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THE SHEAR MODULUS
AND STRUCTURE OF CARTILAGE TISSUE

Cartilage tissue has been considered as a polymeric gel network formed from chains of fibril-
lar proteins and proteoglycans. A theoretical model of the network consisting of network units
connected by inter-unit chains is proposed, the corresponding deformation mechanism for car-
tilage tissue is developed, and a formula for the shear modulus is obtained. The shear modulus
for elastic cartilage tissue is also determined experimentally. The number of inter-unit chains
in the model of the elastic cartilage tissue is evaluated to be equal to 10.
K e yw o r d s: cartilage tissue, shear modulus, deformation, network model.

1. Introduction

It is well known (see, e.g., [1, 2]) that cartilage tis-
sue plays an important role in the life of the human
organism. It performs a supporting function by cre-
ating the resistance to external loads. In this paper,
we study a molecular mechanism that provides the
supporting function. The chemical structure of carti-
lage tissue has been studied at length. It was found
that this tissue consists of cells (2%) and an intercellu-
lar substance (98%). The latter contains water (75%),
inorganic salts (8%), fibrillar proteins (collagen and
elastin, 10%), proteoglycans, and other organic sub-
stances (5%).

The structural unit of proteoglycans is an aggre-
gate that includes various polymer chains. Hyaluronic
acid serves as the main chain. About a hundred pro-
tein chains are attached to it. Each of the latter is
connected to up to 20 chains of sulfated glycosamino-
glycans (chondroitin sulfate and others).

The spatial structure of cartilage tissue, espe-
cially at the molecular level, has been studied to a
much lesser extent in comparison with its chemical
structure. Moreover, modern concepts about the spa-
tial structure of cartilage tissue are often contradic-
tory. One of such contradictions consists in that, on
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the one hand, there is a hypothesis (see, e.g., [1]) that
in order to counteract an external load, fibrillar pro-
teins and proteoglycans have to form a framework,
although the specific structure of this framework is
not discussed; but on the other hand, a model was
proposed [3] – below, it will be referred to as the
fluid model – where there is no such a framework
and cartilage tissue is considered as a fluid where
chains of fibrillar proteins and proteoglycan aggre-
gates “float” separately from one another. A model
similar to the latter (fluid) model was applied in
[4] to determine internal forces arising in cartilage
tissue. The orientation of water molecules near the
surface of proteoglycan aggregates was supposed to
be the main factor responsible for the appearance of
those forces.

In this work, we substantiate the necessity of the
framework, propose a model of its structure, and con-
sider the mechanism of deformation in this model.

2. Stress States of Cartilage Tissue

The term “stress state” is used in the mechanics of
continuous media (see, e.g., [5, 6]), where the ex-
amined physical system is considered. as a contin-
uum. Deformations arising in the continuum under
the action of external loads are described using the
strain tensor 𝜖𝑖𝑘. As a result of strains in the contin-
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uum, there arise stresses that counteract the external
force. The stress state is described by introducing the
stress tensor 𝜎𝑖𝑘 into consideration.

In this article, we confine the consideration to the
case of elastic deformations and assume that cartilage
tissue, in terms of the continuous medium theory, is
an isotropic elastic continuum. For such a continuum,
the relationship between the tensors 𝜖𝑖𝑘 and 𝜎𝑖𝑘 is
described by the formula

𝜎𝑖𝑘 = 𝐾𝜖𝑙𝑙Δ𝑖𝑘 + 2𝐺

(︂
𝜖𝑖𝑘 − 1

3
𝜖𝑙𝑙

)︂
, (1)

where 𝐾 is the bulk elastic modulus, 𝜖𝑙𝑙 the first
invariant of the tensor 𝜖𝑖𝑘, and Δ𝑖𝑘 the Kronecker
delta. The components of the tensor (𝜖𝑖𝑘 − 1

3𝜖𝑙𝑙) are
called shear strains, and 𝐺 is called the shear modu-
lus. The first summand in sum (1) corresponds to the
stress state, which is a uniform compression. As one
can see from formula (1), this state is realized if

𝐺 = 0. (2)

In the mechanics of continuous media, equality (2)
is a characteristic feature of fluid. This means that
models introduced in [3, 4] can be used only if the
case of uniform compression is realized in cartilage
tissue.

However, this state does not arise in cartilage tis-
sue, as a rule, under the action of external loads. In
particular, it is not realized in the intervertebral
disc, although its behavior, as is assumed in [3],
is described by the fluid model. In fact, the disc is
squeezed by the vertebrae in the vertical direction and
is freely deformed in the horizontal one. This means
that a state of simple compression takes place in the
disc. In this case, if the vertical axis is denoted by the
number 1, formula (1) reads

𝜎11 = 𝐸𝜖11, (3)

where 𝐸 is Young’s modulus. This module is known
to satisfy the equality

𝐸 =
9𝐾𝐺

3𝐾 +𝐺
, (4)

whence one can see that if equality (2) holds, then
𝐸 = 0 so that

𝜎11 = 0. (5)

From equality (5), it follows that cartilage tissue of
the intervertebral disc does not perform its main,
supporting, function: no stresses arise in the disc
that would counteract the pressure from the verte-
brae. Therefore, the fluid model proposed in [3] to
describe the behavior of intervertebral disc does not
correspond to the real situation.

The same is applicable to any stress state: equality
(2) means that there are no stresses in cartilage tissue
that would counteract shear deformations and, as a
result, cartilage tissue ceases to perform the support-
ing function.

3. Network Model of Cartilage Tissue

As is seen from the aforesaid, the shear modulus
𝐺 plays the role of a key parameter that governs
the structure of cartilage tissue. It was already men-
tioned that 𝐺 must differ from zero. But at the same
time, the value of 𝐺 should not be too high in or-
der to provide cartilage tissue with the required abil-
ity to sustain considerable deformation. What should
be the structure of cartilage tissue to satisfy both
conditions?

Based on the chemical composition of cartilage tis-
sue, it can be argued that, from the physical view-
point, this tissue, in essence, is an aqueous polymer
solution. Such a solution can be in either a sol or
a gel phase [7]. In the former case, 𝐺 = 0; in the
latter,

𝐺 > 0, (6)

with, the 𝐺-values being small in comparison with
the corresponding values for solids. This fact makes
it possible to say that cartilage tissue has a gel struc-
ture in general. It consists of macromolecules that
form a network [7], in which the chains are sepa-
rated by nodes into subchains. As was already men-
tioned, fibrillar proteins comprise the most fraction of
cartilage tissue polymers. Therefore, it is reasonable
to assert that the cartilage tissue network is mainly
formed by the chains of those polymers. In proteogly-
can aggregates, the chains are interconnected, effec-
tively also forming a network. Therefore, these aggre-
gates can be considered as a part of the total cartilage
network.

Suppose that in the framework of the network
model that we try to construct, the chains have iden-
tical physical properties, so we ignore the difference
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induced by their different chemical compositions. The
space between the network subchains is occupied by
molecules of water and other substances that were not
used when constructing the network. In our opinion,
such a network can be a framework mentioned in In-
troduction, which provides the supporting function of
cartilage tissue.

As was already mentioned, the concept of “shear
modulus” is introduced in the mechanics of continu-
ous media, where the strain tensor is considered to
be a continuous function 𝜖𝑖𝑘(r) of the vector r =
= (𝑥1, 𝑥2, 𝑥3) described by its projections (𝑥1, 𝑥2, 𝑥3)
in the Cartesian coordinate frame. An infinitesimally
small region 𝑑r around a point described by the ra-
dius vector r is called the mathematically infinitesi-
mal volume. The tensor 𝜖𝑖𝑘(r) is a quantity that char-
acterizes the deformation of the indicated region. Ac-
cordingly, the shear modulus is also the deformation
characteristic of this region. Therefore, when if we
deal with the shear modulus of cartilage, the latter is
considered as a continuum.

According to thermodynamics (see, e.g., [8]), such
a consideration is possible if the system can be consid-
ered as a set of weakly interacting small regions with a
local equilibrium in each of them. Every small region
is called the physically infinitesimal volume. We will
use the term “block” for it. The size of the block will
be denoted by 𝐿. Mathematically, the infinitesimal
volume is an idealized image of a block. Therefore,
the shear modulus characterizes the deformation of
the block as a whole.

The existence of weak interaction means that the
blocks are separated by interblock gaps, the struc-
ture of which is substantially disordered in compari-
son with the structure of the block itself. Let us de-
note the thickness of such a gap by ℎ.

Now, the mentioned thermodynamic model for car-
tilage tissue acquires the form of the network depicted
in Fig. 1. Here, the nodes are shown as solid circles,
the chains as solid curves, and block boundaries as
dashed lines. The space occupied by the blocks is col-
ored. Actually, the arrangement of nodes in space is
disordered, but in Fig. 1, for clarity, the nodes are so
arranged that they form a lattice.

A characteristic feature of the network shown in
Fig. 1 is the availability of subchains of three types:
(1 ) surface, one end of which is connected to the block
surface node; (2 ) internal, both ends of which are con-
nected to the neighbor nodes of the same block; and

(3 ) intermediate, which connect the nearest surface
nodes of different blocks.

Since water comprises 75% of cartilage tissue, let
us assume that, by the order of magnitude, the value
of the parameter 𝑙 for cartilage tissue is equal to the
corresponding value for fluids, 𝑙 = 10−7 m [9]. Let
us estimate the distance 𝐿1 between the nodes. Let
𝑑 denotes the link size. A chain is considered as a
cylinder of diameter 𝑑. Assume that the chains form
a simple cubic lattice with a unit cell of volume

𝑉1 = 𝐿3
1. (7)

The unit cell is formed by 12 subchains, and 1
4 of the

volume occupied by those chains is located within the
cell. Accordingly, for the volume 𝑉1 of polymer in the
cell, we have

𝑉1 =
1

4
12

𝜋𝑑2𝐿1

4
. (8)

As was already mentioned, the relative volume occu-
pied by polymer in cartilage tissue is of an order of
0.1, i.e.,

𝑉1

𝑉
∼ 0.1. (9)

Substituting inequalities (7) and (8) into expression
(9), we obtain the estimate

𝐿1 ∼ 10𝑑. (10)

Taking 𝑑 ∼ 10−9 m, we numerically estimate 𝐿1 ∼
∼ 10−8 m. As one can see from Fig. 1, by order of
magnitude, the thickness of the interblock gap equals
𝐿1, i.e., ℎ ∼ 10−8 m.

4. Mechanism of Deformation
in the Network Model

As was indicated above, cartilage tissue can per-
form its inherent supporting function due to condition
(6). Owing to the same condition, transverse waves
can propagate in cartilage tissue. There is the well-
known formula

𝐺 = 𝜌𝑐2, (11)

where 𝜌 is the cartilage tissue density and 𝑐 the prop-
agation velocity of the transverse wave, as well as the
formula

𝑐 =
𝜔

𝑘
, (12)
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Fig. 1. Network model of cartilage tissue

where 𝜔 is the oscillation frequency and 𝑘 the wave
number.

The shear modulus characterizes the deformation
of a block as a whole. In other words, the introduction
of the concept “shear modulus” is associated with the
introduction of a spatial scale equal to 𝐿. In such a
way, we confine the wavelength 𝜆 by the inequality

𝜆 ≥ 2𝐿, (13)

which can be rewritten in the form

𝑘 ≤ 𝜋

𝐿
. (14)

Let the wave propagate along the 𝑋-axis. Accor-
dingly, the blocks will move along the 𝑌 -axis (Fig. 1).
We consider a plane wave, so the displacements of
the blocks whose centers of inertia correspond to the
same coordinate 𝑥 are also identical. This circum-
stance makes it possible to determine the character-
istics of the wave by studying any linear set of blocks
for which the coordinates 𝑦 of their centers of inertia
are identical (for example, 𝑦 = 0) in the wave absence.

Denoting the displacements of the 𝑖-th and (𝑖+1)-
th blocks in such a linear set as 𝑢𝑖 and 𝑢𝑖+1, respec-
tively, and the difference 𝑈𝑖+1 − 𝑈𝑖 as Δ𝑈𝑖, we can
write the following expression for the force 𝐹𝑖 that de-
forms the intermediate chains connecting two blocks:

𝐹𝑖 = −𝑓Δ𝑈𝑖, (15)

where 𝑓 is the force constant associated with the rel-
ative block displacement. The limiting frequency of
oscillations, 𝜔𝑚, in this set of blocks is determined by
the equality

𝜔𝑚 = 2

√︂
𝑓

𝑚
, (16)

where 𝑚 is the block mass, which will be calculated
according to the formula

𝑚 = 𝜌𝐿3. (17)

Substituting equalities (16) and (17) into formula (12)
and taking into account expression (11), we get

𝐺 =
4

𝜋2

𝑓

𝐿
. (18)

Let 𝑛 be the number of intermediate chains con-
necting the adjacent blocks. Accordingly, for the force
𝐹𝑖, we have the expression

𝐹𝑖 = 𝑛𝑄𝑖, (19)

where 𝑄 is the force per intermediate chain. By com-
paring equations (15) and (19), we write

Δ𝑈𝑖 = −𝑛

𝑓
𝑄𝑖. (20)

The number of links in the intermediate chain equals
𝜉 = 𝐿1

𝑑 . If this chain is deformed owing to the dis-
placement of the blocks along the 𝑌 -axis, the links of
the intermediate chain shift in the same direction. De-
noting by the displacements of the 𝑗-th and (𝑗+1)-th
links as 𝑊𝑖,𝑗 and 𝑊𝑖,𝑗+1, respectively, and the differ-
ence 𝑊𝑖,𝑗+1 −𝑊𝑖,𝑗 as Δ𝑊𝑖,𝑗 , we have

Δ𝑈𝑖 =

𝜉∑︁
𝑗=1

Δ𝑊𝑖,𝑗 . (21)

This expression can be replaced by the approximate
equality

Δ𝑈𝑖 ≈ 𝜉Δ𝑊𝑖, (22)

where Δ𝑊𝑖 is the average value of the difference
Δ𝑊𝑖,𝑗 .

The bonds connecting the links undergo the action
of the same force 𝑄𝑖, which makes it possible to write
the expression

𝑄𝑖 = −𝑞Δ𝑊𝑖, (23)

where 𝑞 is the force constant associated with the rel-
ative displacement of the links. Substituting formula
(23) into equality (22), we obtain

Δ𝑈𝑖 = −𝜉

𝑞
𝑄𝑖. (24)
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By comparing expressions (20) and (24), we get

𝑓 =
𝑛𝑞

𝜉
. (25)

Accordingly, formula (18) acquires the form

𝐺 =
4

𝜋2

𝑛𝑞𝑑

𝐿𝐿1
. (26)

On the basis of the concept of the virtual connec-
tions between protein chains, which was proposed
in work [10], we will assume that the deformation
of intermediate chains occurs via the rotation of
those connections. The value 𝑞 = 3.4 N/m corre-
sponding to deformation of this type was taken from
work [11].

5. Experiment

The article deals with the elastic properties of car-
tilage tissue. Therefore, from the experimental view-
point, it is important to choose such a tissue type to
study for which these properties would be most pro-
nounced. As was already mentioned, the elasticity of
cartilage tissue is mainly determined by fibrillar pro-
teins, collagen and elastin. The stiffness of the lat-
ter is much lower than that of collagen. Therefore, in
view of the research aim, it is most pertinent to choose
cartilage tissue with the maximum concentration of
elastin. Such elastic cartilage tissue is a component of
various organs, in particular, the ear.

The pig’s ear was used to prepare specimens. Stri-
pes of the width 𝑎 = 6 mm were cut from the upper
side of the auricle (Fig. 2, 𝑎). After removing skin
layers and cleaning the surfaces, plates of cartilage
tissue with the thickness 𝑏 = 4 mm were obtained.

The shear modulus 𝐺 was determined using the
torsional pendulum method. Its theory and the con-
struction of the torsional pendulum device are de-
scribed in works [12, 13]. The specimen was rigidly
fixed in the device making use of clamps, as is shown
in Fig. 2, 𝑏. The working length of the specimen 𝑙
was 2.7 mm.

The primary experimental information in the ap-
plied method is the dependence of the pendulum rota-
tion angle 𝜑 on the time 𝑡. An example of the obtained
dependences is shown in Fig. 3. Oscillations were
registered by means of video recording and further
processed using Tracker software. The measurements

a b
Fig. 2. (𝑎) Preparation of specimen and (𝑏) its fixation in the
device. (1 ) clamps, (2 ) specimen

Fig. 3. Dependence of the pendulum rotation angle 𝜑 on the
time 𝑡

were carried out at a temperature of 20 ∘C. The de-
pendences 𝜑(𝑡) were used to determine the cyclic fre-
quency of oscillations Ω.

The shear modulus 𝐺 was calculated via the fol-
lowing formula proposed by the theory of the applied
method:

𝐺 =
𝐽𝑠𝑙

𝐽
Ω2, (27)

where 𝐽𝑠 is the moment of inertia of the pendulum
rotating part, and 𝐽 is the moment of inertia of the
specimen cross-section. The moment of inertia 𝐽 was
calculated using the formula (see, e.g., [14])

𝐽 = 0.3 𝑏3𝑎. (28)

Formula (27) was obtained for the case when the
specimen deformations induced by oscillations are
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Fig. 4. Dependence of the shear modulus on the initial oscil-
lation amplitude 𝜑0

elastic. Provided this condition, the shear modulus
does not depend on the oscillation amplitude. Let us
verify whether our experiment satisfied the indicated
condition. From the plot shown in Fig. 4, it follows
that the value of 𝐺′ remains constant within the con-
fidence interval, which confirms that formula (27) was
applied soundly.

According to formula (26), the number of interme-
diate chains connecting neighbor blocks is determined
by the expression

𝑛 = 𝐺
𝜋2

4

𝐿𝐿1

𝑞𝑑
. (29)

Substituting the average value of 𝐺′ = 2.1749×107 Pa
and the numerical values given above for other quan-
tities into this expression, we find that the num-
ber of intermediate chains for elastic cartilage tissue
equals ten.

6. Conclusions

Neglecting the presence of cells, cartilage tissue is
polymer gel by its structure. This structure is based
on a network formed by chains of fibrillar proteins and
proteoglycans. It consists of network blocks about
10−7 m in size connected by intermediate chains. At
a deformation induced by external forces, the blocks
move as a whole. As a result, the external load be-
comes actually distributed among the intermediate
chains.

The number of intermediate chains is much smaller
than the number of chains per cross-section of adja-

cent blocks. Therefore, the intermediate chains un-
dergo a substantial deformation, which leads to small
values of the shear modulus of cartilage tissue in com-
parison with that of solids. The experimental study
of elastic cartilage tissue brought about a value of its
shear modulus of an order of 107 Pa, and the number
of intermediate chains connecting the adjacent blocks
was found to equal about ten. In time, cartilage tis-
sue becomes stiffer, which will manifest itself in an
increase in the shear modulus. In the framework of
the proposed deformation mechanism, the growth of
the shear modulus is induced by the growth in the
number of intermediate chains. According to the pro-
posed model, the flexibility of cartilage tissue can be
restored by introducing such a substance into carti-
lage tissue that can penetrate into the interblock gaps
and break the intermediate chains.
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ЗСУВНИЙ МОДУЛЬ
ТА СТРУКТУРА ХРЯЩОВОЇ ТКАНИНИ

Хрящова тканина розглядається як полiмерний гель, сiтка
якого утворена ланцюгами фiбрилярних бiлкiв та проте-

оглiканiв. Запропоновано модель такої сiтки, що складає-
ться iз сiтчастих блокiв, з’єднаних прохiдними ланцюгами.
В рамках запропонованої моделi дослiджено механiзм де-
формацiї хрящової тканини. Розроблено механiзм деформа-
цiї в рамках такої моделi. Отримано формулу для зсувного
модуля у згаданiй моделi. Експериментально визначено ве-
личину зсувного модуля для еластичної хрящової тканини.
Встановлено, що число прохiдних ланцюгiв у запропоно-
ванiй моделi для еластичного типу хрящової тканини ста-
новить 10.

Ключ о в i с л о в а: хрящова тканина, модуль зсуву, дефор-
мацiя, сiткова модель.
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