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SPECTRA AND THERMODYNAMIC PROPERTIES

OF ZIG-ZAG SINGLE - WALLED CARBON NANOTUBES
WITH DENG-FAN-HULTHEN POTENTIAL

A theoretical investigation of the spectra and thermodynamic properties of zig-zag single-walled
carbon nanotubes (6,0) is carried out within the framework of the Deng—Fan—Hulthen poten-
tial. We solved the Schridinger wave equation analytically in the presence of magnetic and
Aharonov-Bohm (AB) fluz fields using the Nikiforov-Uvarov (NU) method and obtained the
energy eigenvalues and eigenfunctions. It is observed that, in the absence of both magnetic and
AB fields, there is a degeneracy in the energy spectra. The presence of the magnetic and AB
flux fields led to an increase in the energy eigenvalues. The combined presence of both fields
removed the degeneracy noticed in the system. We calculated the partition function and used
it to evaluate the thermodynamic properties such as the mean energy, free energy, and entropy
in respect to the temperature, magnetic field, AB flux field and the quantum numbers.

Keywords: Deng—Fan—Hulthen potential, magnetic field, Aharonov—Bohm flux field, Niki-

forov—Uvarov method.

1. Introduction
Carbon nanotubes (CNTs) are sheets of graphene
rolled around a central axis, forming the hollow cylin-
drical shape. CNTs are in two types-single-walled
nanotubes (SWNTs) and Multi-walled nanotubes
(MWNT5). CNT comprises of a network of carbon
atoms in hexagonal form. Their diameter is in the
neighborhood of 1 and 2 nanometers, while their
length is equal to several micrometers [1]. Due to the
small nanoscale diameter, the confinement and move-
ment of electrons are along their length. Hence, CNTs
are regarded as 1D nanomaterials [2].

CNTs can be synthesized by various methods which
include the arc-discharge, laser ablation, chemical va-
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por deposition, plasma and floating catalyst methods
[3]. The unique electronic, al, and high thermal con-
ductivity among others that CNTs exhibit have made
them research hub for unravelling the fundamental
physics in low dimensional systems by physicists and
material scientists in [4, 5]. Due to the growing ad-
vances in the world of namechanie, CNTs are on the
edge of intense research to fully harness their full po-
tential and technological applications. Concerted ef-
fort and means are being deployed to investigate their
structure and their different properties to unveil the
novelty of this material. For instance, molecular dy-
namics (MD) simulations have been used in the the-
oretical investigations of the mechanical properties
and some thermal properties of CNTs with some em-
pirical potentials like Tersoff, Brenner, Morse, and
Lennard-Jones ones. These potentials give descrip-
tion of the potential energy of interaction that exists
between two non-bonding atoms or molecules. They
serve as a model of interatomic interaction between
an atom and the surface. First-principles methods
have also been used for the electronic and mechanical
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properties of CN'Ts. Experimentally, atomic force mi-
croscopy (ATM) has been used to study the mechani-
cal properties of CNTs. For heat or thermal transport
in nanotubes, the Boltzmann transport techniques
is used [6-9]. Experimental work has also be done
in terms of the optical properties of CNTs. Photo-
luminescence excitation (PLE) spectroscopy, Raman
spectroscopy, ultrafast optical spectroscopy, micro-
and nanospectroscopies and magneto-optical spec-
troscopy are some of the optical techniques em-
ployed to explore the intrinsic optical properties of
CNTs [10].

In this work, the Deng-Fan-Hulthen potential
will be used. It is a combination of two different
potentials,-Deng-Fan and Hulthen potentials. Deng—
Fan potential was proposed in 1957 to study molec-
ular systems. It is one of the exponential potentials
that is consistent with quantum criteria. It is a ver-
itable tool to study physical systems by theoretical
physicists, and a Pekeris-type approximation is usu-
ally employed to handle the centrifugal term [11]. Tt
is regarded as one of the simplest modified Morse po-
tentials. Under the boundary condition » = 0A oo, the
Deng-Fan potential behaves itself correctly [12]. The
Huthen potential has always played a pivotal role
in condense matter physics, atomic physics, nuclear
physics, and solid-state physics. It has been used to
describe the molecular structure of an atom and nu-
clear interaction. It is a short-range potential that ex-
hibits a Coulomb-like behavior for small values of the
screening parameter r with an exponential decrease
for large values of r [13-15].

The organization of this paper is as follows; in Sec-
tion 2, we will consider the quantum Hamiltonian of
a charged particle confined in a region of potential in
the presence of magnetic field and Aharonov—-Bohm
(AB) flux and solve analytically the radial part of the
Schrodinger equation with the NU method to obtain
the energy eigenvalues and the wave function. We
present numerical results and graphical plots in Sec-
tion 3. In Section 4, we determine the partition func-
tion and thermodynamic properties of zig-zag single-
walled carbon nanotubes (6, 0). The discussion of our
results is done in Section 5, while our conclusions will
be given in the last section.

2. Theoretical Model and Formulation

The quantum Hamiltonian of a charged particle con-
fined in a region of potential (Deng—Fan—Hulthen po-
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tential) under the combined influence of an external
magnetic field B and Aharonov—Bohm (AB) flux in
the cylindrical coordinate is written as

2
L( _EA>2+De (1_9) _
24 c (efr —1)

v eér
- (1_()7&) = Enm)¥(p0.2) 1)
where Q = e — 1, D, is the dissociation energy,
re is the molecular bond length, r is the internuclear
distance, § is the range of the potential well, and Vj
is the potential strength [16].

Here, we take u to be the effective mass for
CNT. The vector potential A is written as the sum
of two terms, A = A; 4+ As, and our symmetric
or Coulomb gauge is written as V x A; = B and
V x As = 0, where B, represents the applied mag-
netic field along the Z-axis. The additional magnetic
flux ®ap is due to a solenoid. Thus, in the cylindri-
cal coordinate system, the vector potential has the
azimuthal components

Be " _ Dap
(1 —e=0ry’ 27 oy

Be_ér Pap
A=10 0
( T(1—e0r) o

[17]. The Deng-Fan—-Hulthen Potential which is our
confining potential is a combination of two different
potentials — Deng—Fan and Hulthen potentials.

We take a wave function in the cylindrical coordi-
nates as

A1 =
(2)

1
V2T

where m represents the magnetic quantum num-
ber. By inserting our confining potential, vector po-
tential, and the wave function into Eq. (1), a second-
order differential equation will be obtained:

V(rp) = e Rym(r), m=0,£1,£2..., (3)

d*Rp (1) 20 5 Voe™or
S lnm\T) P\ e D e
dr? + h? et (1 —e=0r)
2hmed Be %" e2Be~ 20"
Cc(l—er) c? B (r) = 0. )

Since this differential equation contains both expo-
nential and radial terms, the improved approximation
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scheme by Greene and Aldrich given in the equation
below will help to solve the equation [17]

1 6—67" 2

—~ |dg+—— . )

N ®)
By inserting Eq. (5) into Eq. (4), we have

d*Ry, (1)
dr?

2uE 2uD.
R R

4uD Qe 0"
h2 (1 —e=97)

7 2D 022" 2V e 0" - 2mndBe 0"
52 (1 _ 6—67'02) h2 (1 _ 8—57“) ﬁ2 (1 _ 675T)2
7]2B26725r 7725B(bAB676T

- - ™
R2 (1 — 6—67’)2 R2 (1 — 6—67’)2

- (0 -3) o)

wheren:%,@oz%, :%and&):e‘”fl,cis

the speed of light.
Let us use the transformation

s=e7. (7)

Ry (r) =0, (6)

After differentiating twice, we obtain
d? §2s2d?>  §%sd
ds ds ds

Substituting Eq. (8) into Eq. (6) and dividing by
8252, we get:

$R 1dR | 1| 2uE 2D
ds?  Sds = S?|h262  h262
4uDOS 21D .02 S? 2uVoS
h262 (1 - 9) h262 h262(1 - 9)
2mnBS n?B252 —n?’B®spS

= 0. (9)

CRO(1—8)2 R262(1—S)2 | h28(1— S)%r

The following dimensionless symbols were used for
mathematical convenience

2u(Eym — De) 4D 211D,
—&= h252 ) 61: h2(52 ) BQZ h2(52 )
2uVy 2mnB n’B2
=29 == L 1
P= ez X7 s 0 T g (10)
2
_ 1"B®ap _ 2 1
)\2— ﬁ2(52ﬂ' s V—((m-l—C) 1 .
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Equation (9) can be rewritten with respect to these
dimensionless symbols as

d?R  (1-S) dR 1

4?2 T SA-9ds T P —9)?
+51(1 = 8)S = 2(S?) +p(1 — 5)S = x(5) = A1 (5?) —
— (1 = 8)S —Vd,(1-9)*=0. (11)

(1-95)+

Subsequently, Eq. (11) can be evaluated further as
R (1-S5) dR 1

ds?  S(1-—St)ds S%2(1-.5)2
X[—(e+B1+Bi+p+ A — A+ Vd,)S*+
+2e+Bi+p—x—A+2Vd, - V)S —
— (e + Vd,)|Rpm = 0.

X

(12)

Equation (12) is compared with the parametric NU
form of Eq. (13) written as [18]

01 — 025

2 /
Rt g ag it
—£,5% + &S — &3
S e LA

The equation for energy eigenvalues, according to
the NU method, is written as

don — (2n + 1)d5 + (2n + 1)[\69 + 53\/58] +

+ n(n - 1)(53 + 07 + 20308 + 21/ 0509 = 0. (14)
The corresponding wave function is given as
an(s) _ 8512 (1 _ 635)—512—513/53 «
d10—1 S11) d10—1

><p£1 ’ )(53) ( )(1—2635)7 (15)
where the following parameters are used:

1
6425(1—51), (16)

1
05 = 5 (62 — 203), (17)
d¢ = 05 + &1, (18)
07 = 20405 — &2, (19)
ds = 0%4 + &, (20)
8o = 0307 + 0”305 + dg, (21)
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610 = 01 + 204 + 2V/3s, (22)
S11 = 6y — 265 + 2 (ﬁg + 53@;), (23)
812 = 64 + V3s, (24)
013 = 05 — <\/59 + 53\/58) (25)

When Eq. (12) is compared with the parametric NU
form Eq. (13). The following parameters can be in-
troduced:

51 =0y =03 =1, (26)
Si=e+ i+ P1+p+ 2 — A+ Vd, (27)
fo=2e+P1+p—x—A+2Vdy—V, (28)
&3 =+ Vd,. (29)
From Egs. (16)—(21) we obtain

b4=3(1-61)=0, &= %(@—25@:—%,

fo= B +Er= 7 +et futfut (30)
+p+ A1 — X+ Vdy,

07 = 20405 — &2 =

=—(2e+Bi+p—x—A+2Vdy - V), (31)
6s =6+ & =¢e+Vdy (32)
59:6367+6§68+66=i+x+v+>\1+52. (33)
Recall that, in Eq. (10),

_e = 2\ Enm = De) (E;;’g; De) (34)

So, substituting Egs. (30)—(33) into Eq. (14) and
carrying out some algebra, we get the equation for
energy eigenvalue with the Deng—Fan—Hulthen poten-
tial as:

—h262
Enm: 3
o (35)
where
1
011+X+V+)\1+52A:
1
=—0i—p+x+r+Vr=n+_. (36)

2
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Thus, Eq. (36) can be re-written in terms of the
dimensionless symbols of Eq. (10) as

1 2mnB , 1 n°B% 2uD.0?
=175 +(m+() 1T e 252 (37)
A —4uD.Q)  2uVy  2mnB  n’B®ap n

C h282 h242 hé 26m

1
+(m+¢)* - . (38)
From Egs. (22)—(25), we determine
010 = 01 + 204 + 2V 1+ 21/e + Vo, (39)
011 = 02 — 205 + 2 (\/ dg + 5358) 24
1
+2<\/4+X+V+)\1+ﬂ2+€+‘/d0>, (40)
19 = 04 + Vs /e + Vo, (41)

13 = 85 — (Voo + 03/3s) =

2 4

:_1_<\/1+X+V+A1+62+\/m>- (42)

Substituting Egs. (39)-(42) into Eq. (15) we obtain
the wave function written in Eq. (43) as

Rom(s) =
— VERVA p2YEIVR VNS gy (y3)

3. Numerical Results and Discussion

With the Maple software, the numerical analysis
of the energy spectra is done. For zig-zag SWCNTs
(6,0), bond length of 26.480 A and bond dissociation
enthalpy (BDE) also known as dissociation energy to
be 4.6761 (eV) were taken in the study [19].

4. Thermodynamic Properties of CNTs

Above, we determined the thermodynamic properties
of the system, whose temperature-dependent parti-
tion function is first evaluated. At a given temper-
ature, when the direct summation is done over all
possible energy levels, the partition function can be
evaluated [20]. The partition function is written as

Z(B) =Y errnm,
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where 8 = ﬁ with k is the Boltzmann constant, T’
the temperature E,., is the energy of the nth bound
state, where n =0,1,2,3, ..., Nmax

The energy eigenvalue of Eq. (35) can be re-written
as

B = —h%6%, (45)
where
1 2mnB 1 7’°B?  2uD Q2
Ni=—-+—— — Zrret?
V=t T PO e e
4auD.Q)  2uV, 2mnB  n’B®ap n
h242 h242 hd h2ém
1
+ (m+<)2 - Za (46)
B 3 1 h%52
Ny = ((m+§) 4) do < o + D.. (47)
Therefore, Eq. (44) can be written as
B 1252 Ny —(n+of
Zp) = Ze e () o), (48)

In the classical limit, the summation of Eq. (48) is
replaced by an integral. Therefore, we have

v

Zgy = [ HEDa, =k (49)
0
where
h25? —h26%2 N} h262N
P:7T:17M:_( 1+N2)‘
8u 8u 4u

The Maple software is used to evaluate Eq. (49) to
obtain the partition function of the system:

%ePZQ,B-i-Mﬁ —T8 x

svets 2/TByerfi (Y12
X —
V-Tj V-Tj
where erfi(k) denotes the imaginary error function
[21] defined as

erfi(k) =ierf (k \/2>/k
0
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- M), (51)

(52)

In the Maple software, this error function is used for
various numerical calculations.

The plots of the partition function as a function of
temperature, magnetic field, AB flux, and vy, are
presented:

Having known the partition function of the system,
the thermodynamic properties like the mean energy
U, free energy F', and entropy S can be calculated
using relations (22)—(23).

Mean the energy

—6In Z
The free energy
F=-KThZ, (54)
S—Kimz- B Z (55)

e

Tables 1 and 2 show the numerical results of the
energy eigenvalues computed with Eq. (35) at two
different potential ranges of the potential well, § =
=0.02 and 6 = 0.2.

At 6 = 0.02, when both the magnetic field and
Aharonov Bohm (AB) flux are kept at zero that is,
B = ( =0, there is existence of degeneracy in the en-
ergy levels for m = 1,2 and m = —1, —2. But, when
the magnetic field is applied to the system with the
AB flux field kept at zero, that is, B # 0 ¢ = 0, the
energy eigenvalues increasingly become more positive
in nature as the quantum number n increases for a
fixed magnetic quantum number m. The degeneracy
noticed in the system was lifted. It is observed that,
as the magnetic field increases to 67 with AB flux
kept at zero, the energy eigenvalues increase and be-
came more positive in nature. When the AB flux is
applied and the magnetic field is totally absent, the
energy eigenvalues are seen to be more negative for
B =0, ( # 0 compared to B # 0, ( = 0. There was
no degeneracy in the system. But, when both fields
are present, the energy eigenvalues increase, as they
are made more attractive in nature. The combined
effect of both fields led to a significant shift in the
bound state energy.

At 0 = 0.2, when the magnetic field and AB flux
are absent, that is, B = { = 0, the system witnessed
the degeneracies at the energy levels for m = 1,2 and
m = —1,—2. The energy eigenvalues became more
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Table 1. Energyvalues for the Deng—Fan—Hulthen model
for zig-zag SWCNTC< (6,0) under the influence of magnetic field and AB flux
with various n and m states with h = 1, u = 0.046, § = 0.02, Vp = 0.2, r. = 26.480, D, = 4.6761

m n B=¢=0 B=2(=0 B=4,(=0 B=2(=0
0 0 —4.587167552 ~0.1933532001 ~0.02814191252 0.001635647835
1 ~3.961250136 ~0.1335024608 ~0.003199210122 0.01532357932
2 -3.410336394 ~0.08392407285 0.01274548306 0.02022367154
3 ~2.929031632 ~0.04431413608 0.01982512202 0.01642270040
1 0 —4.591947204 ~0.1347532394 ~0.003015603265 0.01564474032
1 —3.959816268 —0.08487698805 0.01300704036 0.02058340022
2 —3.409039066 ~0.04497792548 0.02016348130 0.01682061789
3 -2.927851518 ~0.01476586900 0.01858347950 0.004441755392
-1 0 —4.591947204 ~0.2618444514 ~0.06169284125 ~0.02052879601
1 —3.959816268 ~0.1916280366 ~0.02765486139 0.002022859352
2 —3.409039066 ~0.1319959824 ~0.002750577208 0.01569857773
3 -2.927851518 ~0.08262975450 0.01315627138 0.02058657730
2 0 —4.587167552 ~0.08548530250 0.01394066594 0.02166543388
1 —3.955516780 ~0.04521602718 0.02121286008 0.01796679727
2 —3.405148902 ~0.01464443458 0.01974692462 0.005651454405
3 -2.924312739 0.006506782115 0.009669527750 ~0.01519661066
-2 0 ~4.587167552 ~0.3408292911 ~0.10391329832 ~0.05101993210
1 -3.955516780 ~0.2598303065 ~0.06061865115 ~0.01948754551
2 —3.405148902 ~0.1897458406 ~0.02657773652 0.003079052935
3 -2.924312739 ~0.1302417296 0.001670560252 0.01676956342
m n B=0,(=2 B=0, (=4 B=0,(=6 B=(=6
0 0 ~4.593541248 ~4.587167552 ~4.568086061 0.02957662012
1 —3.955516780 ~3.938350542 —3.909852296 0.01728372806
2 —3.405148902 —3.389615508 —3.363822054 ~0.003540509548
3 ~2924312739 ~2.910181204 —2.886712039 ~0.03281278413
1 0 -4.515915896 ~4.579209722 ~4.553813774 0.01340046194
1 —3.948358022 ~3.925509039 ~3.891403094 0.001237174961
2 —3.398671358 —3.377993989 ~3.347121998 ~0.02801170070
3 ~2.918420020 ~2.899607222 —2.871512613 ~0.06562669445
-1 0 ~4.553813774 ~4.591947204 ~4.579209722 0.02926927708
1 ~3.959816268 ~3.948358022 ~3.925509039 0.02559484426
2 —3.409039066 ~3.398671358 —3.377993989 0.01330424280
3 —2.927851518 —2.918420020 ~2.899607222 ~0.007517727265
2 0 ~4.492348170 ~4.568086061 ~4.536414839 0.006814356365
1 ~3.938350542 ~3.909852296 -3.870188115 ~0.02238592922
2 —3.389615508 ~3.363822954 ~3.327914075 ~0.05995280260
3 ~2.910181204 —2.886712039 —2.854028801 ~0.1058055416
-2 0 —4.568086061 ~4.593541248 —4.587167552 0.02095032174
1 ~3.961250136 ~3.955516780 ~3.938350542 0.02600745402
2 —3.410336394 ~3.405148902 -3.389615508 0.02236190906
3 ~2.929031632 ~2.924312739 ~2.910181204 0.01009991097

attractive and increase as the energy levels are in-
creased. But, when the magnetic field is applied, that
is, B # 0, ( = 0, the degeneracies disappears. When
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AB flux is applied, that is, B = 0, { # 0, the en-
ergy eigenvalues appeared more attractive and in-
crease significantly when compared to the case where
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Table 2. Energyvalues for the Deng—Fan—Hulthen model
for zig-zag SWCNTC< (6,0) under the influence of magnetic field and AB flux
with various n and m states with h = 1, u = 0.046, § = 0.2, Vp = 0.2, r, = 26.480, D, = 4.6761

m n B=(=0 B=2(=0 B=4,(=0 B=6,(=0
0 0 ~1.330154556 ~1.329221618 ~1.326425994 ~1.321776289
1 0.6556819100 0.6562760670 0.6580566835 0.6610172845
2 1.764839587 1.765097598 1.765870389 1.767153780
3 2.001344340 2.001268089 2.001038670 2.000654365
1 0 ~1.293781866 ~1.255710724 ~1.216043215 ~1.174843726
1 0.6919981820 0.7162372435 0.7414074370 0.7674562750
2 1.801100012 1.811571406 1.822313450 1.833285277
3 2.037549042 2.034316206 2.030697256 2.026662887
-1 0 ~1.293781866 ~1.330195935 ~1.364898246 ~1.397838149
1 0.6919981820 0.6687404305 0.6465093510 0.6253482685
2 1.801100012 1.790938634 1.781124211 1.771691825
3 2.037549042 2.040424482 2.042970778 2.045215282
-2 0 ~1.184664304 ~1.109669132 ~1.033759775 ~0.9570553985
1 0.8009472855 0.8486182030 0.8965518420 0.9446502770
2 1.909881130 1.930354530 1.950443288 1.970071444
3 2.146163086 2.139563844 2.131936520 2.123226313
-2 0 ~1.184664304 ~1.258628556 ~1.331448434 ~1.403014388
1 0.8009472855 0.7536351285 0.7067765830 0.6604635370
2 1.909881130 1.889099400 1.868085280 1.846913788
3 2.146163086 2.151790515 2.156503492 2.160360226
m n B=0,(=2 B=0,(=4 B=0,(=6 B=(=6
0 0 ~1.330154556 ~1.184664304 ~0.7481941390 0.3118922713
1 0.8009472855 1.236742760 1.963067920 2.171969180
2 1.909881130 2.345005344 3.070211340 3.155951154
3 2.146163086 2.580619002 3.304711004 3.267856052
1 0 0.4520964539 ~1.002801210 ~0.4208415522 0.8894965225
1 0.9825290015 1.563589490 2.435178275 2.708432788
2 2.091183076 2.671348320 3.541594439 3.651463206
3 2.327186408 2.906460558 3.775370087 3.722604046
-1 0 04208415522 ~1.293781866 ~1.293781866 ~1.949188722
1 0.6919981820 0.9825290015 1.563589490 1.706198322
2 1.801100012 2.091183076 2.671348320 2.731032256
3 2.037549042 2.327186408 2.906460558 2.883601946
2 0 -0.2074460913 ~0.7481941390 -0.02074460913 1.537879216
1 1.236742760 1.963067920 2.979920277 3.315574720
2 2.345005344 3.070211340 408549204 4.217553758
3 2.580619002 3.304711004 4.318437508 4.247831061
-2 0 ~0.7481941390 ~1.330154556 ~1.184664304 ~0.6309204005
1 0.6556819100 0.8009472855 1.236742760 1.311136352
2 1.764839587 1909881130 2.345005344 2.376721706
3 2.001344340 2.146163086 2.580619002 2.569856263

B # 0, ( = 0. When both fields are present, the com- | that the effect of the AB flux field for ( = 6TB = 0
bined effect of the fields is seen to increase the energy | for quantum level n = 3 is seen to be stronger than
eigenvalues for the quantum levels 0 — 2. It is noticed | the combine effect, when B = ¢ = 6.
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Fig. 1.

Plot of the variation of energy, E versus megnetic
field B

E_ (el

Fig. 2. Plot of energy vs AB flux ¢

So, the adjustment of the potential range § = 0.2
is seen to bring a significant increase in the energy
eigenvalues as the system experienced a noticeable
change in the bound state energy than when the po-
tential range, § = 0.02. Figure 1 depicts the plot of
the variation of the energy F with the magnetic field
B at various values of the AB flux. It can be seen
that the energy eigenvalue increases exponentially as
the magnetic field strength increases. Figure 2. Shows

A(5))
7+ B=0I1T
2e B=02T
3 30 B=03T

o

2 4 6 8 10
B

Fig. 3. Plot of partitionfunction versus f for different values
of magnetic field

12

ZP
10 3
3
6
4\
2
0
1+ p=0.01
-2|[2+ B=002
3¢ (=003
-4
0 0.5 1 1.5 2

B(T)

Fig. 4. Plot of partition function versus B for various values
of temperature

values of the magnetic field strength. As the AB flux
increases, the energy eigenvalues also increase. The
results show that if the magnetic field B and AB flux
are turn off, the energy eigenvalues can become de-
generate in nature. In Fig. 3, we see the behavior of
the partition function with varying values of the
for different values of the magnetic field strength. For
B = 0.1T and 0.27T, the partition function decreases
in value until when g is about 2 0.5 K and then be-

the plot of the energy E versus AB flux ( for different
726

comes invariant. At this point of invariance.
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Fig. 5. The plot of partition varsus AB flux for various values
of temperature
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Fig. 6. Plot of partititon versus /3 for various vmax

There is an interaction between the magnetic fields
and the partition function, the energy states experi-
ence some degree of degeneracy. But, when B = 0.3T,
it decreases until 8 — 4, and then increases steadily,
when the upper bound quantum number, V. = 4.
The influence of the magnetic field has overcome the
degeneracy. For Figure 4, the partition function in-
creases exponentially with a decrease in the magnetic
field strength with various values of 3 at different
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Fig. 8. Plot of mean energy versus magnetic field at various
ures and Umax

Umax- Here, the increase in values of the partition
function lowers the magnetic field strength. A differ-
ent behaviors of the partition function is observed in
Fig. 5 with the AB flux at various values of 5. The
partition function has negative values that is increas-
ing toward a positive direction with increasing the AB
flux field as 8 is varied gradually upward. The AB
flux influence resulted in a much negative values for
the partition function. In Fig. 6, the partition func-
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Fig. 10. Plot of free energy versus temperature at various

Umax

tion of the system is plotted against g for different
Umax- Lhe partition function decreases exponentially
with increasing values 8 for various quantum num-
bers or energy states. For higher quantum number or
energy state s, the Boltzmann factor increases more.

For the mean energy at various vp.x in Fig. 7, an
initial rise is noticed in the mean energy as the tem-
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Fig. 11. Plot of free energy versus magnetic field at various
temperature and Umax
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Fig. 12. Plot of free energy versus AB flux at various tem-
peratures and vmax

perature increases. But, the mean energy decreases
as the temperature tends to 1. Figure 8 depicts the
plot of the mean energy against the magnetic field
at various temperatures and vyax. The mean energy
increases linearly as the magnetic field strength in-
creases. However, in Fig. 9, the mean energy plot
against the AB flux at various temperatures and vyax
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Fig. 13. Plot of free energy versus temperature at various

Umax
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Fig. 14. Plot of free energy versus magnetic field at various
ures and Umax

is seen to behave itself differently. The mean energy
decreases with increasing the AB flux.

The plot of the free energy against the temperature
at various values of vy seen in Fig. 10 depicts an
initial sharp increase of the free energy, but becames
invariant as the temperature increases. In Fig. 11, the
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Fig. 15. Plot of entropy versus AB flux at different tempera-
tures and vmax

plot of the variation of free energy with increasing the
magnetic field at various temperatures and vy, can
be seen. The free energy increases as the magnetic
field intensifies. However, in Fig. 12, the free energy
against the AB flux field shows that the free energy
is seen to show a quasi-constant trend as the AB flux
increases at various temperatures and vngax Figure
13 depicts the plot of the entropy with temperature
variation at various vy .x. The entropy is observed to
decrease monotonically as the temperature increases
for vmax = 20 and 30; but, for vy,.x = 10, the en-
tropy rose shortly and becames fairly constant. Fi-
gure 14 is the entropy variation against the magnetic
field at different temperatures and vy,,x. The entropy
is seen to decrease with the rise in the magnetic field
strength. In Fig. 15, the plot of the entropy against
the AB flux at different temperatures and vy, shows
that the entropy increases fairly with the rise in the
AB flux field.

5. Conclusion

From our presented numerical results, we observe
that, for the two different potential ranges of the po-
tential well, the absence of both the magnetic field
and the Aharonov Bohm (AB) flux, there were degen-
eracies in the energy levels of the system. However,
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the application of both fields eliminated the degen-
eracies completely. We also noticed that the energy
eigenvalues increase proportionally with the applica-
tions of both fields. That is, the trange ¢ is seen as a
factor in sharpening the behavior of the energy eigen-
values. From our graphical plot of Figs. 1 and 2, we
see that the energy eigenvalues increase proportion-
ally as the magnetic field and AB flux fields are in-
creasing. The partition function is calculated, and the
thermodynamic properties such as the mean energy,
free energy, and entropy are determined as functions
of the temperature, magnetic and AB flux fields.
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CIHEKTPU TA TEPMOJIMHAMIYHI

BJIACTUBOCTI 3UT'3AT'OIIOAIBHUX OJHOCTIHHUX
BVYTJIEHIEBUX HAHOTPYBOK 3 ITOTEHIITAJIOM
JEHTI'A-®AHA-XIOJIBTEHA

Bukonano TeopermuHe HOC/II?KEHHSI CIIEKTPIB Ta TEPMO/IHHA~
MIYHHAX BJIACTUBOCTEN 3UI'3arononibHuX OJHOCTIHHHUX BYIJIEIle-
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BUX HAHOTPYGOK (6,0) 3 morenniasom Jenra—Pana—XoabTeHa.

3HaiiileHo aHaiTUIHUN po3B’s130K piBHsAHHs [IIpbojginrepa 3a

nomomororo merony Hikidoposa—YBaposa ajist cucremMu B pu-

cyTHOCTI MaraiTHoro mnoJs i nmosst Aaponosa—Boma. Pospaxo-

BaHO CTATUCTUYHY CYMy 1 3aJIe2KHOCTI TEPMOJUHAMIYHUX BEJIH-

YUH CUCTEMH BiJI IIOJIiB Ta TeMIlepaTypH.

Katwwoei caoea: norennian lenra—Pana—XoabreHa, Ma-

THiITHE TI0JI€E,
YBaposa.

nojie  AaponoBa—Bowma,

meron, Hikidoposa—
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