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ELASTIC SCATTERING CROSS-SECTIONS
OBTAINED ON THE BASIS OF THE POTENTIAL
OF THE MODIFIED THOMAS–FERMI METHOD
AND TAKING THE CORE INTO ACCOUNT

Nucleon density distributions and nucleus-nucleus interaction potentials for the reactions
16O + 40Ca, 16O + 56Fe, and 16O + 90Zr have been calculated in the framework of the
modified Thomas–Fermi method and considering all terms up to the second order in ~ in
the quasi-classical expansion of the kinetic energy. Skyrme forces dependent on the nucleon
density are used as the nucleon-nucleon interaction. A parametrization of the nucleus-nucleus
interaction potential, which well describes the potential value calculated within the modified
Thomas–Fermi approach with density-dependent Skyrme forces, is found. On the basis of the
obtained potentials, the cross-sections of elastic scattering are calculated in a good agreement
with experimental data.
K e yw o r d s: nucleus-nucleus interaction potential, modified Thomas–Fermi method, nucleon
density distribution, cross-section, repulsive core, elastic scattering.

1. Introduction

One of the main tasks of theoretical nuclear physics
during the whole period of its existence has been
the study of the peculiarities of the interaction be-
tween atomic nuclei. To calculate such fundamental
parameters of nuclear reactions as the cross-sections
of various processes, it is necessary, first of all, to
know the potential energy of nuclear interaction [1–
4]. From this point of view, of particular interest is
the information on the magnitude and radial depen-
dence of the interaction potential at short distances
between nuclei.

Unfortunately, the potential of nucleon-nucleon in-
teraction, especially of its nuclear component, has not
been determined with a required accuracy till now. In
general, it can be said that the potential can be qual-
itatively divided into the nuclear, Coulomb, and cen-
trifugal components. The properties of the last two
have already been studied rather well. But the si-
tuation with the nuclear part is much more comp-
licated. A large number of various models are used
now for its approximation [1–25]. However, the bar-
rier heights in the corresponding potentials of nuc-
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leus-nucleus interaction, which affect the mechanism
of nuclear reactions, can differ substantially among
those models. For this reason, the information about
the nucleus-nucleus interaction potential and the bar-
rier height is principally important for describing the
reaction process.

For this work, among all the methods used to con-
struct the nucleus-nucleus interaction potential [26–
36], we chose the semimicroscopic approach. In this
approach, the nucleon and energy density distribu-
tions are calculated using the modified Thomas–Fer-
mi method with density-dependent Skyrme forces
[4, 7, 8, 10, 11, 13–25]. For now, there are a lot of suc-
cessful Skyrme interaction parametrizations. In the
presented work, we used the SkM* parametrization
[32]. In this case, the semiclassical series expansion of
the kinetic energy in Planck’s constant ~ includes all
possible terms up to ~2. Previous calculations per-
formed by us and other authors for specific nuclear
problems testified that this is a rather accurate app-
roximation, which will also be used in the future. Un-
der such conditions, the modified Thomas–Fermi ap-
proach with Skyrme forces describes well the nucleon
density distribution, the binding energy, the mean
square radii, and many other characteristics of the
ground and excited states of atomic nuclei [26–32, 34].
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In the modified Thomas–Fermi approximation with
Skyrme forces, the nucleus-nucleus potential approa-
ches the Coulomb one at long distances. At small dis-
tances between the surfaces of colliding nuclei, a po-
tential barrier is observed, which is associated with
the Coulomb repulsion of the nuclei and with their
nuclear attraction. As the distance between the nuclei
diminishes further, the potential energy gradually de-
creases. However, in the modified Thomas–Fermi ap-
proximation with Skyrme forces, the nucleus-nucleus
potential has a repulsive core at rather short dis-
tances between the nuclei, when the volumes of the
colliding nuclei significantly overlap each other [7, 10,
13, 14, 17–22]. This repulsive core is associated with
the considerable incompressibility of nuclear matter
[13, 14, 19, 22].

Note that the repulsion at small distances between
the nuclei exists in the proximity potential [5] and
in the microscopic approach [37, 38]. Elastic scatter-
ing of light nuclei making allowance for the potential
core was studied in works [13, 14, 19, 22, 39–41]. The
account for the repulsive component of the poten-
tial made it possible to describe the deep subbarrier
hindrance of the fusion of heavy nuclei [42–44]. Ho-
wever, the nucleus-nucleus potentials with a repul-
sive core are very rarely used to describe the scatter-
ing parameters of nuclei. Therefore, the study of the
elastic scattering of heavy nuclei in the framework of
the modified Thomas–Fermi approach with Skyrme
forces and with regard for the core is an important
and challenging task.

In Sections 2 and 3, we present mathematical meth-
ods that are necessary for the implementation of the
chosen approach. Sections 4 and 5 contain a discus-
sion of the obtained results and our conclusions, re-
spectively.

2. Calculation of the Potential
in the Framework of the Modified
Thomas–Fermi Method

As was already indicated, the nucleus-nucleus inter-
action potential 𝑉 (𝑅) consists of the nuclear, 𝑉𝑁 (𝑅),
Coulomb, 𝑉COUL(𝑅), and centrifugal, 𝑉𝑙(𝑅), compo-
nents, which depend on the distance 𝑅 between the
centers of mass of the nuclei,

𝑉 (𝑅) = 𝑉𝑁 (𝑅) + 𝑉COUL(𝑅) + 𝑉𝑙(𝑅). (1)

For the Coulomb and centrifugal components, we
used well-known expressions that can be found, in
particular, in works [20, 23, 24].

Let us calculate the nuclear component 𝑉𝑁 (𝑅) of
the interaction potential in the framework of the ex-
tended Thomas–Fermi method and consider all terms
up to the second order in ~ in the semiclassical expan-
sion of the kinetic energy [4,7,8,10,11,13–25]. As the
nucleon-nucleon interaction, the density-dependent
Skyrme forces, namely the SkM* parametrization
[32], will be used. In our calculations, we deal with
the approximation of “frozen” densities, which is quite
applicable at the near-barrier energies.

The nucleus-nucleus interaction potential is defined
as the difference between the energies of a system of
two nuclei located at a finite distance, 𝐸12(𝑅), and
the infinite one, 𝐸1(2), from each other [8, 10],

𝑉 (𝑅) = 𝐸12(𝑅)− (𝐸1 + 𝐸2), (2)

where

𝐸12 =

∫︁
𝜖 [𝜌1𝑝(r) + 𝜌2𝑝(r, 𝑅), 𝜌1𝑛(r) + 𝜌2𝑛(r, 𝑅)] 𝑑r,

(3)

𝐸1(2) =

∫︁
𝜖
[︀
𝜌1(2)𝑝(r), 𝜌1(2)𝑛(r)

]︀
𝑑r. (4)

𝜌1(2)𝑛 and 𝜌1(2)𝑝 are the neutron, 𝑛, and proton, 𝑝,
densities of nuclei 1 and 2; 𝜖

[︀
𝜌1(2)𝑝(r), 𝜌1(2)𝑛(r)

]︀
is

the energy density; and 𝑅 is the distance between the
centers of mass of the nuclei. Note that the energy of
the system at the infinite distance between the nuclei,
𝐸1 +𝐸2, is the sum of the binding energies for sepa-
rate nuclei.

The energy density in the integrand consists of the
kinetic and potential components. If the Skyrme for-
ces are used, its form is well known [24–28,30,32,44]:

𝜖 =
~2
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+
1
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)︂
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1 +
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2
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− 1
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𝑥1+

1
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+ 𝑡2
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𝑊0[𝐽∇𝜌+ 𝐽𝑛∇𝜌𝑛 + 𝐽𝑝∇𝜌𝑝] + 𝜖C. (6)

Here, 𝜏 is the kinetic energy density (its expression
will be given below); 𝑚 is the nucleon mass; 𝑡0, 𝑡1, 𝑡2,
𝑡3, 𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝛼, and 𝑊0 are the Skyrme interac-
tion parameters; and 𝜖𝐶 is the Coulomb field energy
density with regard for the direct and exchange terms
in the Slater approximation [4, 7, 10, 27]. The terms
proportional to 𝑡0 and 𝑡3 correspond to zero-range
forces. The term proportional to 𝑡0 is associated with
attraction, whereas the term with 𝑡3 corresponds to
repulsion and increases, as the density of nuclear mat-
ter grows, which prevents the collapse of nuclear sys-
tems. The summands proportional to 𝑡1 and 𝑡2 make
a correction for the finite range of action of nuclear
forces. As the nucleon density increases, the contri-
bution of those terms to the total energy increases as
well. The constants 𝑥0, 𝑥1, 𝑥2, and 𝑥3 describe ex-
change effects; they are associated with the spin and
isospin asymmetries. The parameter 𝑊0 is the spin-
orbit interaction constant.

With an accuracy to the second order in ~, the
kinetic energy density has the form 𝜏 = 𝜏TF + 𝜏2
[7, 8, 10, 11, 24, 27, 28, 44], where, in turn, 𝜏 = 𝜏𝑛 + 𝜏𝑝
is the sum of the kinetic energy densities for protons
and neutrons. We can write (see, e.g., works [27,28]),

𝜏TF,𝑛(𝑝) = 𝑘𝜌
5/3
𝑛(𝑝) (7)

is the kinetic energy density of neutrons (protons)
in the Thomas–Fermi approximation, 𝑘 = 5

3 (3𝜋
2)2/3,

and 𝜏2 is the complete expression for the second-order
(in ~) gradient correction [27, 28],

𝜏2𝑛(𝑝) = 𝑏1
(∇𝜌𝑛(𝑝))

2
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+ 𝑏6ℎ
2
𝑚𝜌𝑛(𝑝)

(︂
W𝑛(𝑝)

𝜌𝑛(𝑝)

)︂2
. (8)

In formula (8), 𝑏1 = 1/36, 𝑏2 = 1/3, 𝑏3 = 1/6,
𝑏4 = 1/6, 𝑏5 = −1/12, and 𝑏6 = 1/2 are numerical

Fig. 1. Nucleon distribution densities for the 16O, 40Ca, 56Fe,
and 90Zr nuclei obtained in the framework of the modified
Thomas–Fermi method

coefficients; ℎ𝑚 = ~2/2𝑚; and the last term accounts
for the spin-orbit interaction. The notation W𝑛(𝑝) in
formula (8) stands for

W𝑛(𝑝) =
𝛿𝜀(𝑟)

𝛿J𝑛(𝑝)(𝑟)
=

𝑊0

2
∇(𝜌+ 𝜌𝑛(𝑝)), (9)
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𝑓𝑛(𝑝) = 1 +
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+
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]︂
, (10)

is expressed via the parameters of Skyrme forces 𝑥1,
𝑥2, 𝑡1, 𝑡2, and 𝑊0, which depend on the parametriza-
tion choice. The contribution of the Thomas–Fermi
term is dominant, especially in the nuclear bulk; but,
at the nuclear surface, the gradient corrections begin
to play a substantial role.

In this work, we consider the elastic scattering re-
actions 16O + 40Ca, 16O + 56Fe, and 16O + 90Zr. Let
us calculate the nucleus-nucleus interaction potential
for those systems in the framework of the modified
Thomas–Fermi approach. For this purpose, it is nec-
essary to know the densities of nucleon distributions
in the interacting nuclei. We will use the nucleon den-
sities obtained in the framework of the same modi-
fied Thomas–Fermi approach with Skyrme forces. For
Skyrme forces, we will use the SkM* parametrization
[32]. The nucleon distribution densities calculated for
the 16O, 40Ca, 90Zr, and 56Fe nuclei in the framework
of this method are shown in Fig. 1.

ISSN 2071-0194. Ukr. J. Phys. 2022. Vol. 67, No. 9 647



V.A. Nesterov, O.I. Davydovska, V.Yu. Denisov

Fig. 2. Interaction potentials for the reactions 16O + 40Ca,
16O + 90Zr, and 16O + 56Fe obtained in the framework of
the modified Thomas–Fermi method with the corresponding
potential 𝑉FIT taken in the analytic form (14)

Now, knowing the nucleon densities, we can ob-
tain an expression for the energy density and calcu-
late the nucleus-nucleus interaction potential in the
framework of the modified Thomas–Fermi approach
with Skyrme forces [formulas (1)–(10)]. In Fig. 2, the
nuclear parts of the interaction potentials obtained
for the reactions 16O + 40Ca, 16O + 56Fe, and 16O
+ 90Zr are shown. The obtained potentials look quite
realistic and demonstrate a substantial repulsive core
at short distances.

3. Analytic Expression
for the Interaction Potential

For the convenience of further calculations, let us ex-
press the obtained potential in such a way that en-
ables one to work with it in an analytic form. In so
doing, for an adequate description of the elastic scat-
tering cross-sections, it is very important to account
for the repulsive core, which imposes certain require-
ments on the form of potential parametrization. From
this viewpoint, the traditional form of Woods–Saxon
parametrization does not suit us. For our analytic po-
tential to possess a more realistic form, let us add an-
other term to it. The expression for this term is simi-
lar to that for the kinetic energy in the Thomas–Fermi
method, which should provide the necessary repulsion
at short distances. We do this operation in a certain
analogy with what was done in work [20], where we
operated with double convolution potentials, which
substantially improved the results obtained in this
way. Therefore, the general expression for the poten-

tial takes the form

𝑉FIT(𝑅) = 𝑉WS(𝑅) + 𝑉kin(𝑅), (11)

where 𝑉WS(𝑅) is the well-known Woods–Saxon po-
tential
𝑉WS(𝑅) =

−𝑉0

1 + 𝑒
(𝑅−𝑅0)

𝑑0

, (12)

and 𝑉kin(𝑅) is the kinetic term. In the Thomas–Fermi
method, the kinetic energy is proportional to 𝜌5/3 [see
Eq. (7)], so the kinetic term is approximated using the
well-known Fermi distribution for the density,

𝑉kin(𝑅) =

(︂
𝑉𝑐

1 + 𝑒
(𝑅−𝐶)

𝑎

)︂5/3
. (13)

Table 1. Parameters of the analytic representation
of the potential for the considered reactions

Reaction
𝑉0,

MeV
𝑅0,
fm

𝑑0,
fm

𝑉𝑐,
MeV3/5

𝐶,
fm

𝑎,
fm

16O+ 40Ca 49.094 6.683 0.686 20.603 3.175 1.081
16O+ 90Zr 54.2604 7.960 0.673 19.339 4.491 0.995
16O+ 56Fe 51.9102 7.155 0.685 20.460 3.662 1.066

Table 2. Parameters of the imaginary
part of potential (15) for the16O + 40Ca,
16O + 90Zr, and 16O + 56Fe reactions

𝐸lab, 𝑊𝑊 , 𝑟𝑊 , 𝑑𝑊 , 𝑊𝑆 , 𝑟𝑆 , 𝑑𝑆 ,
MeV MeV fm fm MeV fm fm

16O+ 40Ca

40 20.331 1.195 0.449 10.998 1.267 0.500
47 20.876 1.199 0.434 11.999 1.229 0.500
60 21.901 1.123 0.300 12.000 1.269 0.632

16O+ 90Zr

50 20.149 1.100 0.303 6.858 1.298 0.521
80 20.170 1.109 0.300 11.938 1.299 0.646

138.2 21.471 1.100 0.319 13.601 1.299 0.770

16O+ 56Fe

38 19.460 1.123 0.300 5.006 1.229 0.778
40 20.756 1.162 0.304 5.184 1.187 0.799
42 21.179 1.199 0.302 5.578 1.299 0.573
44 22.373 1.100 0.313 6.615 1.299 0.566
50 24.532 1.267 0.300 8.295 1.153 0.899
54 25.647 1.211 0.300 8.500 1.271 0.551
58 25.786 1.147 0.300 8.520 1.284 0.576

648 ISSN 2071-0194. Ukr. J. Phys. 2022. Vol. 67, No. 9



Elastic Scattering Cross-Sections Obtained

As a result, our analytic potential acquires the fol-
lowing final form:

𝑉FIT(𝑅) =
−𝑉0

1 + 𝑒
(𝑅−𝑅0)

𝑑0

+

(︂
𝑉𝑐

1 + 𝑒
(𝑅−𝐶)

𝑎

)︂5/3
. (14)

Formula (14) contains six fitting parameters: 𝑉0,
𝑅0, 𝑑0, 𝑉𝑐, 𝐶, and 𝑎. Their values are determined
by minimizing the most accurate realistic potential
found in the framework of the modified Thomas–
Fermi approach with Skyrme forces. The resulting
values of the potential parameters for the reactions
considered in this work are quoted in Table 1.

Figure 2 demonstrates the approximations of the
nuclear part of the interaction potentials using ex-
pression (14), which were calculated for the interact-
ing heavy nuclei in the reactions 16O + 40Ca, 16O +
56Fe and 16O + 90Zr in the framework of the modified
Thomas–Fermi approach with Skyrme forces. The ap-
proximation turned out so accurate that the devia-
tions are practically invisible on the plot scale. Thus,
the proposed form of the fitting potential can very
well describe the realistic nucleus-nucleus interaction
potential obtained by numerical calculations.

4. Calculations of Elastic
Scattering Cross-Sections

Making use of the determined nucleus-nucleus inter-
action potentials (14) with the relevant parameters
(see Table 1) as the real part, let us calculate the
elastic scattering cross-sections in the framework of
the optical model. The imaginary part of the poten-
tial is taken in the form [2, 4]

𝑊 (𝑅) = − 𝑊𝑊

1 + exp[𝑅− 𝑟𝑊 (𝐴
1/3
1 +𝐴

1/3
2 )/𝑑𝑊 ]

−

− 𝑊𝑆 exp[𝑅− 𝑟𝑆(𝐴
1/3
1 +𝐴

1/3
2 )/𝑑𝑆 ]

𝑑𝑆 (1 + exp[𝑅− 𝑟𝑊 (𝐴
1/3
1 +𝐴

1/3
2 )/𝑑𝑊 ])2

, (15)

where 𝑊𝑊 , 𝑟𝑊 , 𝑑𝑊 , 𝑊𝑆 , 𝑟𝑆 , and 𝑑𝑆 are the strength,
radius, and diffusivity of the bulk (𝑊 ) and surface
(𝑆) parts of the imaginary nuclear potential. This
form for the imaginary part of the potential is widely
used while describing various nuclear reactions. We
consider elastic scattering reactions for the 16O +
40Ca system at the beam energies 𝐸lab = 40, 47, and
60 MeV; for the 16O + 90Zr system at the beam en-
ergies 𝐸lab = 50, 80, and 138.2 MeV; and for the

Fig. 3. Elastic scattering cross-sections for the 16O + 40Ca
system at the beam energies 𝐸lab = 40, 47, and 60 MeV cal-
culated in the modified Thomas–Fermi approximation with
density-dependent Skyrme forces (ETF). Experimental data
(exp) were taken from works [45, 46]

Fig. 4. Elastic scattering cross-sections for the 16O + 90Zr
system at the beam energies 𝐸lab = 50, 80, and 138.2 MeV
calculated in the modified Thomas–Fermi approximation with
density-dependent Skyrme forces (ETF). Experimental data
(exp) were taken from work [47]

16O + 56Fe system at the beam energies 𝐸lab = 38,
40, 42, 44, 46, 50, 54, and 58 MeV. The elastic
scattering cross-sections were calculated using poten-
tial (14) with the parameter values from Table 1,
which approximates the nucleus-nucleus potential ob-
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Fig. 5. Elastic scattering cross-sections for the 16O + 56Fe
system at the beam energies 𝐸lab = 38, 40, 42, 44, 46, 50, 54,
and 58 MeV calculated in the modified Thomas–Fermi approx-
imation with density-dependent Skyrme forces (ETF). Exper-
imental data (exp) were taken from work [48]

tained in the framework of the modified Thomas–
Fermi method. The parameters 𝑊𝑊 , 𝑟𝑊 , 𝑑𝑊 , 𝑊𝑆 ,
𝑟𝑆 , and 𝑑𝑆 of the imaginary part were found by fit-
ting the experimental elastic scattering cross-section
values. The values of those parameters are presented
in Table 2.

The results of calculations of the elastic scatter-
ing cross-sections for the 16O+40Ca, 16O + 90Zr, and

16O + 56Fe systems at the indicated beam energies
𝐸lab are presented in Figs. 3, 4, and 5, respectively. In
the figures, the data calculated for the elastic scatter-
ing cross-section were normalized to the Rutherford
cross-section values. The experimental results were
taken from works [45–48]. As one can see from the fig-
ures, the elastic scattering cross-sections calculated in
this work are in a good agreement with the available
experimental data.

5. Conclusions

In this work, in the framework of the modi-
fied Thomas–Fermi approach with density-dependent
Skyrme forces, the nucleus-nucleus interaction poten-
tials have been calculated for the systems 16O + 40Ca,
16O + 56Fe, and 16O + 90Zr, with the nucleon densi-
ties being obtained in the framework of the same ap-
proach. The SkM* parametrization [32] was used for
Skyrme forces. The calculated potentials are found
to contain a repulsive core, which is important for
the calculations of elastic scattering cross-section. A
successful analytic parametrization of the nucleus-
nucleus interaction potential is found, which well de-
scribes the potential calculated in the framework of
the modified Thomas–Fermi approach with density-
dependent Skyrme forces.

On the basis of the obtained nucleus-nucleus in-
teraction potentials, elastic scattering reactions are
considered for the systems 16O + 40Ca, 16O + 56Fe,
and 16O + 90Zr at various energies, and the corre-
sponding elastic scattering cross-sections are calcu-
lated. Note that the same expression for the real part
of the potential was used when carrying on calcula-
tions for each reaction at various energies, and only
the imaginary part was fitted. It is shown that the
found cross-sections are in a good agreement with the
experimental data.
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Translated from Ukrainian by O.I. Voitenko

В.О.Нестеров, О.I. Давидовська, В.Ю.Денисов

ПЕРЕРIЗИ ПРУЖНОГО
РОЗСIЯННЯ, ОДЕРЖАНI НА ОСНОВI
ПОТЕНЦIАЛУ МОДИФIКОВАНОГО МЕТОДУ
ТОМАСА–ФЕРМI З УРАХУВАННЯМ КОРА

Густини розподiлу нуклонiв та потенцiали взаємодiї мiж
ядрами для реакцiй 16O+ 40Ca, 16O+ 56Fe та 16O+ 90Zr
було розраховано в рамках модифiкованого методу Томаса–
Фермi, з урахуванням усiх доданкiв до членiв другого по-
рядку по ~ у квазикласичному розкладi кiнетичної енер-
гiї. В якостi нуклон-нуклонної взаємодiї використовувалися
сили Скiрма, залежнi вiд густини нуклонiв. Знайдено па-
раметризацiю потенцiалу взаємодiї мiж ядрами, яка добре
описує величину потенцiалу, розрахованого у рамках моди-
фiкованого пiдходу Томаса–Фермi з залежними вiд густини
силами Скiрма. На основi одержаних потенцiалiв було обра-
ховано перерiзи пружного розсiяння, що добре узгоджую-
ться з експериментальними даними.

Ключ о в i с л о в а: потенцiал взаємодiї мiж ядрами, мо-
дифiкований метод Томаса–Фермi, розподiл густини ну-
клонiв, поперечний перерiз, кор вiдштовхування, пружне
розсiяння.
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