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UNIVERSAL COORDINATE GAUSSIAN
BASIS FOR CALCULATIONS OF THE BOUND
STATES OF A FEW-PARTICLE SYSTEM

A new simple basis is proposed for variational calculations of the bound states of a few-particle
system. For an 𝑁-particle system with pairwise interactions, the matrix elements of the Hamil-
tonian are found in an explicit form. A modified version of the basis invariant with respect to
spatial translations is considered as well. As an example, the 12C nucleus is considered as a
system consisting of three 𝛼-particles, and the convergence of the method is briefly discussed.
K e yw o r d s: a few-body system, variational method, variational basis.

1. Introduction
To carry on variational calculations, it is suitable to
expand the trial wave function in a series of basic
functions. Then the Schrödinger equation becomes a
system of linear algebraic ones. For variational calcu-
lations, different bases are used, as well as their com-
binations. One of the most popular is the oscillator-
type basis [1–3], although the calculation of the ma-
trix elements for basic functions with high quantum
numbers is a nontrivial procedure [4, 5]. The usage of
the Gaussian basis [6, 7] in calculations of the main
characteristics and the structure of a few-body sys-
tem has proved its efficiency in a number of studies of
three-body [8–10], four-body [11–13], five-body [14–
16] and even more complicated systems. Some modi-
fications [17] of this basis were proposed to enhance
the efficiency of calculations.

In the present work, we propose a new version of
the basis for expanding the trial wave function within
the variational calculations. It seems to be more sim-
ple, but also efficient enough to treat few-particle sys-
tems with high precision. Its specific feature is that
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the trial wave function with any angular momen-
tum and permutational symmetry may be expanded
into the series in such basic functions without ad-
ditional projection onto a definite state. After solv-
ing the variational problem, the angular momentum
and permutational symmetry of the given state can
be found having the wave function in a simple and
explicit form.

We consider two modifications of the basis, with
and without translation invariance. We obtain the ex-
plicit expressions for matrix elements of the kinetic
energy operator, for the potential operator having
the form of a sum of Gaussian pairwise functions,
as well as for the Coulomb pair interaction poten-
tials. In order to make the formulae less complicated,
we consider a three-particle system when calculating
the matrix elements of the kinetic and potential en-
ergies. But, the obtained expressions can be trivially
and directly generalized to the 𝑁 -particle case. Final-
ly, we consider a model of 12C nucleus as a system of
three 𝛼-particles in order to estimate the convergence
of the method.

2. Statement of the Problem

For simplicity, consider a three-particle system. Let
the Hamiltonian of the system

𝐻̂ = − ~2

2𝑚1
△1 −

~2

2𝑚2
△2 −

~2

2𝑚3
△3 +

+𝑉12 (𝑟12) + 𝑉13 (𝑟13) + 𝑉23 (𝑟23) +
~2

2𝑀
△c.m., (1)
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contain, in addition to the kinetic energy, the pair-
wise potentials depending on the relative distances
𝑟𝑗𝑘 ≡ |r𝑗 − r𝑘|. In Hamiltonian (1), we explicitly ex-
tract the kinetic energy of the center of mass (𝑀 =
= 𝑚1 +𝑚2 +𝑚3 is the total mass of the system).

Now, we assume that the trial wave function of
the system can be expanded in terms of the basic
functions of two different forms: the first one is a
simple superposition of the products of one-particle
Gaussian functions,

Φ (r1, r2, r3) =

𝐾∑︁
𝑘=1

𝐶𝑘𝜙𝑘 (r1, r2, r3) , (2)

where

𝜙𝑘 (r1, r2, r3) ≡ exp

⎛⎝− 3∑︁
𝑗=1

𝑎𝑗𝑘 (r𝑗 −R𝑗𝑘)
2

⎞⎠ ≡

≡
3∏︁

𝑗=1

exp
(︁
−𝑎𝑗𝑘 (r𝑗 −R𝑗𝑘)

2
)︁
, (3)

and 𝐶𝑘 are the coefficients of the expansion. In (3),
the parameters 𝑎𝑗𝑘 and R𝑗𝑘 are the variational pa-
rameters (generally speaking, they may be complex
numbers). We impose the additional condition onto
the parameters R𝑗𝑘:
3∑︁

𝑗=1

𝑚𝑗R𝑗𝑘 = 0, 𝑘 = 1, 2, ...,𝐾. (4)

Due to this or any other similar relation, the possible
many-valuedness of the parameters R𝑗𝑘 due to arbi-
trary spatial translations is eliminated. On the other
hand, we do not impose any relations to avoid the
ambiguity of the same parameters with respect to
the rotations in the three-dimensional space. Thus,
the wave functions obtained in the variational calcula-
tions can be found in different equivalent forms which
differ one from another only by a rotation in space.

Note that, in the case of an 𝑁 -particle system, the
upper limit in the sum and the product of expression
(3) should be changed by 𝑁 .

The second version of the basis to be considered is
the following:

Φ (r̃1, r̃2, r̃3) =

𝐾∑︁
𝑘=1

𝐶𝑘𝜓𝑘 (r̃1, r̃2, r̃3), (5)

where r̃𝑗 ≡ r𝑗 −Rc.m., and the basic functions

𝜓𝑘 (r̃1, r̃2, r̃3) ≡ exp

⎛⎝− 3∑︁
𝑗=1

𝑎𝑗𝑘 (r̃𝑗 −R𝑗𝑘)
2

⎞⎠ ≡

≡
3∏︁

𝑗=1

exp
(︁
−𝑎𝑗𝑘 (r̃𝑗 −R𝑗𝑘)

2
)︁
. (6)

The difference between 𝜓𝑘 from (6) and 𝜙𝑘 from (3)
lies in the fact that 𝜓𝑘 (r̃1, r̃2, r̃3) does not depend
on the coordinate of the center of mass of the sys-
tem in the Jacobi coordinates. Each basic function
depends only on two Jacobi coordinates, and it is in-
variant with respect to translations of the system in
space. In all the matrix elements, the integrals imply
the integration only over two Jacobi coordinates.

To find the coefficients 𝐶𝑘 of expansion (2) for the
total wave function, we can use the variational prin-
ciple in the form of the Galerkin method. This means
a solution of the system of algebraic equations

𝐾∑︁
𝑘=1

𝐶𝑘

⟨
𝜙𝑛

⃒⃒⃒
𝐻̂ − 𝐸

⃒⃒⃒
𝜙𝑘

⟩
= 0, 𝑛 = 1, ...,𝐾. (7)

When 𝐾 → ∞, system (7) becomes equivalent to the
Schrödinger equation under the condition that the
basis is complete.

It is obvious that, in the case of basis (6), one has
to solve a system of equations similar to (7), but with
matrix elements calculated with the use of 𝜓𝑘.

3. Calculation of Matrix Elements

We start to calculate the matrix elements from
(7). Let us begin with the matrix elements for the
first version of the basis 𝜙𝑘 given by expression (3). In
particular, the normalization

⟨𝜙𝑛|𝜙𝑘⟩ =
∫︁
𝑑r1𝑑r2𝑑r3 𝜙

*
𝑛(r1, r2, r3)𝜙𝑘 (r1, r2, r3) =

=

3∏︁
𝑗=1

∫︁
𝑑r exp

(︁
−𝑎𝑗𝑛(r−R𝑗𝑛)

2− 𝑎𝑗𝑘(r−R𝑗𝑘)
2
)︁
=

=

3∏︁
𝑗=1

(︂
𝜋

𝑢𝑗,𝑛𝑘

)︂3/2
exp
(︁
−𝐴𝑗,𝑛𝑘 (R𝑗𝑛 −R𝑗𝑘)

2
)︁
, (8)

where

𝑢𝑗,𝑛𝑘 ≡ 𝑎𝑗𝑛+𝑎𝑗𝑘, 𝐴𝑗,𝑛𝑘 ≡ 𝑎𝑗𝑛𝑎𝑗𝑘
𝑎𝑗𝑛+𝑎𝑗𝑘

. (9)

It is obvious that, for an 𝑁 -particle system, the prod-
uct in (8) should be simply spread from 1 to 𝑁 .
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The kinetic energy matrix element (consider a par-
ticle number 𝑗):⟨
𝜙𝑛

⃒⃒⃒⃒
− ~2

2𝑚𝑗
△𝑗

⃒⃒⃒⃒
𝜙𝑘

⟩
=

=

∫︁
𝑑r1𝑑r2𝑑r3𝜙

*
𝑛(r1,r2,r3)

(︂
− ~2

2𝑚𝑗
△𝑗

)︂
𝜙𝑘(r1,r2,r3)=

=

∫︁
𝑑r𝑗 𝑒

−𝑎𝑗𝑛(r𝑗−R𝑗𝑛)
2

(︂
− ~2

2𝑚𝑗
△𝑗

)︂
𝑒−𝑎𝑗𝑘(r𝑗−R𝑗𝑘)

2

×

×
∏︁
𝑠̸=𝑗

(︂
𝜋

𝑢𝑠,𝑛𝑘

)︂3/2
𝑒−𝑄𝑠,𝑛𝑘 =

=
~2

2𝑚𝑗
𝐴𝑗,𝑛𝑘 · (6− 4𝑄𝑗,𝑛𝑘)

3∏︁
𝑠=1

(︂
𝜋

𝑢𝑠,𝑛𝑘

)︂3/2
𝑒−𝑄𝑠,𝑛𝑘, (10)

where

𝑄𝑠,𝑛𝑘 ≡ 𝐴𝑠,𝑛𝑘 (R𝑠𝑛−R𝑠𝑘)
2
. (11)

We can easily find that, in the 𝑁 -particle case, the
product in (10) should be simply spread from 1 to 𝑁 .

We assume (for simplicity) that the pair potentials
in Hamiltonian (1) are superpositions of a few Gaus-
sian functions,

𝑉𝑖𝑗 (𝑟𝑖𝑗) =
∑︁
𝑠

𝒱𝑠 exp
(︀
−𝑏𝑠𝑟2𝑖𝑗

)︀
. (12)

In this case, the matrix elements for the potential
energy can be calculated in an explicit form. Consider
one of the terms from the sum

⟨𝜙𝑛|𝑉𝑖𝑗 |𝜙𝑘⟩ =
∑︁
𝑠

𝒱𝑠

⟨︀
𝜙𝑛

⃒⃒
exp

(︀
−𝑏𝑠𝑟2𝑖𝑗

)︀⃒⃒
𝜙𝑘

⟩︀
, (13)

Let 𝑖 = 1, 𝑗 = 2. We have⟨︀
𝜙𝑛

⃒⃒
exp

(︀
−𝑏𝑠𝑟212

)︀⃒⃒
𝜙𝑘

⟩︀
=

=

∫︁
𝑑r1𝑑r2𝑑r3 𝜙

*(r1, r2, r3) 𝑒
−𝑏𝑠𝑟

2
12 𝜙 (r1, r2, r3) =

=

(︂
𝜋

𝑢3,𝑛𝑘

)︂3/2
𝑒−𝑄3,𝑛𝑘

∫︁
𝑑r1𝑑r2 𝑒

−𝐹𝑛𝑘(r1,r2). (14)

In (14), we denoted the quadratic form

𝐹𝑛𝑘 (r1, r2) ≡ 𝑎1𝑛 (r1−R1𝑛)
2
+𝑎1𝑘 (r1−R1𝑘)

2
+

+𝑎2𝑛 (r2−R2𝑛)
2
+𝑎2𝑘 (r2−R2𝑘)

2
+𝑏𝑠 (r2−r1)

2
. (15)

After the explicit integration in (14), we have

⟨︀
𝜙𝑛

⃒⃒
exp

(︀
−𝑏𝑠𝑟212

)︀⃒⃒
𝜙𝑘

⟩︀
=
𝜋9/2 𝑒−𝑄3,𝑛𝑘−𝑃12,𝑛𝑘

(𝑢3,𝑛𝑘𝐷12,𝑛𝑘)
3/2

, (16)

where

𝐷12,𝑛𝑘 ≡ 𝑢1,𝑛𝑘𝑢2,𝑛𝑘+𝑏𝑠(𝑢1,𝑛𝑘+𝑢2,𝑛𝑘), (17)

𝑃12,𝑛𝑘 ≡(𝑢1,𝑛𝑘+𝑏𝑠)𝑞
2
1 + (𝑢2,𝑛𝑘+𝑏𝑠)𝑞

2
2 − 2𝑏𝑠(q1q2)−

− 2 (q1p1)− 2 (q2p2)+

+ 𝑎1𝑛𝑅
2
1𝑛+𝑎1𝑘𝑅

2
1𝑘+𝑎2𝑛𝑅

2
2𝑛+𝑎2𝑘𝑅

2
2𝑘. (18)

In expression (18), we used the following denotations:

p1≡𝑎1𝑛R1𝑛+𝑎1𝑘R1𝑘,

p2≡𝑎2𝑛R2𝑛+𝑎2𝑘R2𝑘,

q1 ≡ 𝑢2,𝑛𝑘p1 + 𝑏𝑠 (p1 + p2)

𝐷12,𝑛𝑘
,

q2 ≡ 𝑢1,𝑛𝑘p2 + 𝑏𝑠 (p1 + p2)

𝐷12,𝑛𝑘
.

(19)

It is obvious that, in the case of 𝑁 -particle system,
expression (16) can be trivially generalized: instead
of expression

(︁
𝜋

𝑢3,𝑛𝑘

)︁
3/2

𝑒−𝑄3,𝑛𝑘 , we have to put the

product
∏︀𝑁

𝑠=3

(︁
𝜋

𝑢𝑠,𝑛𝑘

)︁
3/2

𝑒−𝑄𝑠,𝑛𝑘 .
Now, we have to calculate the matrix element from

the kinetic energy of the center of mass of the system:⟨
𝜙𝑛

⃒⃒⃒⃒
− ~2

2𝑀
△c.m.

⃒⃒⃒⃒
𝜙𝑘

⟩
=

= − ~2

2𝑀

∫︁
𝑑r1𝑑r2𝑑r3𝜙

*
𝑛(r1,r2,r3)△c.m.𝜙𝑘(r1,r2,r3). (20)

Introducing the Jacobi coordinates,

r ≡ r2 − r1,

𝜌 ≡ r3 −
𝑚1r1 +𝑚2r2
𝑚1 +𝑚2

, (21)

Rc.m. ≡ R ≡ 𝑚1r1 +𝑚2r2 +𝑚3r3
𝑚1 +𝑚2 +𝑚3

,

or the inverse relations

r1 ≡ R− 𝑚3

𝑀
𝜌− 𝑚2

𝑚1 +𝑚2
r,
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r2 ≡ R− 𝑚3

𝑀
𝜌+

𝑚1

𝑚1 +𝑚2
r,

r3 ≡ R+
𝑚1 +𝑚2

𝑀
𝜌, (22)

we have⟨
𝜙𝑛

⃒⃒⃒⃒
− ~2

2𝑀
△𝑅

⃒⃒⃒⃒
𝜙𝑘

⟩
=

=

∫︁
𝑑r 𝑑𝜌 𝑑R𝜙*

𝑛(r,𝜌,R)

(︂
− ~2

2𝑀
△𝑅

)︂
𝜙𝑘(r,𝜌,R) =

=
~2

2𝑀

∫︁
𝑑r 𝑑𝜌 𝑑R (∇𝑅 𝜙

*
𝑛(r,𝜌,R),∇𝑅 𝜙𝑘(r,𝜌,R)).

(23)

Omitting the details of the trivial cumbersome oper-
ations of differentiation and integration, we get⟨
𝜙𝑛

⃒⃒⃒⃒
− ~2

2𝑀
△𝑅

⃒⃒⃒⃒
𝜙𝑘

⟩
=

~2

2𝑀

3∏︁
𝑞=1

(︃(︂
𝜋

𝑢𝑞,𝑛𝑘

)︂3/2
𝑒−𝑄𝑞,𝑛𝑘

)︃
×

×

⎛⎝6 3∑︁
𝑗=1

𝐴𝑗,𝑛𝑘−4

3∑︁
𝑠,𝑝=1

𝐴𝑠,𝑛𝑘𝐴𝑝,𝑛𝑘 (R𝑠𝑛−R𝑠𝑘,R𝑝𝑛−R𝑝𝑘)

⎞⎠.
(24)

The denotations used in (24) are given above. We
also note that, in the case of 𝑁 -particle system, we
have to spread the upper limit in the sums and in the
product of expression (24) to 𝑁 (instead of 3).

Very often, we deal with the Coulomb interaction
between particles. Let us consider such an interaction
(between particles 1 and 2, for example):

𝑉𝐶 (𝑟12) =
𝑍1𝑍2𝑒

2

|r1 − r2|
. (25)

In expression (25), 𝑍1𝑒 and 𝑍2𝑒 are the charges of
particles 1 and 2, respectively, and 𝑒 is the elementary
charge (𝑒2 = 1.4399764 MeV · fm). Let us calculate
the expression for the matrix element for potential
(25):

⟨𝜙𝑛|𝑉𝐶 (𝑟12)|𝜙𝑘⟩ =
∫︁
𝑑r1𝑑r2𝑑r3 𝜙

*𝑉𝐶(𝑟12)𝜙 =

=
𝜋3/2

𝑢
3/2
3,𝑛𝑘

𝑒−𝑄3,𝑛𝑘

∫︁
𝑑r1𝑑r2

2∏︁
𝑠=1

𝑒−𝑎𝑠𝑛(r𝑠−R𝑠𝑛)
2

𝑉𝐶(𝑟12)×

×
2∏︁

𝑞=1

𝑒−𝑎𝑞𝑘(r𝑞−R𝑞𝑘)
2

. (26)

After the transition to new variables r ≡ r1 − r2 and
𝜌 ≡ 1

2 (r1 + r2), we have, instead of (26),

⟨𝜙𝑛|𝑉𝐶 (𝑟12)|𝜙𝑘⟩ =
𝜋3/2𝑒−𝑄3,𝑛𝑘

𝑢
3/2
3,𝑛𝑘

𝜋3/2𝑒−𝑌12,𝑛𝑘

(𝑢1,𝑛𝑘 + 𝑢2,𝑛𝑘)
3/2

×

×
∫︁
𝑑r𝑉𝐶(𝑟) exp

(︀
−
(︀
𝑈12,𝑛𝑘 𝑟

2 + 2 (r ·T12,𝑛𝑘)
)︀)︀
, (27)

where

𝑈12,𝑛𝑘 ≡ 𝑢1,𝑛𝑘𝑢2,𝑛𝑘
𝑢1,𝑛𝑘 + 𝑢2,𝑛𝑘

, (28)

T12,𝑛𝑘 ≡ 𝑢1,𝑛𝑘 (𝑎2𝑛R2𝑛 + 𝑎2𝑘R2𝑘)

𝑢1,𝑛𝑘 + 𝑢2,𝑛𝑘
−

− 𝑢2,𝑛𝑘 (𝑎1𝑛R1𝑛 + 𝑎1𝑘R1𝑘)

𝑢1,𝑛𝑘 + 𝑢2,𝑛𝑘
, (29)

𝑌12,𝑛𝑘≡
𝑎1𝑛𝑎1𝑘 (R1𝑛−R1𝑘)

2
+𝑎2𝑛𝑎2𝑘 (R2𝑛−R2𝑘)

2

𝑢1,𝑛𝑘 + 𝑢2,𝑛𝑘
+

+
𝑎1𝑛𝑎2𝑛 (R1𝑛−R2𝑛)

2
+𝑎1𝑘𝑎2𝑘 (R1𝑘−R2𝑘)

2

𝑢1,𝑛𝑘 + 𝑢2,𝑛𝑘
+

+
𝑎1𝑛𝑎2𝑘 (R1𝑛−R2𝑘)

2
+𝑎1𝑘𝑎2𝑛 (R1𝑘−R2𝑛)

2

𝑢1,𝑛𝑘 + 𝑢2,𝑛𝑘
. (30)

Taking into account that∫︁
𝑑r

𝑟
𝑒−(𝐴𝑟2+2(r·B)) =

𝜋3/2𝑒
𝐵2

𝐴

|B|
√
𝐴

erf

(︂
|B|√
𝐴

)︂
, (31)

we obtain, instead of (27),

⟨𝜙𝑛|𝑉𝐶 (𝑟12)|𝜙𝑘⟩ =
𝜋3/2𝑒−𝑄3,𝑛𝑘

𝑢
3/2
3,𝑛𝑘

𝜋3/2𝑒−𝑌12,𝑛𝑘

(𝑢1,𝑛𝑘+𝑢2,𝑛𝑘)
3/2

×

× 𝑍1𝑍2𝑒
2𝜋3/2𝑒𝑋

2
12,𝑛𝑘

𝑃12,𝑛𝑘
erf (𝑋12,𝑛𝑘), (32)

where

𝑋12,𝑛𝑘≡
|T12,𝑛𝑘|√︀
𝑈12,𝑛𝑘

, 𝑃12,𝑛𝑘≡|T12,𝑛𝑘|
√︀
𝑈12,𝑛𝑘, (33)

and erf (𝑥) is the well-known function

erf (𝑥) ≡ 2√
𝜋

𝑥∫︁
0

𝑒−𝑡2𝑑𝑡. (34)

Note at last that, in the case of 𝑁 -particle system,
one has to change the very first fraction in expression
(32) by the product of such fractions from 𝑗 = 3 to
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𝑗 = 𝑁 and to insert the subindex 𝑗 instead of the
fixed subindex 3 in the above-mentioned fraction.

Now, let us give the expressions for matrix ele-
ments in the case of basis (6) which is invariant with
respect to the spatial translations. Here, we restrict
ourselves with a three-particle case. Further, we use
the notation 𝜓𝑘 (r,𝜌) of the basic functions with the
arguments r and 𝜌 being the Jacobi coordinates. The
normalization matrix element

⟨𝜓𝑛|𝜓𝑘⟩ =
∫︁
𝑑r 𝑑𝜌𝜓*

𝑛(r,𝜌)𝜓𝑘(r,𝜌) =

=

∫︁
𝑑r𝑑𝜌𝑒−(𝐺11𝜌

2+2𝐺12(𝜌,r)+𝐺22𝑟
2+2(𝜌,Y1)+2(r,Y2)+𝑆), (35)

where

𝐺11 ≡ 1

𝑀2

(︁
𝑚2

3 (𝑢1,𝑛𝑘 + 𝑢2,𝑛𝑘) + (𝑚1+𝑚2)
2
𝑢3,𝑛𝑘

)︁
,

𝐺22≡
1

(𝑚1 +𝑚2)
2

(︀
𝑚2

2 𝑢1,𝑛𝑘 +𝑚2
1 𝑢2,𝑛𝑘

)︀
,

𝐺12≡
𝑚3

𝑀 (𝑚1 +𝑚2)
(𝑚2 𝑢1,𝑛𝑘 −𝑚1 𝑢2,𝑛𝑘),

Y1≡
1

𝑀
(𝑚3(𝑎1𝑛R1𝑛+𝑎1𝑘R1𝑘+𝑎2𝑛R2𝑛+𝑎2𝑘R2𝑘)−

− (𝑚1 +𝑚2) (𝑎3𝑛R3𝑛 + 𝑎3𝑘R3𝑘)),

𝑆 ≡
3∑︁

𝑗=1

(︀
𝑎𝑗𝑛𝑅

2
𝑗𝑛 + 𝑎𝑗𝑘𝑅

2
𝑗𝑘

)︀
. (36)

After the integration, we have

⟨𝜓𝑛|𝜓𝑘⟩ =
𝜋3

(𝐺11𝐺22 −𝐺 2
12)

3/2
𝑒−𝑊, (37)

where

𝑊 ≡ 𝑆 +𝐺11𝜆
2
1 + 2𝐺12 (𝜆1,𝜆2) +𝐺22𝜆

2
2 +

+2 (𝜆1,Y1) + 2 (𝜆2,Y2), (38)

𝜆1≡
𝐺12Y2−𝐺22Y1

𝐺11𝐺22 −𝐺2
12

, 𝜆2≡
𝐺12Y1−𝐺11Y2

𝐺11𝐺22 −𝐺2
12

.

In the case of basis (6), the matrix element for the
kinetic energy of the center of mass of the system
equals exactly zero. Thus, we need only to know the
matrix elements for the kinetic energy of each of the
three particles. For example, for the particle number
𝑗 = 3, we have⟨
𝜓𝑛

⃒⃒⃒⃒
− ~2

2𝑚3
△3

⃒⃒⃒⃒
𝜓𝑘

⟩
=

=

∫︁
𝑑r𝑑𝜌 𝜓*

𝑛(r,𝜌)

(︂
− ~2

2𝑚3
△3

)︂
𝜓𝑘(r,𝜌) ≡

≡ ~2

2𝑚3

∫︁
𝑑r𝑑𝜌 (∇𝜌𝜓

*
𝑛(r,𝜌) ,∇𝜌𝜓𝑘(r,𝜌)) =

=
4~2

2𝑚3

∫︁
𝑑r𝑑𝜌 (𝛼𝑛𝜌+ 𝛽𝑛r+ 𝛾𝑛, 𝛼𝑘𝜌+ 𝛽𝑘r+ 𝛾𝑘)×

× 𝑒−(𝐺11𝜌
2+2𝐺12(𝜌,r)+𝐺22𝑟

2+2(𝜌,Y1)+2(r,Y2)+𝑆), (39)

where the function 𝜓𝑘 (r,𝜌) dependent on the Jacobi
coordinates r and 𝜌 should be understood as the func-
tion 𝜓𝑘 (r̃1, r̃2, r̃3) from (6) with the arguments

r̃1 = −𝑚3

𝑀
𝜌− 𝑚2

𝑚1 +𝑚2
r,

r̃2 = −𝑚3

𝑀
𝜌+

𝑚1

𝑚1 +𝑚2
r, (40)

r̃3 =
𝑚1 +𝑚2

𝑀
𝜌,

and we used the denotations:

𝛼𝑛 ≡
(︁𝑚3

𝑀

)︁2
(𝑎1𝑛 + 𝑎2𝑛) +

(︂
𝑚1 +𝑚2

𝑀

)︂2
𝑎3𝑛,

𝛽 ≡ 𝑚3 (𝑚2𝑎1𝑛 −𝑚1𝑎2𝑛)

𝑀 (𝑚1 +𝑚2)
, (41)

𝛾𝑛≡
𝑚3

𝑀
(𝑎1𝑛R1𝑛+𝑎2𝑛R2𝑛)−

𝑚1+𝑚2

𝑀
𝑎3𝑛R3𝑛.

The rest denotations from (39) are given above in
(36). After the integration in (39), we obtain, for this
matrix element,⟨
𝜓𝑛

⃒⃒⃒⃒
− ~2

2𝑚3
△3

⃒⃒⃒⃒
𝜓𝑘

⟩
=

=
2~2𝜋3

𝑚3𝑈
3
2

exp

(︃
−

(︃
𝑆− 𝑌 2

1

𝐺11
− (𝐺11Y2−𝐺12Y1)

2

𝐺11𝑈

)︃)︃
×

×
[︂
3𝛼𝑛𝛼𝑘

2𝐺11
+

(︂
3𝐺11

2𝑈
+𝜆22

)︂
𝜈𝑛𝜈𝑘 +

+

(︂
𝜆2 , 𝜈𝑛𝛾𝑘+𝜈𝑘𝛾𝑛+

2𝐺12Y1

𝐺2
11

−(𝛼𝑛𝛽𝑘+𝛼𝑘𝛽𝑛)
Y1

𝐺11

)︂
+

+

(︂
𝛾𝑛−𝛼𝑛

𝑌1

𝐺11
,𝛾𝑘−𝛼𝑘

𝑌1

𝐺11

)︂]︂
, (42)

where the most of denotations are given above, and
where

𝑈 ≡ 𝐺11𝐺22 −𝐺2
12, 𝜈𝑛 ≡ 𝛽𝑛 − 𝛼𝑛

𝐺12

𝐺11
. (43)
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Instead of expression (13) for the matrix element
of a component of the potential energy, we have⟨︀
𝜓𝑛

⃒⃒
exp

(︀
−𝑏𝑠𝑟212

)︀⃒⃒
𝜓𝑘

⟩︀
=

∫︁
𝑑r𝑑𝜌𝜓*(r,𝜌) 𝑒−𝑏𝑠𝑟

2

𝜓(r,𝜌) =

=

∫︁
𝑑r𝑑𝜌𝑒−(𝐺11𝜌

2+2𝐺12(𝜌,r)+𝐺̃22𝑟
2+2(𝜌,Y1)+2(r,Y2)+𝑆), (44)

where 𝐺̃22 ≡ 𝐺22+𝑏𝑠. Since expression (44) coincides
with (35) regarding the substitution 𝐺22 → 𝐺̃22, the
result of the integration in (44) will be the same as
the right-hand side of (37), but with the substitu-
tion mentioned above in all the expressions, contain-
ing 𝐺22.

Ultimately, we give the explicit expression for
the Coulomb potential matrix element (compare
with (32)):

⟨𝜓𝑛|𝑉𝐶 (𝑟12)|𝜓𝑘⟩ = 𝑍1𝑍2𝑒
2

∫︁
𝑑r𝑑𝜌𝜓*(r,𝜌)

1

𝑟
𝜓(r,𝜌) =

=
𝑍1𝑍2𝑒

2𝜋3𝑒−𝐿

|𝜆2|𝑈
3
2

erf

(︃
|𝜆2|

√︂
𝑈

𝐺11

)︃
, (45)

where

𝐿 ≡ 𝑆 − 𝑌 2
1

𝐺11
− 𝜆22
𝐺11𝑈

. (46)

When the wave function of the system is found (i.e.,
the variational parameters are chosen, and the coef-
ficients 𝐶𝑘 are determined from the solution of the
algebraic system (7)), we can easily find the struc-
ture functions of the system (in particular, the density
distributions, form factors, pair correlation functions,
the momentum distributions, and others).

4. Preliminary Discussion of Convergence

To test the efficiency of the new basis, we consider a
simple model of 12C nucleus as the system of three
𝛼-particles with Hamiltonian (1), where 𝑚1 = 𝑚2 =
= 𝑚3 = 𝑚𝛼 = 3.7273794 MeV/c2 is the mass of an
𝛼-particle, 𝑀 = 3𝑚𝛼 is the total mass of the system,
and the pair potentials are identical for each pair of
particles and consist of two terms,

𝑉 (𝑟) = 𝑉𝛼𝛼 (𝑟) + 𝑉𝐶 (𝑟), (47)

where 𝑉𝛼𝛼 (𝑟) is an effective nuclear pairwise poten-
tial between 𝛼-particles, and 𝑉𝐶 (𝑟) = 4𝑒2/𝑟 is the
Coulomb repulsion between each pair of 𝛼-particles
(𝑒2 = 1.4399764 MeV · fm). Since our purpose is only

to test the convergence of the new proposed basis, we
take the simplest version of the nuclear part 𝑉 (𝑟𝑛𝑘)
of the interaction between 𝛼-particles in the form of
two Gaussian functions

𝑉 (𝑟)=−𝑉1exp

(︃
−
(︂
𝑟

𝑟01

)︂2)︃
+𝑉2 exp

(︃
−
(︂
𝑟

𝑟02

)︂2)︃
, (48)

where 𝑉1 = 223.44 MeV, 𝑉2 = 500.0 MeV, 𝑟
01

=
= 1.7 fm, and 𝑟

02
= 1.25 fm. This potential assumes

the binding energy of the system of three 𝛼-particles
to be 7.275 MeV (experimental value is 7.2748 MeV),
and the charge radius of 12C (in Helm approximation)
to be 2.469 fm (experimental value is 2.4704 fm).

Omitting the detailed analysis of the convergence,
we note that, using the traditional Gaussian basis
[1, 2], we find the energy of the system to be 7.275
MeV (all the digits being reliable) with a few dozens
of basic functions. At the same time, with the use
of basis (3), we need hundreds functions to achieve
the same accuracy. The reason is that the new basis
contains functions which are not projected onto the
state with a definite angular momentum (in our case
of the ground state 𝐿 = 0), while the functions of the
Gaussian basis already prepared with zero angular
momentum for the ground sate of the system. If one
makes a projection of the basic functions (3) onto
the state with a definite 𝐿, then the convergence of
this basis would become competitive with the case
of the Gaussian basis. But, an advantage of the new
basis lies in the fact that we can omit a procedure of
projection and consider all the possible states of the
system in a universal (uniformed) way. The price of
this universality of the basis is a somewhat more slow
convergence of the method.

5. Conclusions

To summarize, we note that two versions of bases
are proposed to be used in variational calculations of
the bound states of an 𝑁 -particle system with dif-
ferent angular momenta and permutational symme-
tries. Matrix elements are calculated in the explicit
form for the kinetic energy operator and pairwise po-
tentials (in the form of a superposition of Gaussian
functions), as well as for the Coulomb interaction. A
convergence of the variational procedure is briefly dis-
cussed using a model of 12C nucleus as a system of
three 𝛼-particles.
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УНIВЕРСАЛЬНИЙ КООРДИНАТНИЙ
ГАУСОЇДНИЙ БАЗИС ДЛЯ РОЗРАХУНКУ
ЗВ’ЯЗАНИХ СТАНIВ СИСТЕМ
ДЕКIЛЬКОХ ЧАСТИНОК

Запропоновано новий простий базис для варiацiйних роз-
рахункiв зв’язаних станiв системи декiлькох частинок. Для
системи 𝑁 частинок iз парними потенцiалами взаємодiї в
явному виглядi отримано матричнi елементи гамiльтонiана
системи. Розглянуто також модифiкований базис, iнварiан-
тний вiдносно просторових трансляцiй. Для прикладу роз-
глянуто ядро 12C як систему трьох 𝛼-частинок i коротко
обговорено збiжнiсть методу.

Ключ о в i с л о в а: система декiлькох частинок, варiацiй-
ний метод, варiацiйний базис.
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