4) and
having collected the terms with the same powers of
the spectral parameter A within each of equation’s
matrix element, we are able to specify six ingredients

azz(n) = Qa22, (3-1)
baa(n) = baa, (3.2)
a21 (n) = baa fo1 (n), (3 3)
aiz2(n+1) = fia(n)baa, (3.4)
az3(n) = baa fa3(n), (3.5)
azz(n+1) = faz(n)baz (3.6)

of the evolution matrix A(n|)). Here, each of parame-
ters ass and bog can be time-dependent. Another four
ingredients a11(n), a13(n), ags(n), asi(n), referred to
as the sampling functions, remain unfixed for the time
being. In addition, we recover the set of nine semi-
discrete nonlinear equations

fii(n) = ar1(n + 1) fi1(n) + ars(n + 1) fa1(n) —

= fir(n)air(n) = fiz(n)asi(n), 3.7)
fi3(n) = ar1(n+1) fis(n) + arz(n + 1) fas(n) -

= fii(n)aiz(n) — fiz(n)ass(n), (3.8)
f33(n) = az1(n +1) fis(n) + ass(n + 1) fas(n) —

= fs1(n)aiz(n) — fsz(n)ass(n), (3.9)
f31(n) = azi(n+1) fir(n) + ags(n + 1) fa1 (n) —

= fa1(n)air(n) — fsz(n)asi(n), (3.10)
fa2(n) = baa fa1(n + 1) fra(n) + baz foz(n+ 1) faz(n) —
— fa1(n) fiz(n — 1)baz — faz(n) fs2(n — 1)bg,  (3.11)
f21(n) = baa far(n + 1) f11(n) + aza for (n) +
+b22f23(n + 1) f31(n) — far(n)aii(n) —

— f22(n)baz fa1(n) — faz(n)asi(n), (3.12)
fi2(n) = an1(n + 1) fr2(n) + fr2(n)bao faz(n) +
+aiz(n+1) fs2(n) — f11(n) frz(n — 1)baz —
—fia(n)azz — fi3(n) faz(n — 1)baa, (3.13)
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fas(n) = baa for (n + 1) fiz(n) + asa fas(n) +
+b22 f23(n + 1) f33(n) — far(n)aiz(n) —

— fa2(n)baz faz(n) — faz(n)ass(n),

f32(n) = az1(n + 1) fi2(n) + fz2(n)baz faz(n) +
+azz(n +1) fz2(n) — fa1(n) frz(n — 1)bae —

— fa2(n)azz — f33(n) fa2(n — 1)baa,

referred to as the prototype semi-discrete nonlinear
integrable system of our interest. The overdot in each
of above written equations (3.7)—(3.9) stands for the
differentiation with respect to the time variable 7.

In view of its representability in a concise matrix-
valued form of zero-curvature equation (2.4) the ob-
tained semi-discrete nonlinear system (3.7)—(3.9) ac-
quires the status of a system integrable in the Lax
sense. As a rule, this fact also supports the integra-
bility of a semi-discrete nonlinear system in the Li-
ouville sense [30]. At any rate, the Lax integrability
ensures the strict methods for obtaining the system’s
exact analytic solutions, as well as for generating an
infinite hierarchy of local conservation laws.

(3.14)

(3.15)

4. Main Steps in Generating
the Local Conservation Laws

By the definition, any particular local conservation
law related to a certain semi-discrete system on a qua-
si-one-dimensional regular lattice is writable in the
following form:

pn) = J(n) —

where the functions p(n)=p(n|r) and J(n)=
= J(n|r) denote the local density and local current,
respectively.

The most straightforward way to generate at least
some of the local conservation laws for an integrable
semi-discrete system on a quasi-one-dimensional lat-
tice is based on the universal local conservation law

J(n+1), (4.1)

% In[det L(n|A)] = SpA(n + 1|A) — SpA(n|A) (4.2)

readily obtainable from the system’s zero-curvature
representation (2.4) by virtue of identity

(4.3)

d d
-1 —_ = —
Sp <L I L> I In (det L)

valid for any nonsingular (det L # 0) square matrix L.
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Thus, for the spectral L(n|A) and evolution A(n|\)
operators specified by the earlier suggested formulas
(2.5) and (2.6)—(3.6) the recipe based on the univer-
sal local conservation law (4.2) yields only two local
conservation laws

dir In[Wo(n)] = a11(n+1) + asa(n+1) —

—dall(") —ax(n), (4.4)
P In[Wi(n)] = ain(n+1) + aga(n +1) -
—a11(n) — asa(n), (4.5)

where the local densities In[Wy(n)] and In[W;(n)] are
decoded by the expressions

Wo(n) = fo1(n) fis(n) fs2(n) + foz(n) fs1(n) fiz(n) —
— fo1(n) f33(n) frz(n) — faz(n) f11(n) f32(n) +

+ [f11(n) fs3(n) — fi3(n) f31(n)] faz(n) (4.6)
and

Wi(n) = fi1(n)fzz(n) — fiz(n) fz1(n), (4.7)
respectively.

Fortunately, there exist several technically differ-
ent but basically equivalent systematic approaches for
generating the hierarchy of local conservation laws re-
cursively [13,23-26, 28] without any reference on the
scattering data of auxiliary spectral problem, as well
as on the Hamiltonian structure underlying the hier-
archy of integrable systems linked with the adopted
spectral operator.

For example, the first step of our own approach [23—
25, 28] consists in recovering the adequate recursive
representations for the auxiliary quantities I';;(n|A)
subjected to the following restrictions
Lji(n| Mg (n|A) = Tju(n|A). (4.8)
To succeed, with this task, the auxiliary quantities
I'ji(n|A) should be expanded in certain proper series
with respect to spectral parameter \ or inverse spec-
tral parameter 1/A. Then they should be inserted into
the fundamental set of spatial Riccati equations

3
Tin(n+ 1) 3" Lia(n A (nfA) =

=1

3
= Z Lji(n|\)Tir(n|N) (4.9)
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governed exclusively by the matrix elements L (n|\)
of the spectral operator L(n|\). Therefore, each ex-
pansion coefficient of any auxiliary quantity I'jx(n|A)
is obliged to emerge as a certain combined expression
consisting of prototype field functions.

Once the required precision in the recursive rep-
resentations of the auxiliary quantities I'j;(n|)) has
been achieved the obtained truncated series should
be substituted into the collection of three (5 = 1,2, 3)
generating equations

d

T In [M;;(n|A)] = Bjj(n+1|A) — Bj;(n|A), (4.10)
whose functional structures are seen to duplicate the
functional structure of a typical local conservation law
(4.1). For this reason, the quantities M;;(n|\) and

Bj;(n|A), defined by formulas

3
Mj;(n|A) = Lii(n|\)Ti;(n|)) (4.11)
=1
and
3
Bjj(n|X) = Z Aji(n|A)Ti5(n|A), (4.12)

are served to generate the hierarchy of local densities
and the hierarchy of local currents, respectively. Here,
the quantities A, (n|\) stand for the matrix elements
of evolution operator A(n|\).

Having collected the terms with the same powers
of spectral parameter A in each of three (j = 1,2, 3)
generating equations (4.10) it is possible to recover
any required number of local conservation laws from
their infinite hierarchy.

The application of the above described generating
scheme to each of three generating equations (4.10)
specified by the spectral L(n|\) and evolution A(n|\)
matrices of our present interest (2.5) and (2.6)—(3.6)
reveals that at least several lowest conserved densities
related to the first (j = 1) generating equation and
to the third (j = 3) generating equation are the con-
served densities of rather trivial form F(n+1)— F(n)
absolutely useless from the physical point of view. For
this reason, we trace here only the key calculations
related to the second (j = 2) generating equation.

First of all, we observe that the explicit expres-
sions (4.11) and (4.12) taken for the composite quan-
tities Mao(n|A) and Baa(n|A) operate only with two

ISSN 2071-0194. Ukr. J. Phys. 2024. Vol. 69, No. 8
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unknown auxiliary quantities I'12(n|A) and I'sa(n|A),
inasmuch as I's3(n|A) = 1 by virtue of fundamental
restrictions (4.8). Hence, it is sufficient to deal recur-
sively merely with two

Tia(n+ 1|A) x

X [f21(n)T12(n[A) + A+ faz(n) + faz(n)[a2(n|A)] =
= fu(m)l2(n|A) + fi2(n) + fr3(n)Cs2(nfA),  (4.13)
Tso(n+ 1|A) x

x [f21(M)T12(n|A) + A+ foz(n) + fa3(n)Ts2(n|A)] =
= fs1(M)T12(n|A) + fa2(n) + fs3(n)Ts2(n|A)  (4.14)

of six original Riccati equations (4.9).

The set of two above written nonlinear Riccati
equations (4.13)—(4.14) turns out to be solvable re-
cursively by the use of following two expansions

F12 n|)\ Z’Ylg n|k‘ )\ k=1 (415)
and
Fgg ?7,|)\ Z’}@,Q TL|]{7 )\ k=1 (416)

k=0

for the two involved auxiliary quantities I'12(n|A) and
Ts52(n|A) with |A] = co. As a result of elementary al-
gebraic calculations, the lowest expansion coefficients
were found to be

’712(’1’L|0) = f12(n — 1), (417)
’)/32(TL|O) = f32(n - 1), (418)
M2(nl1) = fui(n — 1) frz(n — 2) +

+ flg(n - 1)f32(’ﬂ — 2) - flg(n - 1)f22(n - 1), (419)
v32(n|1) = faz(n — 1) fs2(n — 2) +

+ f31(n - 1)f12(7l - 2) - f32(n - 1)f22(n - 1) (420)
Consequently, the generator In[Mag(n|\)] of the lo-
cal densities, having being presented via the com-
posite quantity Maa(n|A) (see formula (4.11)) with
the use of expansions (4.15) and (4.16) for I'12(n|X)
and T's2(n|A\) supplemented by the explicit formu-

las (4.17)—(4.20) for the lowest expansion coefficients,
yields the following expressions

f22(n)7
ISSN 2071-0194. Ukr. J. Phys. 2024. Vol. 69, No. 8

p22(n|l) = (4.21)

p22(n|2) = fa1(n) frz(n — 1) — *f22( )f22(n) +
+ fa3(n) fz2(n — 1),

p22(n|3) = fa1(n) frr(n — 1) frz(n — 2) +

+ for(n) fiz(n — 1) fsa(n — 2) +

+ fa3(n) fz3(n — 1) fsa(n — 2) +

+ fa3(n) fs1(n — 1) fr2(n — 2) —

= fo2(n) [f21(n) fr2(n = 1) + faz(n) f2(n — 1)] —
—[fa1(n) frz(n — 1) + fas(n) faz(n — 1)] fao(n — 1)+
+ 2 o) ) o) (423)

(4.22)

)
)
)
)

for the lowest local conserved densities paa(n|l),
p22(n]2), pa2(n|3). The status of these three quanti-
ties (4.21)—(4.23) as the local conserved densities has
been verified by the direct calculation of their time
derivatives paa(n|l1), paz(n|2), p22(n|3) with the use of
semi-discrete nonlinear equations (3.7)—(3.9) for the
suggested prototype nonlinear integrable system.

The expression for the local current Jog(n|l) re-
lated to the local density poa(n|l) (4.21) is evident
from the semi-discrete nonlinear equation (3.11) for
f22(n). The expression for the local current Jos(n|2)
related to the local density p22(n|2) (4.22) is given by
formula

J22(n|3) = fa1(n) frz(n — 1)ba2 fao(n — 1) +

+ faz(n) faz(n — 1)baz faz(n — 1) —

= f21(n) fir(n — 1) fia(n — 2)bas —

= fa1(n) fiz(n — 1) fa2(n — 2)baz —

— f23(n) faz(n — 1) fa2(n — 2)baa —

— fas(n) fa1(n — 1) fra(n — 2)baa. (4.24)

The expression for the local current Jos(n|3) related
to the local density p22(n|3) (4.23) is so long that we
decided to omit it for the brevity sake.

5. Intuitive Fixation of Sampling
Functions and Intermediate Form
of Semi-Discrete Nonlinear
Integrable System

Looking at expressions (4.21)—(4.23) for the obtained
local conserved densities paa(n|1), p22(n|2), p22(n|3),
we see that neither of them could be treated as the

581



0.0. Vakhnenko, V.O. Vakhnenko

density of Hamiltonian function or the density of ex-
citations related to the prototype semi-discrete non-
linear integrable system under study (3.7)—(3.9).

The crucial step to overcome this serious obstacle is
to fix the arbitrary sampling functions ai1(n), aiz(n),
asz(n), as1(n) by a certain reasonably motivated de-
mand. After the scrupulous analysis of our prototype
integrable semi-discrete nonlinear system (3.7)—(3.9)
we decided to press the function

022(n) = fa1(n) fi2(n) + faz(n) f32(n)

into a Procrustean bed of local conservation law

(5.1)
022(n) = Jaz2(n) — Jaa(n + 1). (5.2)

Our intuitive reasoning supported by elementary an-
alytic calculations has provided the following results:

aii(n) = ai, (5:3)
a13(n) = a3, (5.4)
asz(n) = ass, (5.5)
az1(n) = as (5.6)
and

Ju(n) = fi1,

In another words, the functions aii(n), aisz(n),
azz(n), az1(n) and f11(n), fi3(n), f33(n), f31(n) must
be independent of the spatial coordinate variable
n. Nevertheless, each of these functions can be time-
dependent.

As for the local current Ja2(n) related to the local
density g22(n) (5.1), it acquires the form

722(n) = —b22f21(n)f11f12(n - 1) -
—baa fo1(n) f13f32(n — 1) — baa faz(n) fa1 fr2(n — 1) —
— baa fa3(n) fa3 fa2(n — 1). (5.11)

Although expression (5.1) for g92(n) looks as the
local density of excitations or the local density of
charge, however, this naive interpretation turns out
to be delusive.
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Meanwhile, due to the spatial independence of sam-
pling functions a;; and ags (see formulas (5.3) and
(5.5)) the local conservation laws (4.4) and (4.5) are
converted into the two differential constraints
Wo(n) = O,

Wi(n) =0

(5.12)
(5.13)

on the functional expressions (4.6) and (4.7) for
Woy(n) and Wy (n), respectively.

The second differential constraint (5.13) implies
that the space-independent expression f11 f33— f13f31
must be time-independent too, i.e.

% [f11f33 — fi3f31] = 0. (5.14)

As for the first differential constraint (5.12), we pre-
fer to convert it into the sheer identity by means of
substitution

f22(n) = haa(n) +

n fa1(n) fs3f12(n) + fas(n) fi1 fea(n)
fi1fzs — fisfs1

_ for(n) fis fs2(n) + fas(n) f31 fr2(n)
Ji1fss — fi3fs

implying that the function fos(n) has lost its status of
independent field function. Here, haa(n) is the time-
independent integration function. In order to preserve
the uniformity of space, we assume its independence
of the spatial coordinate n as well. Thus, we have

(5.15)

hgg(n) = hQQ, (516)
where
has = 0. (5.17)

Having taken into account the findings of this fifth
Section we come to the intermediate form of semi-
discrete nonlinear integrable system, which reads as
follows

f11 = a13f31 — f13as1,
fis = a11fis + a13fss — fr1a1s — fizass,
fas = as1fis — faias,
fa1 = asifin + assfs1 — fsra11 — fasasy,
fo1(n) = baafor(n+ 1) fi1 + aza for (n) +
+b22faz(n + 1) fs1 — for(n)ai —
— faz2(n)baz fo1(n) — faz(n)asi,

ISSN 2071-0194. Ukr. J. Phys. 2024. Vol. 69, No. 8
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fra(n) = ar1 fra(n) + fra(n)bas fao(n) +
+ai3fz2(n) — fi1fiz(n — 1)baz —

— fi2(n)azz — fizfa2(n — 1)b2a,

fas(n) = baa for (n + 1) 15 + aza fas(n) +
+baz foz(n + 1) f33 — far(n)arz —

— faz2(n)baa fas(n) — fas(n)ass,

f32(n) = az1 fi2(n) + f32(n)bas foa(n) +
+assfz2(n) — fsifrz(n — 1)baz —

— f32(n)azz — f3f32(n — 1)b2a.

(5.23)

(5.24)

(5.25)

Here, we should remember that the function fas(n)
is specified by the previously obtained formulas
(5.15)—(5.17).

Without the loss of generality, we simplify our for-
thcoming consideration by assuming that each of the
two time-dependent parameters ase and hos is equal
to zero

agy =0,
hoo = 0.
This assumption is readily justifiable by the gauge
transformation from the original fa1(n), fi2(n),

fasz(n), fs2(n) to the transformed Fyi(n), Fiz(n),
Fy3(n), Fsa(n) field functions specified by formulas

fa1(n) = Fa1(n) exp [+ A2z — Caol, (5.28)
fi2(n) = Fia(n) exp [~ Az2 + Coa), (5.29)
f23(n) = Fas(n) exp [+Az2 — Coal, (5.30)
f32(n) = F32(n) exp [~ Az + Caa], (5.31)
Agy = as, (5.32)
Caz = byohas. (5.33)

Another simplification consists in introducing the
rescaled time-dependent parameters a1, a3, a31, ass
and the rescaled time variable 7 by means of formulas

Ak = bggajk (5.34)
and by means of differential equality
dT = baodr, (5.35)
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respectively. This observation allows us to specify the
parameter byo by the simple equality
bog =1 (5.36)
in the spatiotemporal part (5.22)—(5.25) of the ob-
tained intermediate semi-discrete nonlinear system
(5.18)—(5.25).

Eventually, the three adopted simplifications
(5.26), (5.27), (5.36) do not discard the system’s para-
metric driving sources manifested through the per-
missible time dependencies of parameters aiy, ais,
ass, asi, as well as through the time dependencies of
spatially-independent driving functions fi1, f13, f33,
f31- As a matter of fact, it is reasonable to associate
the parametrically driven system as such only with
the last four (5.22)—(5.25) of the obtained equations,
while to consider the first four (5.18)—(5.21) of the
obtained equations as the main parametric driver.

6. Semi-Discrete Nonlinear
Integrable System in Terms
of Physically Motivated Field Functions

The main idea to convert the intermediate semi-dis-
crete nonlinear integrable system (5.18)—(5.25) into
the habitual Hamiltonian form is to make an appro-
priate transformation of its original field functions
fa1(n), fi2(n), fas(n), fs2(n) to the suitable new ones
921(n), g12(n), gaz(n), gs2(n) relying upon a certain
physically understandable condition.

To realize this pertinent idea, we start with the
following set of transformation formulas

g21(n) = far(n)err + fas(n)esu, (6.1)
g12(n) = €11 f12(n) + €13 fs2(n), (6.2)
923(n) = fa1(n)eis + faz(n)ess, (6.3)
g32(n) = es1.f12(n) + es3f32(n) (6.4)
supplemented by the condition

[921(n)g12(n) + g23(n)g32(n)] \/m =

= f21(n) fssf12(n) + f23(n) f11 f32(n) —

— f21(n) fra f32(n) — fa3(n) f31 f12(n), (6.5)

whose the right-hand-side part has been prompted by
the explicit expression (5.15) for the local conserved
density paa(n|l) = faa(n) (4.21) with hag(n) = 0.
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The elementary algebraic manipulations with the
transformation formulas (6.1)-(6.4) and with the
adopted condition (6.5) give rise to the set of non-
linear algebraic equations
€35 + esrers = Fiy,

(e33 +e11)e1z = —Fis,
€11 + eizesy = Fig,
(e11 +es3)ezr = —F3
allowing to determine the unknown time-dependent
coefficients e11, e13, ess, eg; in terms of the driving
functions f11, fi3, f33, f31. Here, the short-hand no-
tation 5
Fjj, = i

! Viifss — fisfa

with j # 2 and k # 2 has been adopted.
The result of calculation is given by formulas

(6.10)

el =e+d, (6.11)
Fi3
= —— 6.12
€13 % ) ( )
e33 =e —d, (6.13)
Fs3
=——0 6.14
€31 % ) ( )
where
, 1 1
e’ = §+1(F11+F33)5 (6.15)
1
d=— (F33 — F11). 1
=Py - F) (6.16)
In so doing, the identity
e11€33 — e13€31 = 1 (6.17)

is taken place.

To perform all necessary transformations with
the intermediate nonlinear integrable system (5.22)—
(5.25) we are obliged to consider the inverse transfor-
mation formulas
f21(n) = g21(n)di1 + gas3(n)ds1,
fi2
f23

f32(n

584

n 11912(n) + di3gs2(n),

(n)
(n)=d
(n) = ga1(n)diz + ga3(n)das,
(n)=d

31912(n) + ds3g32(n)

too. Here the time-dependent coefficients dy1, dis,
ds1, dz3 are related to the time-dependent coefficients
e11, €13, €31, €33 by the simple formulas

di1 = ess, (6.22)
diz = —e1s, (6.23)
dsz = e11, (6.24)
d31 = —e31. (6.25)

Despite of its elementary background the actual
procedure of system’s reformulation in terms of new
physically motivated field functions g;x(n) turns out
to be rather cumbersome due to the pronounced time
dependencies of driving functions f;; and transforma-
tion coeflicients e, as well as due to the possible time
dependencies of parameters a;;. Therefore we prefer
to present only the final formulas encompassing the
dynamical features of the transformed semi-discrete
nonlinear integrable system. The obtained equations
of motion read as follows

+921(n) = go1(n + 1) f11 + gas(n + 1) f31 —
- gzl(n)an - 923(n)a31 -
~ 921(n)g12(n) + g23(n)gs2(n)
vV f11f33 — fi3f31
—g12(n) = fiigi2(n — 1) + fizgs2(n — 1) —
—aigi2(n) — aizgsa(n) —
921(n)g12(n) + g23(n)gs2(n)
VFiifas — fisfa1 7
+g23(n) = gaz(n + 1) faz + ga1(n + 1) f13 —
— g23(n)ass — g21(n)aiz —
g21(n)g12(n) + g23(n)gs2(n)
BN Y e R
—g32(n) = fazgza(n — 1) + fa1g12(n — 1) —
—a33g32(n) — az1g12(n) —

— ga(n) g21(1)g12(n) + g23(1)gs2(n)
- Vf11f33_f13f31

Here, we have taken into account the already an-
nounced simplifications (5.16), (5.27) and (5.26),
(5.36) which assert that haa(n) = 0 and age = 0,
boo = 1 without the loss of generality. Moreover one
must remember that the driving functions f;, are
governed by the set of equations (5.18)—(5.21) listed
in the fifth Section.

ggl(n), (626)

— g12(n) (6.27)

(6.28)

(6.29)
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The above written semi-discrete nonlinear equa-
tions (6.26)—(6.29) declare that the quantity paa(n)
given by formula

p22(n) = g21(n)g12(n) + g23(n)gs2(n) (6.30)

has the sense of the local conserved density. Presently,
we suspect that this local conserved density pao(n)
does not preserves its sign as a function of coordi-
nate n and time 7. For this reason, we are inclined to
treat it as the local density of charge similarly to the
terminology adopted in other our papers [31-37].

The local current Joz(n) in the local conservation
law

[')22(77,) = JQQ(H) — J22(n + 1) (631)
related to the charge local density (6.30) is deter-
mined by formula

J22(n) =
= —g21(n) fi1g12(n — 1) — g21(n) f13g32(n — 1) —
)

—g23(n) fazgza(n — 1) — ga3(n) f31g12(n — 1).  (6.32)

The system under study (6.26)—(6.29) should be
treated as the system of two coupled pseudo-excitonic
subsystems. Each of subsystems is described by its
own pair of field functions. These two pairs of
functions are as follows ga21(n), gi12(n) and go3(n),
g32(n). Each pair of functions is prescribed to a sep-
arate one-dimensional regular chain. Therefore, each
of subsystems is settled exclusively on the sites of
its own separate chain. The inter-site linear coupling
along one separate chain is described by the pa-
rameter f11. The inter-site linear coupling along an-
other separate chain is described by the parameter
f33. The inter-site linear coupling along a particular
chain is seen to be extremely asymmetric (one-sided)
in contrast to the symmetric (two-sided) inter-site lin-
ear coupling along a particular chain typical of the
conventional molecular excitons [38]. For this reason,
the intra-site excitations of our system are referred
to as the pseudo-excitonic ones. The linear cou-
pling parameters f3;, az; and fi3, a;3 between the
field functions of distinct subsystems characterize the
linear interaction between the sites of two distinct
chains. This transverse linear interaction effectively
establishes the two leg ladder configuration of under-
lying regular lattice.
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7. Hamiltonian Formulation

of the Semi-Discrete Nonlinear
Integrable System in Terms

of Physically Motivated Field Functions

As we already mentioned in fifth Section, the stan-
dardly obtained lowest local conserved densities
p22(n|1), paa(n|2) (see (4.21)—(4.22)) can not be taken
for the density of Hamiltonian function of the semi-
discrete nonlinear integrable system under study.
This situation appears to share some similarity with
the case of multi-component integrable semi-discrete
nonlinear Schrédinger systems where the knowledge
of basic local conservation laws does not open the
routes to construct the exact Hamiltonian represen-
tation in physically meaningful terms [39, 40].

Fortunately, the equations of motion for the semi-
discrete nonlinear integrable system of our interest
represented in terms of physically motivated field
functions (6.26)—(6.29) permit being rewritten in con-
cise Hamiltonian form revealable by the purely heuris-
tic consideration. As a result, we come to the canon-
ical Hamiltonian dynamic equations

d OH

Eng(n) = 78912(77;)’ (71)
%912(”) = +8gilh(rn)’ (7.2)
%923(”) = _8g(z§n)’ (7.3)
%932(") = Jr@gif(rn) (7.4)

with the Hamiltonian function given by the expres-
sion

H= Z [g21(m)a11912(m) — g21 (m+1) fi1g12(m)] +

m=—0o0
oo

+ Z [g21(m)a13g32(m) — g21(m + 1) fi3g32(m)] +

m=—00

+ Z [g23(m)azsgs2(m) — g2s(m + 1) f33g32(m)] +

m=—00

+ Z [g23(m)az1g12(m) — gas(m + 1) f31912(m)] +

m=—0o0

>

m=—00

[g21(m)g12(m) + gaz(m)gs2 (m)}z '

2v/ f11f33 — f13fa1 (7.5)
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Thus, we clearly see that the field functions go1(n)
and g12(n) acquire the meaning of canonically conju-
gated dynamical field amplitudes settled on the one
leg of a ladder lattice, while the field functions ga3(n)
and gs2(n) acquire the meaning of canonically conju-
gated dynamical field amplitudes settled on the an-
other leg of a ladder lattice.

In general, the obtained Hamiltonian system (7.1)—
(7.5) does not conserve its total energy due to the
permissible time dependencies of coupling parameters
aii, ai3, asz3, a3 and f11, f13, f33, fgl. This state-
ment is in line with the fundamental rule proved to ex-
clude the total energy from the list of conserved quan-
tities of any time-dependent (parametrically driven)
Hamiltonian system [41,42].

8. Explicit Example
of Accompanying Parametric Drive

Now let us demonstrate one of the feasible explicit
realization of parametric drive (5.18)—(5.21) accom-
panying either the intermediate semi-discrete nonlin-
ear integrable system (5.22)—(5.25) or the physically
motivated semi-discrete nonlinear integrable system
(6.26)—(6.29) on an equal footing.

For this purpose, we decompose both the driving
functions f11, fi3, f33, f31 and the driving parameters
a1, a13, asz, azy into the suitable time-independent
and time-dependent parts. Namely, we set up f;z and
aji by formulas

fjk = Ujk + Vjk, (81)
Ak = Ujk — VUjk, (82)
where the summands u;;, are time-independent

U = 0, (8.3)

while the time-dependent summands v, are governed
by the set of ordinary linear differential equations
with the constant coeflicients

011 = 2u13V31 — 2013U31, (8.4)
013 = 2u11v13 — 201113 + 2u13v33 — 2v13u33,  (8.5)
U33 = 2u31v13 — 2031U13, (8.6)
031 = 2u31011 — 2031u11 + 2u33v31 — 2u33uz1.  (8.7)

The above homogeneous ordinary linear differential
equations (8.4)—(8.7) emerge via the direct substitu-
tion of the adopted decomposition formulas (8.1)—
(8.2) into the original equations for the parametric
driver (5.18)—(5.21).
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In what follows, we impose the restriction

(U11 — U33)2 + 4duq3usz; < 0. (88)

allowing to treat the set of homogeneous ordinary lin-
ear differential equations (8.4)—(8.7) as the oscillatory
one characterized by the eigenfrequency

w = 2\/—(’(1,11 — U33)2 — 4U13U31. (89)

As a consequence, the purely oscillatory solutions
to the set of driving equations (8.4)-(8.7) are rep-
resentable in the form

Vjk = Cji cOS(WT + ) + s sin(wr + ), (8.10)

where @ is an arbitrary constant parameter. Here the
time-independent coefficients c;;, and s, are specified
by formulas

c11 = ¢, (8.11)
C Sw

= — — 8.12

C13 Yz, (u33 Un) dus; ) ( )

C33 = —C, (813)
c Sw

= —(u33 — —_— 8.14

€31 Sty (uss —un) + Tuys’ ( )

811 = +8, (815)
S CWwW

= — 8.16

513 sy (uss —u1) + Tugy’ ( )

S33 = —S, (817)
s cw

31 = 33 — — , 8.18

$31= 5 — (uss — u11) T (8.18)

where ¢ and s are free time-independent parameters.

Meanwhile, the expression (8.9) for the eigenfre-
quency w prompts us to parameterize the background
constants u;, by formulas

ulp = u+ %sinh(r), (8.19)
U3 = —1—% cosh(r) exp(+2q), (8.20)
Uz = u— %Sinh(r), (8.21)
uzp = —% cosh(r) exp(—2q), (8.22)

where each of three introduced parameters u, r, ¢
is a time-independent one. As a consequence, for the
time-independent parameters c;3, c31 and s13, S31, we
obtain the following parameterized expressions
c13 = +ctanh(r) exp(+2q) +

+ ssech(r) exp(+2q), (8.23)
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c31 = —ctanh(r) exp(—2q) +

+ ssech(r) exp(—2q), (8.24)
s13 = +stanh(r) exp(+2q) —
— csech(r) exp(+2q), (8.25)
s31 = —stanh(r) exp(—2¢q) —
— csech(r) exp(—2q). (8.26)

At last, the expression for the time-independent nor-
malization factor fi1 f33 — f13f31 acquires rather per-
ceptive representation
2
w
firfss — fisfar = u? + 6 (¢ + s?) sech?(r) (8.27)

allowing to establish the physically informative crite-
rion of its positive determinedness

2, W 2, .2 2
u” + — > (¢® 4 s7) sech”(r).

" (8.28)

As a matter of fact, the parameter ¢ turns out to
be absolutely surplus for the practical consideration
inasmuch as it can be safely eliminated from the equa-
tions of motion (6.26)—(6.29) by the simple transfor-
mation

g21(n) = Ga1(n) exp(—q), (8.29)
g12(n) = Ga1(n) exp(+q), (8.30)
g23(n) = Gaz(n) exp(+q), (8.31)
932(n) = ga2(n) exp(—q) (8.32)

to the rescaled field amplitudes G21(n), G12(n) and
Ga3(n), G3a2(n) physically equivalent to the previous
ones g21(n), gi2(n) and ga3(n), gs2(n) with ¢ taken
to zero. Thus, we assume

=0 (8.33)

without the loss of generality.

9. Physically Motivated
Semi-Discrete Nonlinear Integrable
System under the Explicitly

Given Parametric Drive

For the sake of convenience let us consider the un-
veiled Hamiltonian formulation of suggested phys-
ically motivated semi-discrete nonlinear integrable
system under the explicitly given parametric drive in
some details.

ISSN 2071-0194. Ukr. J. Phys. 2024. Vol. 69, No. 8

First of all, the detailed Hamiltonian function H
based on the previously presented formulas (7.5),
(8.1), (8.2), (8.27) reads as follows

o0

M= 3 gl vl -
_ mioo go1(m + 1) (u11 + v11)g12(m) +
' miw 921 (m) (115 — v13)gsa(m) —

_ i g21(m 4 1)(u13 + v13)gs2 (m) +
' _fj 923(m) (13 — v33)gsa(m) —

_ i g23(m + 1)(us3 + vs3)gsz(m) +
" mio g23(m) (31 — v31)g12(m) —

_ i g23(m + 1) (us1 + vs1)g12(m) +

N i [g21 (M) g12(1m) + ga3(m)gz2(m)]” . (9.1)

m=—o0 24/ u2 + w2 /16 — (2 4 s2) sech?(r)

Here the time-independent background parameters
ujk (see (8.19)—(8.22)) specified by the equality ¢ = 0
are given by formulas

Uil =u+ %sinh(r), (9.2)
w
U3 = +Z cosh(r), (9.3)
w .
usz =u— o sinh(r), (9.4)
w
usL = = cosh(r). (9.5)

In turn, the time-dependent driving functions vjj
(see (8.10), (8.11), (8.13), (8.15), (8.17), (8.23)—(8.26)
specified by the equality ¢ = 0 are given by formulas

v11 = Fccos(wT + @) + ssin(wr + ), (9.6)

v13 = + [ctanh(r) + ssech(r)] cos(wT + ) +

+ [stanh(r) — csech(r)] sin(wr + ¢), (9.7)
587
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v33 = —ccos(wT + @) — ssin(wr + ), (9.8)
v31 = — [ctanh(r) — ssech(r)] cos(wr + ¢) —
— [stanh(r) + esech(r)] sin(wT + ). (9.9)

Of course, the concise record of Hamiltonian dy-
namic equations related to the detailed Hamiltonian
function (9.1) preserves its standard canonical form

(%921(”) = _('iqir}-én)’ (9-10)
d%g”(”) _ +8y§1%(lm’ (9.11)
d%_gzs(n) = 8g§jén)’ (9.12)
%932(”) = +3g§:én)' (9.13)

Due to the explicit parametric drive ensured by the
time-dependent parts vj;, of coupling parameters this
specified dynamic Hamiltonian system (9.1)—(9.13)
does not conserve its total energy in a complete accor-
dance with the similar property of its general para-
metrically driven predecessor (7.1)—(7.5).

In contrast, the system’s total charge

oo

Z [g21(m)g12(m) + gaz(m)gs2(m)]

m=—0oo

Q= (9.14)

is conserved provided the local current on the one side
of infinite lattice coincides with the local current on
the another side of infinite lattice

JQQ(—OO) = J22(+OO). (915)

This statement is based on the elementary consider-
ation of the respective local conservation law (6.31)
supplemented by the expression (6.30) for the local
conserved density paa(n).

10. Conclusion

One of the objectives of our research was to com-
plement the basic principles for the development of
semi-discrete nonlinear integrable systems formulated
in our previous paper [22] by certain delicate nuances
important for the actual implementation of novel
parametrically driven integrable dynamical systems.

Having started with the appropriately constructed
ansétze for the auxiliary spectral and evolution oper-
ators specified by the 3 x 3 square matrices, we have
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managed to develop the novel prototype semi-discrete
nonlinear integrable system with the unfixed sam-
pling functions. The obtained prototype semi-discrete
nonlinear integrable system has been reduced to the
novel semi-discrete nonlinear integrable system of
parametrically driven pseudo-excitations on a two-leg
ladder lattice both in its intermediate and physically
motivated incarnations.

We have recovered several local conservation laws
related to the general (prototype) semi-discrete non-
linear integrable system and have revealed that nei-
ther of the obtained conserved densities could not be
taken as the density of Hamiltonian function either
for the intermediate nonlinear system or for the phys-
ically motivated one.

Nevertheless, the physically motivated system
turns out to be the Hamiltonian dynamical system
characterized by the two pairs of canonically conju-
gated field amplitudes. Despite of its nontrivial com-
plexity the two-stage procedure of transformation
from the prototype system to the physically moti-
vated one has been rewarded by the unusual splitting
into the true physically motivated dynamical system
and the coordinate independent parametric driver
formalized by the set of four homogeneous ordinary
linear differential equations with the time-dependent
coefficients.

We have comprehensively demonstrated one par-
ticular realization of the purely oscillatory paramet-
ric drive and formulated the criteria of its validity
in terms of time-independent background values of
inter-site coupling parameters.

Due to its Lax integrability the suggested semi-
discrete nonlinear system permits the exact analyti-
cal solutions, obtainable in the framework of modern
mathematical methods such as the method of inverse
scattering transform [9, 12-15, 29] and the method
of Darboux—Bécklund transformation [16, 28, 31, 34].
Nevertheless, the actual procedure of system’s ex-
plicit analytical integration is expected to be sub-
stantially complicated by the noncommutativity of
spatially-independent spectral and evolution seed op-
erators caused by the nontrivial action of inherent
parametric drive.
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IIOBYIOBA TA AHAJII3 HOBUX
THTEI' POBHUX HEJTHIMHUX JTUHAMIYHIX
CHCTEM HA KBA3IOAHOBUMIPHUX I'PATKAX.
I[TAPAMETPUYHO YPYXOMJIFOBAHA
HEJIIHIMHA CUCTEMA IICEBIO3BVY/IKEHb
HA JIBOHI?KKOBIN JPABUHYATIN ['PATIII

Cruparovnch Ha 3aCaJHUYl IPUHIUNNA OOYAOBH iHTEIDOBHUX
€BOJTIOIIMHNX HEJIHIMHAX CACTEM Ha KBa3iOAHOBHMIPHHUX IDa-
TKaX 3allpOIIOHOBAHO HOBY HEJIHIHY IHTEI'DOBHY CHCTEMY Ila-
PaMETPUYHO yPYXOMJIIOBAHUX IICEBJOEKCUTOHIB Ha PEryIspHii
JIBOHI>KKOBI# jpabunuariii rparni. [Touarkosa (mpororumnna)
dopma crucTeMu € BUBOJKYBAHOIO B TepMiHax HalliBIUCKPe-
THOT'O PIiBHSIHHSA HYJIbOBOI KPDUBUHH 3i CIIEKTPAJbHUM Ta €BO-
JIIOLIHUM OIlepaTopaMu, 3aJaHMMU CIIeNiaJIbHO IIiJJIaIlIToBa-
HUMHU 3 X 3 KBaJpaTOBUMU MAaTPUIEMU. XO4Ya HaHMKYI 30e-
PpexKHi JIOKaJIbHI I'yCTHHU, 3HaiJeHi HaMU IPSAMUM PEKYyDPCHUB-
HHUM METOJIOM, i He BKa3aju Ha MOXKJIMBY ajredpudHy Oy/10BY
TlaminbroHOBOI (OYHKIHI cHCTeMH, IPOTE €BPICTHYHO OOIDYH-
TOBaHUI IONIYK BJIAJIOTO JBOCTYIIEHEBOI'O I1€PETBOPEHHS IIPO-
TOTUIHUX HOJBOBUX (PYHKIIH 10 PI3UYIHO BMOTHBOBAHUX JaB
dizuunHO 3MiCTOBHY HeTiHIfHY IHTEI'DOBHY CHCTEMY 3 aco3aJIe-
KHUMH [TOB3/IOBXKHIMH Ta ITOIIEPEYHUMU TapaMeTpaMU MizKBY-
3J10BUX 3B’a3KiB. JacoBi 3ay1e?KHOCT] mapaMeTpiB MiKBY3JI0BUX
3B’A3KiB TPaHC(HOPMOBAHOI CUCTEMU € IOCJIiJOBHO O3HAYEHUMU
B TEpMiHAX CyIIyTHBOTO ITapaMeTPHIHOrO yPyXOMJIIoBada, pop-
MaJIi30BaHOI'0 YOTUPMAa 3BUYAWHUMU OJHOPIIHUMU JIiHIHHIMU
nudepeHIiiHIMY PIBHAHHAMU 3 YacOo3aJIe>KHUMU KoedilieHTa-
vu. Pizuuno 3MicTOBHA MapaMeTPHYHO yPYyXOMJIIOBaHA HEJIi-
HilfHA cucTeMa JIOIyCcKae KOMIAaKTHe ['aMisibToHOBe hOpMyJIIo-
BaHHS, B SIKOMY [Bi IIapy NOJIBOBUX (DYHKIIIT HaOyBaIOTH CEHCY
BOX Tap KAHOHIYHO CIIPSI?KEHMX MOJIbOBUX aMmIiutiTyxn. Hacam-
KiHeIb PO3JIOr0 BUCBITJIEHO MaTeMaTHYHI BJIACTUBOCTI SIBHOT'O
[IapaMeTPUIHOrO yPYXOMJIIOBAHHS KOJIUBHOIO THILY.

Katowoei caoea: HesiHIHA JUHAMIKA, IHTEI'DOBHA CHUCTEMA,
JIBOHI?KKOBa JpabuHYaTa rpaTKa, HapaMeTPpUIHe yPYXOMJIIOBa-
HHsI, ['aMisIbTOHOBA JUHaAMIKA.
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