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AUTOWAVES INDUCED
BY FIRST-ORDER PHASE TRANSITIONS

It has been found that autowaves can emerge at a phase transition of the first order, and their
propagation is accompanied by self-oscillations of the temperature and phase composition of the
medium. Conditions under which the mentioned waves can appear have been formulated. It has
been shown that the propagation of autowaves leads to significant fluctuations of macroscopic
parameters in a vicinity of the phase transition temperature.
K e yw o r d s: self-oscillations, autowaves, fluctuations, phase transition, self-organization, hy-
droxypropylmethylcellulose.

1. Introduction

It is well known (see, e.g., [1]) that the specific feature
of strongly nonequilibrium systems consists in their
ability to self-organize, i.e., to spontaneously form or-
dered structures, which are conventionally called dis-
sipative. Self-oscillations comprise a dissipative struc-
ture that is ordered in time. These are undamped
oscillations induced by the action of a nonperiodic
energy source. A characteristic feature of self-oscilla-
tions is the pressence of a feedback governing the en-
ergy production by the nonperiodic source. The dis-
sipative structure ordered in time and space, which is
formed due to the propagation of self-oscillations in
space, is called an autowave (see, e.g., [1]).

The challenging character of the studies dealing
with autowaves is associated, first of all, with the fact
that some key processes in the human body – such as
the propagation of pulses through nerve fibers, the
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propagation of excitation in the heart muscle, and so
forth – are autowaves. Some processes occurring in
non-biological systems, such as combustion, have a
similar character.

In this paper, we will show that autowaves can
emerge during a phase transition. Earlier, this issue
has not been covered in the literature.

2. Formulation of the Problem

Consider the phase transitions 𝐴 ↔ 𝐵, where 𝐴 is a
low-temperature phase and 𝐵 is a high-temperature
one. We will use the thermodynamic approach and
consider a physical system undergoing these phase
transitions as a continuum.

Let 𝜑 (r, 𝑡) denote a local relative volume occupied
by phase 𝐵, and 𝑇 (r, 𝑡) the local temperature, where
r ≡ {𝑥, 𝑦, 𝑧} is the radius vector of any point in the
continuum, and 𝑡 is the time.

The temperature of the system is known (see,e.g.,
[2]) to substantially affect the kinetics of phase tran-
sition. In other words, there is a direct relation be-
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tween the functions 𝑇 (r, 𝑡) and 𝜑 (r, 𝑡), which is de-
scribed by a kinetic equation of phase transition. Du-
ring phase transitions of the first kind, heat is released
or absorbed (see, e.g., [2, 3]). Hence, there arises an
inverse relation between the functions 𝜑 (r, 𝑡) and
𝑇 (r, 𝑡). This relation is described by a heat balance
equation.

So, we have a system of two equations for two un-
known functions 𝜑 (r, 𝑡) and 𝑇 (r, 𝑡). Our task is to
determine the behavior of the solution of this system
of equations and show that under certain conditions
the function 𝜑 (r, 𝑡) can acquire the form of autowave.

3. Kinetic Equation of Phase Transition

The model of phase transition proposed in work [3]
will be used. According to this model, the phase tran-
sition takes place owing to the fluctuation-induced
formation of spherical nuclei of new phase and their
subsequent growth. In [3], for the case when the tem-
perature remains constant during the phase transi-
tion, the following kinetic equation was obtained:

𝜑(𝑡) = 𝜑𝐸(𝑡) = 1− exp(−𝛽𝑡4), (1)

where

𝛽 = 𝐶𝑤3, (2)

𝐶 is the number of nuclei formed per unit volume per
unit time, and 𝑤 is the linear growth rate.

According to work [2], the temperature dependence
of the parameter 𝐶 is described by the formula

𝐶 = 𝐶0 exp

[︃
− 𝑀

(𝑇 − 𝑇𝑝)
2

]︃
, (3)

where 𝐶0 is a constant, 𝑇𝑝 is the phase transition
temperature, and the parameter 𝑀 looks like

𝑀 =
16𝜋

3

𝜎3𝑇 2
𝑝

𝑞2
, (4)

where 𝜎 is the surface tension coefficient at the inter-
face between the phases, and 𝑞 is the specific heat of
the phase transition.

In work [4], taking formula 3) into account, the fol-
lowing dependence 𝜑 (r, 𝑡) was obtained in the case
where the temperature changes during the phase
transition:

𝜑 (𝑡) = 𝜑𝑇 (𝑡) = 1−

− exp

⎧⎨⎩−𝐶0𝑤
3

𝑡∫︁
0

exp

[︃
− 𝑀

(𝑇 (𝜏)− 𝑇𝑝)
2

]︃
(𝑡− 𝜏)

3
𝑑𝜏

⎫⎬⎭.
(5)

Let us assume that the physical system in a definite
phase state (𝐴 or 𝐵) is a set of regions with various
ordering degrees. Accordingly, let us introduce the lo-
cal specific heat of transition 𝑞 (r). Then the constant
𝑀 in the kinetic equation (5) transforms into a func-
tion 𝑀 (r), and the function 𝜑𝑇 (𝑡) into a function
𝜑𝑇 (r, 𝑡).

4. Heat Balance Equation
for a System with Phase Transition

In the general case (see, e.g., [5]), the heat balance
equation has the form

𝑄̇ = 𝑄̇𝑖 + 𝑄̇𝑒, (6)

where 𝑄̇ is the rate of change in the heat amount
per unit volume, 𝑄̇𝑖 the amount of heat generated
per unit volume per unit time, and 𝑄̇𝑒 the amount
of heat entering the unit volume per unit time. The
quantity 𝑄̇𝑒 characterizes the internal heat exchange
in the physical system.

For the quantity 𝑄̇, we have the expression

𝑄̇ = 𝜌𝑐
𝜕𝑇

𝜕𝑡
, (7)

where 𝜌 is the density and 𝑐 is the specific heat of the
medium. The expression for the summand 𝑄̇𝑒 is

𝑄̇𝑒 = 𝜆Δ𝑇, (8)

where 𝜆 is the thermal conductivity of the medium,
and Δ the Laplacian. The component 𝑄̇ is associated
with the phase transition and looks like

𝑄̇𝑖 = −𝜌𝑞
𝜕𝜑

𝜕𝑡
sign

𝜕𝜑

𝜕𝑡
, (9)

where

sign 𝐴 =

{︂
1 if 𝐴 > 0,

−1 if 𝐴 < 0.
(10)

Substituting Eqs. (7)–(9) into Eq. (6), we obtain

𝜌𝑐
𝜕𝑇

𝜕𝑡
= −𝜌𝑞

𝜕𝜑

𝜕𝑡
sign

𝜕𝜑

𝜕𝑡
+ 𝜆Δ𝑇. (11)
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5. Phase Transition
in a System with Negligible
Internal Heat Exchange

Obtaining an analytical solution of the system of
equations (5) and (11) is extremely difficult. There-
fore, let us estimate the solution behavior using cer-
tain approximations.

Let the ratio

𝛼 =
𝑄̇𝑒

𝑄̇𝑖

(12)

satisfy the inequality

𝛼 ≪ 1. (13)

Consider the zeroth approximation in the small
parameter 𝛼. Physically, this approximation corre-
sponds to the neglect of internal heat exchange. Heat
exchange is realized via heat fluxes

J = −𝜆∇𝑇. (14)

In their absence,

∇𝑇 = 0, (15)

whence it follows that in the adopted zeroth approx-
imation, the quantity r can be considered fixed. Ac-
cordingly, Eq. (11) reads

𝑑𝑇

𝑑𝑡
= −𝑞

𝑐

𝑑𝜑

𝑑𝑡
sign

𝑑𝜑

𝑑𝑡
. (16)

The integral of this equation satisfying the initial con-
ditions

𝑇 (0) = 𝑇0 > 𝑇𝑝, (17)

𝜑 (0) = 0 (18)

looks like

𝑇 (𝑡) = 𝑇0 −
𝑞

𝑐
𝜑𝑇 (𝑡) sign

𝑑𝜑

𝑑𝑡
. (19)

Substituting this expression into relationship (5), we
obtain the following integral equation for the function
𝜑𝑇 (𝑡):

𝜑(𝑡) = 𝜑𝑇 (𝑡) = 1− exp

{︃
−𝐶0𝑤

3 ×

×
𝑡∫︁

0

exp

[︃
− 𝑀(︁

𝑇0 − 𝑞
𝑐𝜑𝑇 (𝜏) sign

𝑑𝜑𝑇

𝑑𝜏 − 𝑇𝑝

)︁2
]︃
×

× (𝑡−𝜏)
3
𝑑𝜏

}︃
. (20)

Thus, when describing the phase transition, the ze-
roth approximation in the small parameter 𝛼 allows
the system of equations (5) and (11) to be replaced
by single equation (20).

6. The Mechanism Generating
Self-Oscillations During the Phase
Transition

Equation (20) will be solved using the step-by-step
method. First, let us choose the zeroth approxima-
tion. By calculating the derivative

𝑑𝜑𝑇

𝑑𝑡
= exp

{︃
−𝐶0𝑤

3 ×

×
𝑡∫︁

0

exp

[︃
− 𝑀(︁

𝑇0− 𝑞
𝑐𝜑𝑇 (𝜏) sign

𝑑𝜑𝑇

𝑑𝜏 −𝑇𝑝

)︁2
]︃
×

×(𝑡−𝜏)
3
𝑑𝜏

}︃
𝐶0𝑤

3×

× 3

𝑡∫︁
0

exp

[︃
− 𝑀(︁

𝑇0 − 𝑞
𝑐𝜑(𝜏) sign

𝑑𝜑𝑇

𝑑𝜏 −𝑇𝑝

)︁2
]︃
(𝑡−𝜏)

2
𝑑𝜏,

(21)
we find that

𝑑𝜑𝑇

𝑑𝑡
(0) = 0, (22)

𝑑𝜑𝑇

𝑑𝑡
(∞) = 0. (23)

Let the zeroth approximation satisfy Eqs. (22) and
(23). The function shown in Fig. 1, 𝑎 does it. It has
an inflection point at 𝑡 = 𝜂. Making the situation
simpler, let us change from the function shown in
Fig. 1, 𝑎 to a similar function shown in Fig. 1, 𝑏 and
consider the latter as the zeroth approximation, i.e.,

𝜑0 = 𝜃 (𝑡− 𝜂), (24)
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where 𝜃 (𝑡− 𝜂) is the Heaviside unit step function

𝜃 (𝑡− 𝜂) =

{︂
0 if 𝑡 < 𝜂,
1 if 𝑡 > 𝜂.

(25)

For function (1), the inflection point is observed
at 𝑡 ≈ 𝛽− 1

4 . This function has the same behavior as
the function shown in Fig. 1, 𝑎. The same coincidence
allows us to write the estimate

𝜂 ≈ 𝛽− 1
4 . (26)

Below, the calculations will be carried out on the
basis of the introduced zeroth approximation. Let the
inequality

𝑇0 −
𝑞

𝑐
> 𝑇0 (27)

hold. According to the selected zeroth approximation
(see Fig. 2), the function 𝜑𝑇 (𝑡) remains equal to zero
at 𝑡 < 𝜂, at the moment 𝑡 = 𝜂 it jumps to the value
𝜑 = 1, and at 𝑡 > 𝜂 remains equal to it. Since there
was no phase transition until 𝑡 = 𝜂, the temperature
also does not change (Fig. 2, 𝑏). At the time moment
𝑡 = 𝜂, when phase 𝐵 is formed, heat is absorbed
and the temperature drops by a value of 𝑞/𝑐. Inequa-
lity (27) means that the described events take place
within the temperature range of phase 𝐵. Hence, the
values of the function 𝑇 (𝑡) and 𝜑𝑇 (𝑡) remain con-
stant at 𝑡 > 𝜂. This behavior is described by the for-
mula

𝑇 (𝑡) = 𝑇0 −
𝑞

𝑐
𝜃 (𝑡− 𝜂) . (28)

The situation changes radically in the case where
the inequality

𝑇0 −
𝑞

𝑐
< 𝑇𝑝 (29)

is obeyed. Now, at the time moment 𝑡 = 𝜂, when
heat is absorbed, the temperature decreases to a value
lower than 𝑇𝑝 (Fig. 3, 𝑎). As a result, there appear
conditions for the inverse phase transition 𝐵 → 𝐴. In
this case, according to the selected zeroth approxi-
mation, the function must be equal to unity within
the time interval (𝜂, 2𝜂), and afterward decrease in
a jump-like manner to zero at the time moment
𝑡 = 2𝜂 (Fig. 3, 𝑏). Accordingly, the temperature re-
mains equal to 𝑇0− 𝜆

𝑐 within the indicated time inter-
val and increases to 𝑇0 at the time moment 𝑡 = 2𝜂 due

a

b
Fig. 1. Zeroth approximation for the functions 𝜑 (𝑡)

a

b
Fig. 2. Non-periodic phase transition mode
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a

b
Fig. 3. Periodic phase transition mode

to heat release at the phase transition 𝐵 → 𝐴. Then,
the described behavior repeats. In this case, the de-
pendence 𝑇 (𝑡) is a periodic step function of time,

𝜑𝑇 (𝑇 ) =
∑︁
𝑘

{︁
𝜃 [𝑡− 𝑘𝜂]− 𝜃 [𝑡− (𝑘 + 1) 𝜂]

}︁
(𝑘 = 1, 3, 5, ...,∞), (30)

𝑇 (𝑡) = 𝑇0 −
𝑞

𝑐

∑︁
𝑘

{︁
𝜃 [𝑡− 𝑘𝜂]− 𝜃 [𝑡− (𝑘 + 1) 𝜂]

}︁
(𝑘 = 0, 2, 4, ...,∞). (31)

The absence of a periodic energy source and the
undamped oscillating behavior of functions (30) and
(31) testify that if condition (29) is satisfied, there
arise self-oscillations of temperature and phase com-
position in the system. Their oscillation period equals
2𝜂 and they are shifted in time with respect to each
other by 𝜂. Figures 2 and 3, as well as formulas (30)
and (31), correspond to the case when Eqs. (17),
(18),and (29) hold.

Now, let the initial conditions be

𝑇0 < 𝑇𝑝, (32)

𝜑 (0) = 1. (33)

Following considerations similar to those that were
made when analyzing the behavior of the system for
initial conditions (17) and 18), we may assert that
self-oscillations are absent in the case

𝑇0 +
𝑞

𝑐
< 𝑇𝑝, (34)

but will arise if

𝑇0 +
𝑞

𝑐
> 𝑇𝑝. (35)

Thus, the appearance of self-oscillations depends
on the value of the local specific heat of phase transi-
tion. In other words, self-oscillations emerge at those
points of the continuum where either of conditions
(29) or (35) is satisfied. We will call them the centers
of self-oscillations.

7. Autowaves and Thermodynamic
Fluctuations Arising During Phase
Transition

Consider the first approximation in the small param-
eter 𝛼, thus taking the internal heat exchange into ac-
count. In this case, the centers of self-oscillations are
transformed into sources of autowaves–pacemakers or
leading centers, according to the terminology adopted
in work [1]). The duration of the pacemaker action
depends on the smallness of the parameter 𝛼.

When an autowave propagates, there are self-oscil-
lations of the quantity 𝜑 at every point of the contin-
uum: one phase alternately transforms into the other.
Self-oscillations of the quantity 𝜑 bring about fluctu-
ations of thermodynamic parameters. One of those
parameters is, for example, the local dielectric per-
mittivity 𝜀 (r, 𝑡). Pacemakers possess different char-
acteristics, so also different are the frequencies of self-
oscillations in the autowaves generated by them. The
value of 𝜀 (r, 𝑡) is formed owing to the passage of au-
towaves with various frequencies through the point
r. Therefore, the time-dependence of 𝜀 (r, 𝑡) is quasi-
periodic. For the average value of the dielectric per-
mittivity at the time moment 𝑡, we have the formula

𝜀𝑎 (𝑡) =
1

𝑉

∫︁
𝑉

𝜀 (r, 𝑡)𝑑r, (36)

where 𝑉 is the volume of the system. For the mean
square deviation of the dielectric permittivity, the
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corresponding expression is

Δ2
𝜀 (𝑡) =

1

𝑉

∫︁
𝑉

[𝜀 (r, 𝑡)− 𝜀0 (𝑡)]
2
𝑑r. (37)

The light scattering intensity 𝐼 is known [6] to be
proportional to Δ2

𝜀, i.e.,

𝐼 (𝑡) ∼ Δ2
𝜀 (𝑡). (38)

Since 𝐼(𝑡) must have another feature, consider the
average scattering intensity𝐼𝑎, which is defined by the
formula

𝐼𝑎 =
1

𝑡1

𝑡1∫︁
0

𝐼 (𝑡) 𝑑𝑡, (39)

where 𝑡1 is the duration of observation.
The temperature 𝑇0 can be identified with the tem-

perature of the thermostat where the test system is
arranged. As follows from inequalities (29) and (35),
the smaller the quantity |𝑇0 − 𝑇𝑝|, the smaller the
value of 𝑞 at which self-oscillations arise. This rela-
tion means that if |𝑇0 − 𝑇𝑝| decreases, the number
of pacemakers increases, which in turn leads to the
growth of 𝐼𝑎. Hence, 𝐼𝑎 has to increase as the ther-
mostat temperature approaches the phase transition
point.

8. Comparison with Experiment

In work [7], light scattering in the 3% aqueous so-
lution of hydroxypropylmethylcellulose (metholose)
in the vicinity of the phase transition temperature
was studied. It was found that the dependences 𝐼(𝑡)
are quasi-periodic in a temperature interval of 303–
353 K. It was also found that the value of 𝐼𝑎 increases
as |𝑇0 − 𝑇𝑝| decreases. Hence, the results obtained [7]
confirm the existence of autowaves generated by the
first-kind phase transition.

An analysis shows that autowaves arise because of
the following reasons. In order to transform a sys-
tem from the low-temperature phase to the high-
temperature one, it is necessary to heat it above the
phase transition temperature. This process consumes
some heat. A certain amount of high-temperature
phase is formed, which is accompanied by heat ab-
sorption. Let the system possess low thermal conduc-
tivity so that the heat transfer process is slow. In ad-
dition, let the system consist of regions with differ-
ent ordering degrees and, accordingly, different spe-
cific heats of phase transition. Under such conditions,

in a region with a sufficiently high specific heat of
phase transition, due to heat absorption that accom-
panies the formation of the high-temperature phase,
the temperature becomes lower than the phase tran-
sition temperature. As a result, the transition from
the high-temperature phase to the low-temperature
one begins. Now, this transition is accompanied by
heat release, i.e., the temperature grows. When it
becomes higher than the phase transition tempera-
ture, the transition to the high-temperature phase
begins again. This process repeats many times. In
other words, in this region, there arise self-oscillations
of temperature and phase composition. This region
becomes a source of autowaves, the propagation of
which induces self-oscillations of temperature and
phase composition throughout the system.

9. Conclusions

Based on the kinetic equation for the phase tran-
sition of the first kind and the heat balance equa-
tion, the mechanism of arising temperature and phase
self-oscillations has been considered. The autowaves
which can arise in the course of the indicated phase
transition are considered. It is shown that, under cer-
tain conditions during the phase transition, the sys-
tem can transit into a highly nonequilibrium state
and form a dissipative space-time structure, which is
a set of autowaves. This model is confirmed by the
experimental results [7].
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АВТОХВИЛI, СПРИЧИНЕНI
ФАЗОВИМ ПЕРЕХОДОМ ПЕРШОГО РОДУ

Встановлено, що в процесi фазового переходу першого роду
можуть виникати автохвилi, поширення яких супроводжу-

ється автоколиваннями температури та фазового складу.
Сформульовано умови, за яких згаданi хвилi виникають.
Показано, що поширення автохвиль має приводити до зна-
чних флуктуацiй макроскопiчних параметрiв в околi тем-
ператури переходу.

Ключ о в i с л о в а: автоколивання, автохвилi, флуктуацiї,
фазовий перехiд, самоорганiзацiя, гiдроксипропилметилце-
люлоза.
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