Universal coordinate Gaussian basis

https://doi.org/10.15407 /ujpe68.9.587

0.B. GRYNIUK,' B.E. GRINYUK?
1 Trento Institute for Fundamental Physics and Applications, Trento, Italy

(14; Via Sommarive, 38128 Povo, Trento, Italy; e-mail: gryniuk.oleksii@gmail.com)
2 Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine

(14-B, Metrolohychna Str., Kyiv 03143, Ukraine; e-mail: bgrinyuk@bitp.kiev.ua)
UNIVERSAL COORDINATE GAUSSIAN

BASIS FOR CALCULATIONS OF THE BOUND
STATES OF A FEW-PARTICLE SYSTEM

A new simple basis is proposed for variational calculations of the bound states of a few-particle
system. For an N -particle system with pairwise interactions, the matriz elements of the Hamil-
tonian are found in an explicit form. A modified version of the basis invariant with respect to
spatial translations is considered as well. As an exzample, the 2> C nucleus is considered as a
system consisting of three a-particles, and the convergence of the method is briefly discussed.
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1. Introduction

To carry on variational calculations, it is suitable to
expand the trial wave function in a series of basic
functions. Then the Schrédinger equation becomes a
system of linear algebraic ones. For variational calcu-
lations, different bases are used, as well as their com-
binations. One of the most popular is the oscillator-
type basis [1-3], although the calculation of the ma-
trix elements for basic functions with high quantum
numbers is a nontrivial procedure [4,5]. The usage of
the Gaussian basis [6, 7| in calculations of the main
characteristics and the structure of a few-body sys-
tem has proved its efficiency in a number of studies of
three-body [8-10], four-body [11-13], five-body [14—
16] and even more complicated systems. Some modi-
fications [17] of this basis were proposed to enhance
the efficiency of calculations.

In the present work, we propose a new version of
the basis for expanding the trial wave function within
the variational calculations. It seems to be more sim-
ple, but also efficient enough to treat few-particle sys-
tems with high precision. Its specific feature is that
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the trial wave function with any angular momen-
tum and permutational symmetry may be expanded
into the series in such basic functions without ad-
ditional projection onto a definite state. After solv-
ing the variational problem, the angular momentum
and permutational symmetry of the given state can
be found having the wave function in a simple and
explicit form.

We consider two modifications of the basis, with
and without translation invariance. We obtain the ex-
plicit expressions for matrix elements of the kinetic
energy operator, for the potential operator having
the form of a sum of Gaussian pairwise functions,
as well as for the Coulomb pair interaction poten-
tials. In order to make the formulae less complicated,
we consider a three-particle system when calculating
the matrix elements of the kinetic and potential en-
ergies. But, the obtained expressions can be trivially
and directly generalized to the N-particle case. Final-
ly, we consider a model of '2C nucleus as a system of
three a-particles in order to estimate the convergence
of the method.

2. Statement of the Problem

For simplicity, consider a three-particle system. Let
the Hamiltonian of the system

2 2 2
Ly N Ly NS Ly N

2m1 2m2 2m3 h2
+ Vi (112) + Viz (113) + Vasz (r23) + mﬁc.m.’ (1)
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contain, in addition to the kinetic energy, the pair-
wise potentials depending on the relative distances
rjk = |r; — ri|. In Hamiltonian (1), we explicitly ex-
tract the kinetic energy of the center of mass (M =
= my + mg + m3 is the total mass of the system).

Now, we assume that the trial wave function of
the system can be expanded in terms of the basic
functions of two different forms: the first one is a
simple superposition of the products of one-particle
Gaussian functions,

K
® (r17r23 r3) = chsak (r17r27r3) ’ (2)
k=1
where
3
@k (r1,r9,1r3) = €xp[— Zajk (r; — Rjk)2 =
j=1

= f[exp (—ajk (rj — lec)2>7 (3)

and Cj are the coefficients of the expansion. In (3),
the parameters a;; and R;; are the variational pa-
rameters (generally speaking, they may be complex
numbers). We impose the additional condition onto
the parameters R;y:

3
Z ijjk = O,
j=1

Due to this or any other similar relation, the possible
many-valuedness of the parameters R;;, due to arbi-
trary spatial translations is eliminated. On the other
hand, we do not impose any relations to avoid the
ambiguity of the same parameters with respect to
the rotations in the three-dimensional space. Thus,
the wave functions obtained in the variational calcula-
tions can be found in different equivalent forms which
differ one from another only by a rotation in space.

Note that, in the case of an N-particle system, the
upper limit in the sum and the product of expression
(3) should be changed by N.

The second version of the basis to be considered is
the following:

O (F1, T2, T3) = Y Chhy (F1, Fa, F3), (5)

k=1

k=12, ..K. (4)

where ¥; = r; — R, and the basic functions

3
i (F1, B2, F3) = exp = > aji (F; — Rjp)?| =

Jj=1
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= f[exp (—ajk (r; — Rjk)Q) (6)

The difference between ¢, from (6) and ¢y from (3)
lies in the fact that vy (f1,T2,T3) does not depend
on the coordinate of the center of mass of the sys-
tem in the Jacobi coordinates. Each basic function
depends only on two Jacobi coordinates, and it is in-
variant with respect to translations of the system in
space. In all the matrix elements, the integrals imply
the integration only over two Jacobi coordinates.

To find the coefficients C}, of expansion (2) for the
total wave function, we can use the variational prin-
ciple in the form of the Galerkin method. This means
a solution of the system of algebraic equations

i Cr <<Pn

k=1

f]—E‘@k> -0, n=1,.,K. (7)

When K — oo, system (7) becomes equivalent to the
Schrédinger equation under the condition that the
basis is complete.

It is obvious that, in the case of basis (6), one has
to solve a system of equations similar to (7), but with
matrix elements calculated with the use of .

3. Calculation of Matrix Elements

We start to calculate the matrix elements from
(7). Let us begin with the matrix elements for the
first version of the basis ¢y, given by expression (3). In
particular, the normalization

(onl|or) Z/drldrzdl‘g @ (r1,r,13) @ (T1,T2,T3) =

3
= rexpl|—ajnplr — j 2—aj r — j 2 =
_H/d p(“ajn(r — Ryn)® = aelr — Ry)?)

3 o \3/2 5
= H ( > exp (7Aj,nk (Rjn — Rjx) ), (8)
-\ U nk
j=1
where
AinQ;
Ujnk = Qjn+ajk, Ajnk = %' )
jn T aj

It is obvious that, for an N-particle system, the prod-
uct in (8) should be simply spread from 1 to N.
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The kinetic energy matrix element (consider a par-
ticle number j):
A

(o2 ] -

dridradrse) (r1,re,r3) (‘

h2
ij

FLQ
Qm-A]) @k(rl,l‘27r3) =
J

:/dr e~ ain(r;Ryn)? fiA e~ ain(riR;k)? o
/ 2m;

3/2
—Qs,nk —
X e ) =
H ( Us nk)

h2 >
= 2m A],nk (6 4Q]7nk H(
s=1

3/2
) e_Qs,nk:7 (10)

Us,nk

where

Qs,nk = As,nk (Rsn_Rsk)2~ (11)
We can easily find that, in the N-particle case, the
product in (10) should be simply spread from 1 to N.
We assume (for simplicity) that the pair potentials
in Hamiltonian (1) are superpositions of a few Gaus-

sian functions,

ZV exp )

In this case, the matrix elements for the potential
energy can be calculated in an explicit form. Consider
one of the terms from the sum

ZV (¢nlexp (

Let i =1, j = 2. We have

(12)

1] rl]

(enlVijlow = —br3;) |on), (13)
<30n‘exp (_bsr%) “pk> =

=/dr1dr2dr3 ©"(r1,T2,13) € P12 o (11,19, T5) =

3/2
— ( ™ ) e_QS’nk\/drldI'Q e_Fnk(rth).
U3, nk

In (14), we denoted the quadratic form

(14)

Fop (ri,12) = ain (1”1—R1n)2+a1k (1'1—R1k)2 +
+aon (rz—Rzn)2+a2k (r2_R2k)2+bs (1”2—1‘1)2- (15)
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After the explicit integration in (14), we have

71'9/2 e_QB,nk_Plz,nk'

2
(nexp (=bsris)|ow) = SRR
where

D1g nk = U1 kU2 nk+0s (U1 nk+U2.nk), (17)
Pro i = (U1, +bs)q7 + (U2,nk+bs)g5 — 2bs(q192) —
—2(q1p1) — 2 (q2p2) +

+ a1, RY, +a, RY +a2, RS, +ask k3. (18)

In expression (18), we used the following denotations:

p1=a1nRin+aizRiy,
P2 = a2, Ra, +az:Roy,

_ U2nkP1+ bs (pl + p2)
1 =

(19)
D12 nk

U1,nkP2 + bs (P1 + P2)
D12 nk '

q2 =

It is obvious that, in the case of N-particle system,
expression (16) can be trivially generalized: instead

x )32 —Q
) eTEnh, we have to put the
)3/2(@5‘”%

product Hivz3 <u . -

Now, we have to calculate the matrix element from
the kinetic energy of the center of mass of the system:
2M

f-trnl)

R
=53 dridradrse)(rre,r3) Acm @i(ry,ra,rs). (20)

of expression (

2
" A

Introducing the Jacobi coordinates,

r=rog—rg,

miry + mors
p=r3— —— == (21)

mi + mo
mir mar msr
R,, =R = 1r1 + mara + m3 37
mi + mo + ms

or the inverse relations

ms ma

=R-—p— —r,
M P mi + mo
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ms my
=R-—p+—r,
ro p X 2r

mi1+m
r3s=R+———2p,

M
we have

(on|- g alin) -

oo
~ [ardpaResi(rpR) (—

2

WAR> ka(r?pa R) =

72 .
= 537 [ drdpdR (Ve (r, p,R), VR or(r, p,R)).

(23)

Omitting the details of the trivial cumbersome oper-
ations of differentiation and integration, we get

2 3 3/2
- S {()
2Mq=1 Ug,nk

3 3

h2
——A
oM R

X 6ZAj,nk:_4ZAs,nkAp,nk (Rsn_Rsk7 an_Rpk) .

j=1 s,p=1

(24)

The denotations used in (24) are given above. We
also note that, in the case of N-particle system, we
have to spread the upper limit in the sums and in the
product of expression (24) to N (instead of 3).

Very often, we deal with the Coulomb interaction
between particles. Let us consider such an interaction
(between particles 1 and 2, for example):

YAVAT X
Ve (ri2) = =2

= < 25
|I'1 *I'2| ( )

In expression (25), Z1e and Zse are the charges of
particles 1 and 2, respectively, and e is the elementary
charge (e? = 1.4399764 MeV - fm). Let us calculate
the expression for the matrix element for potential
(25):

(onlVe (ri)liox) = / drydradrs " Ve (r12) ¢ —

™2 g T (rs—Ran)®

= 37 € 3~"’“/dr1dr2He Gonlls = Fen) Vo (r19) X
’u’S,nk s=1
2

X H e~ ak(ra—Rai)®, (26)
qg=1
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After the transition to new variables r = r; — ry and
p =1 (ri+r2), we have, instead of (26),

73/2—Q3,nk
(enlVe (T12)lex) = 3/2

U nk

x/dr Ve (r) exp (— (U12,nk 2 4+2(r- T127nk;))), (27)

7—1—3/267Y12,nk

X
(ul,nk + UQ,nk)g/Q

where

_ Ul nkU2nk
Ul?,nk: = s (28)

Ul,nk + U2 nk

U1k (@2, Rapn + a2k Rag)

Tionk = —
Ul nk + U2 nk
U2k (@1nRin + a1Rag) 5

- ) ( 9)

U1,nk T U2 nk

ainair (Riyn _le)2+a2na2k (Ran —Ray)’

Yionk = +
12k Ul nk + U2 nk
| Gan02n (Rln—Rzn)2+a1ka2k (le_R2k)2 n
Ul,nk + U2, nk
a1naor (Rin —Rox)’+a11a2, (Rip—Ran)’
+ . (30)
Ul ,nk + U2 nk
Taking into account that
3/2 B2
/@ef(Ar%rZ(r-B)) _T e erf <|m> (31)
r |B| VA VA

we obtain, instead of (27),

7T3/267Q3,nk 7T3/267Y12‘”k

<%0n|Vc (7‘12)|<Pk> = 3/2 )3/2 X

u3,nk (ul,nk +u2,nk
VAW 2,..3/2 X122,nk
w L122e e erf (X12.n1), (32)
Pio i
where
T n
Xionk = M, Pio ok =|T12,0k|v/ U120k,  (33)
v Ui2,nk
and erf (x) is the well-known function
erf (x) e~ dt. (34)

2
\/7[
0

Note at last that, in the case of N-particle system,
one has to change the very first fraction in expression
(32) by the product of such fractions from j = 3 to
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j = N and to insert the subindex j instead of the
fixed subindex 3 in the above-mentioned fraction.

Now, let us give the expressions for matrix ele-
ments in the case of basis (6) which is invariant with
respect to the spatial translations. Here, we restrict
ourselves with a three-particle case. Further, we use
the notation 9y, (r, p) of the basic functions with the
arguments r and p being the Jacobi coordinates. The
normalization matrix element

(Wl ) = / dr dp s (r, p) Ylr, p) =

:\/('irdpef(G11p2+2G12(p,r)+G22’r‘2+2(PX1)+2(IUY2)+S), (35)

where
1
Gu =7p (m?% (W1 + U2.nn) + (M1 + M) “3’"’“)’
1 2 2
Goo = ) (m2 U1 nk + MY u2,nk)a
(m1 + m2)
ms
Gpo=——"""— -
2= 3 oy ) U2 Yk T U2 k),

1
Y, = i (msz(a1nRin+a1xRig+a2nRopn +a2Rox) —

— (m1 4+ m2) (aznRan + asrRar)),

3

§=D_ (am B + ki) (36)
j=1
After the integration, we have
w3 —w

(nlin) = e (37)
where
W =84 Gu 2 +2G12 (A1, A2) + Goo A2 +
+2 (A1, Y1) +2(X2,Y2), (38)

_ G12Y5—GaY
1=
G11G22 — G35

_ G121 —-Gi1'Ys

A =— -
*T G11Ga — G,

A

In the case of basis (6), the matrix element for the
kinetic energy of the center of mass of the system
equals exactly zero. Thus, we need only to know the
matrix elements for the kinetic energy of each of the
three particles. For example, for the particle number

7 = 3, we have
o)

(.
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h2
—— A
2m3 3

52
Javdp v (v.0) (—QmSAS) by(r,p) =
2

h *

o drdp (V oy (v, p), Vptbi(r, p)) =
ms

4h?

— [drdp (anp + Bnt + Yn, arp + Bt + i) X
2m3

w o (Gr1P*+2C12(pr) +Ga2r? +2(p Y1) +2(r Yo)+5)
)

(39)
where the function ¢y, (r, p) dependent on the Jacobi
coordinates r and p should be understood as the func-
tion 1y, (1, T2, T3) from (6) with the arguments

~ ms meo
rH=-———p——r
1 Mp my + mo )
~ ms ma
=—— _ 40
Ira M 14 + my + mo r, ( )
F. = + mo
3 = M p7
and we used the denotations:
9 2
Qp = (%) (aln + a2n) + (W) a3n,
m3 (Maa1, — M1dzy)
= 41
b M (m1 + mg) ( )
Yn= % (alnR1n+a2nR2n) - %a&nf{ﬁn-

The rest denotations from (39) are given above in
(36). After the integration in (39), we obtain, for this
matrix element,

2
<¢n _TAB 1/Jk> =
m3
2h2 73 Y (GUY2—G12Y1)2
= sexp |[—|S—=—— X
mgU 2 G111 G U
Banak 3G11 2
X |: 2G 1, +< 2 +)\2> UnVk +
2G12Y Y;
+ )\QaVn7k+Vk’Yn+ 122 1*(anﬂk+akﬂn)71 +
G G

Y Y:
+ n— &n 5 - ~ || 42
( @ Gi Yk akGu)] (42)

where the most of denotations are given above, and
where

U=G1Ge— Gl 1y Eﬁn_an%- (43)
11
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Instead of expression (13) for the matrix element
of a component of the potential energy, we have

(nlexp (=bsrt) [1n) = /drdp ¥i(r,p)e " (r, p) =
:/drdpe—(G—ll,oz-',-2G—12(p,r)-‘4-G_'227“2-ﬁ-2(/9,Y1)-i-2(l‘,Yz)-‘rS)7 (44)

where Gas = Gao+bs. Since expression (44) coincides
with (35) regarding the substitution Gos — ézg, the
result of the integration in (44) will be the same as
the right-hand side of (37), but with the substitu-
tion mentioned above in all the expressions, contain-
ing GQQ.

Ultimately, we give the explicit expression for
the Coulomb potential matrix element (compare
with (32)):

WlVe (ra)lind = 21226 fivdp (v, p) 1 (r,p) =

r

71 Zoe2m3e L U
= ———— erf [|A — |, 45
[ Az U3 [Ael G (45)
where ) )
Y, A
L=§- 1L -2 46
G GuU (46)

When the wave function of the system is found (i.e.,
the variational parameters are chosen, and the coef-
ficients Cj are determined from the solution of the
algebraic system (7)), we can easily find the struc-
ture functions of the system (in particular, the density
distributions, form factors, pair correlation functions,
the momentum distributions, and others).

4. Preliminary Discussion of Convergence

To test the efficiency of the new basis, we consider a
simple model of '2C nucleus as the system of three
a-particles with Hamiltonian (1), where m; = my =
= m3 = My = 3.7273794 MeV /c? is the mass of an
a-particle, M = 3m,, is the total mass of the system,
and the pair potentials are identical for each pair of
particles and consist of two terms,
V(r)=Vaa (r)+ Ve (r), (47)
where V., (1) is an effective nuclear pairwise poten-
tial between a-particles, and V¢ (r) = 4e?/r is the

Coulomb repulsion between each pair of a-particles
(€? = 1.4399764 MeV - fm). Since our purpose is only
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to test the convergence of the new proposed basis, we
take the simplest version of the nuclear part V (r,)
of the interaction between a-particles in the form of
two Gaussian functions

V(r)=—Viexp (— (7;>Z> + Va exp (— (7;)2) (48)

where Vi = 223.44 MeV, V5 = 500.0 MeV, r,, =
= 1.7 fm, and r,, = 1.25 fm. This potential assumes
the binding energy of the system of three a-particles
to be 7.275 MeV (experimental value is 7.2748 MeV),
and the charge radius of 12C (in Helm approximation)
to be 2.469 fm (experimental value is 2.4704 fm).

Omitting the detailed analysis of the convergence,
we note that, using the traditional Gaussian basis
[1, 2], we find the energy of the system to be 7.275
MeV (all the digits being reliable) with a few dozens
of basic functions. At the same time, with the use
of basis (3), we need hundreds functions to achieve
the same accuracy. The reason is that the new basis
contains functions which are not projected onto the
state with a definite angular momentum (in our case
of the ground state L = 0), while the functions of the
Gaussian basis already prepared with zero angular
momentum for the ground sate of the system. If one
makes a projection of the basic functions (3) onto
the state with a definite L, then the convergence of
this basis would become competitive with the case
of the Gaussian basis. But, an advantage of the new
basis lies in the fact that we can omit a procedure of
projection and consider all the possible states of the
system in a universal (uniformed) way. The price of
this universality of the basis is a somewhat more slow
convergence of the method.

5. Conclusions

To summarize, we note that two versions of bases
are proposed to be used in variational calculations of
the bound states of an N-particle system with dif-
ferent angular momenta and permutational symme-
tries. Matrix elements are calculated in the explicit
form for the kinetic energy operator and pairwise po-
tentials (in the form of a superposition of Gaussian
functions), as well as for the Coulomb interaction. A
convergence of the variational procedure is briefly dis-
cussed using a model of 2C nucleus as a system of
three a-particles.
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YHIBEPCAJIBHI KOOPIUHATHUI
TAYVCOIIHUN BA3UC IJIS1 POSPAXYHKY
3B’SI3AHIX CTAHIB CUCTEM
JEKIJIBKOX YACTUHOK

3anponoHoBaHO HOBHII mpocTuit 6a3uc as BapiamifiHux pos-
paxyHKIB 3B’I3aHUX CTaHIB CUCTEMH JEKITbKOX YACTUHOK. Jljis
cucremu N YaCTHHOK i3 MapHUMHU IIOTEHI[iaJlaMHU B3a€MO/il B
SIBHOMY BHIVISIZIi OTPUMAHO MaTPHUUHI €JIEeMEHTH raMiJibTOHiaHa
cucreMu. PosriisiHyTo Takoxk MoaudikoBaHuii 6a3uc, iHBapiaH-
THHI BiJTHOCHO IIPOCTOPOBUX TpaHCswii. st npukiamsy pos-
rasiyTo siapo 2C SIK CHCTeMY TPhOX Q-YaCTHHOK i KOPOTKO
06roBOpeHoO 361XKHICTH METOTY.

Katowoei caoe6a: cucreMa JIEKUJIBKOX YaCTUHOK, Bapiarliii-
HUM MeTOoJ, Bapiarmiifnuii 6asuc.
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