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THE GENERALIZED DRUDE–LORENTZ MODEL
AND ITS APPLICATIONS IN METAL PLASMONICS

The Drude–Lorentz model has been generalized to the case of plasmons under nonmagnetic
conductors located in the static magnetic, H0, and electric, E0, fields by taking the spatial
dispersion effects into account. It is shown that the magnetostatic field H0 and the spatial
dispersion induce the appearance of two additional types of low-frequency bulk plasmons, and
the dispersion of bulk plasmons of all types substantially depends on the relative orientation
of the direction e𝑘 of their propagation and the magnetostatic field vector H0. In the case
of surface plasmons, the spatial dispersion leads to a two-component structure (in the metal)
of their electric field E, and the external electrostatic field E0 induces the spatial dispersion
depending on the Hall constant 𝑅𝑝. At the same time, the orientation of the magnetostatic
field H0 has a significant effect on the total dispersion of surface plasmons.
K e yw o r d s: bulk plasmons, surface plasmons, spatial dispersion, magnetostatic field.

1. Introduction
The development of nano and stealth technologies, as
well as the design of metamaterials, confirms the chal-
lenging character of researches dealing with the phys-
ical properties of plasmons in metals and semicon-
ductors (see works [1–12] and references therein). Ac-
counting for the nature of plasmons as macroscopic
concentration fluctuations of free electric charges,
their theoretical analysis is usually made with the
help of the methods of electrodynamics of continuous
media, the latter being described using the Drude–
Lorentz material parameters [1, 2, 14–18].

The application of the Drude–Lorentz model in the
plasmon theory has a long story [1, 2, 14–18]. Howe-
ver, despite its simplicity, this model turned out quite
effective, being still used in plasmonics of continuous
media [1–12]. In this work, we will show that the ca-
pabilities of the Drude–Lorentz model are limited, if
external influences on the physical properties of plas-
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mons and the effects of spatial dispersion (the wave
properties of plasmons) have to be taken into consid-
eration, which is important for practical applications
of plasmonic phenomena. It is reasonable to apply the
quasistatic magnetic, H0, and electric, E0, fields to
control the plasmon parameters.

The aim of this work was to generalize the Drude-
Lorentz model to the case of plasmons in non-
magnetic crystals located in the static magnetic, H0,
and electric, E0, fields, making allowance for the spa-
tial dispersion of the media and, on this basis, to
study the orientational effects associated with the
variation of the plasmon propagation direction with
respect to the magnetostatic field direction.

Note that the behavior of plasmons in magneto-
static fields was considered – in particular, in works
[4–10] – for special fixed geometries. (As for the sys-
tematic study of orientational effects in the plasmon
dynamics that are governed by the magnetostatic
field and the spatial dispersion, such issues have not
been discussed in the scientific literature.) It is shown
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that the magnetostatic field H0 and the spatial dis-
persion give rise to the appearance of two additional
types of low-frequency bulk plasmons. The cyclic fre-
quencies of bulk plasmons of all three types depend
on the direction of their propagation with respect to
the direction of the magnetostatic field H0.

Concerning surface plasmons, the spatial disper-
sion leads to a two-component structure (in metal)
of their electric field E, and the external electrostatic
field E0 to the induced spatial dispersion depending
on the Hall constant 𝑅𝑝. At the same time, the orien-
tation of the magnetic field H0 substantially affects
the total dispersion of surface plasmons.

In this work, illustrative calculations were carried
out for indium antimonide as an example (InSb is
an 𝑛-type semiconductor with a narrow bandgap of
about 0.18 eV). Owing to its unique physical proper-
ties [13], this compound is widely applied in electron-
ics and instrument engineering. The aim of performed
calculations was to form a holistic picture of the ori-
entational dynamics of plasmons, which is described
in the Fourier space by means of the dispersion equa-
tion for plasmons.

In our calculations, we used the following parame-
ters of indium antimonide: the electron concentration
𝑛𝑒 ≃ 2×1016 cm−3, the effective electron mass 𝑚* ≃
≃ 0.014 𝑚𝑒, where 𝑚𝑒 is the free-electron mass, and
the electron mobility 𝑢𝑒 ≃ 7.8×105 cm2/(V s), which
was determined at temperatures of about 𝑇 = 300 K
[13]. At the same time, the effective mass of holes in
indium antimonide is two orders of magnitude larger
than the effective mass of electrons [13]. Therefore,
they have little effect on the general kinetic proper-
ties of electric charge carriers [15, 16], which allowed
indium antimonide to be used in this work as a model
object.

Provided the indicated values of the parameters,
the plasma cyclic frequency [1, 2, 13] in indium anti-
monide equals

𝜔𝑝 =

√︂
4𝜋𝑛𝑒𝑒

2

𝑚* ≃ 6.74× 1013 s−1,

which is three orders of magnitude lower than the cor-
responding values in most metals. By order of magni-
tude, the plasmon damping parameter in indium an-
timonide equals 𝛾 = 𝑣F

2𝑙𝑒
[16,17], where 𝑣F =

√︁
2𝐸F

𝑚* ≃
≃ 9.73× 106 cm/s, 𝐸F is the Fermi energy, and 𝑙𝑒 is
the free path length of electrons. Because of the ex-

tremely high value of the electron mobility 𝑢𝑒 [13],
the parameter 𝑙𝑒 exceeds the lattice constant in InSb
by 2 to 3 orders of magnitude, which, in turn, leads
to the inequality

𝛾 ≃ 4.8× (109÷1010) s−1 ≪ 𝜔𝑝.

According to literature data [13], the Debye con-
stant 𝑟D in indium antimonide is of an order of
(10−4÷10−5) cm.

While making calculations, the cyclotron frequency
𝜔𝐻 was chosen to be an order of magnitude lower than
the plasma cyclic frequency 𝜔𝑝 in indium antimonide,
which corresponds to the terahertz frequency interval[︀
9.42× (1011÷1012) s−1

]︀
of electromagnetic waves in

real magnetic fields (𝐻0 ≃ 103÷105 Oe).

2. Generalization of the Drude–Lorentz
Model to the Case of a Metal in a Uniform
Magnetostatic Field and Taking Spatial
Dispersion Effects Into Account

The electric charge conservation law in the differential
form looks like

∇j+
𝜕𝛿𝜌

𝜕𝑡
= 0, j = 𝑒𝑛0

𝜕q

𝜕𝑡
, 𝜌 = 𝑒(𝑛0 + 𝛿𝑛𝑒), (1)

where 𝑒 is the electron charge, 𝑛0 is the average elec-
tron concentration in the metal specimen, q = q(r, 𝑡)
is the local electron displacement from the equilib-
rium state, and 𝛿𝑛𝑒 = 𝛿𝑛𝑒(r, 𝑡) is the variation of the
electron concentration under the influence of various
disturbances. From Eq. (1), we obtain that

𝛿𝑛𝑒 = −𝑛0(∇q). (2)

From the course of general physics, we know the re-
lationships between the pressure of ideal gas and the
concentration of material points (the latter, in our
case, are electrons):

𝛿𝑝𝑒 =
2

3

⟨𝑚*v𝑒
2

2

⟩
𝛿𝑛𝑒,

𝛿f𝑒 = −∇ 𝛿𝑝𝑒 =
2

3
𝑛0

⟨𝑚*v𝑒
2

2

⟩
∇2q,

(3)

where 𝛿f𝑒 is the internal density of the force induced
by electron density waves.

Formulas (3) are valid in the case of non-degenerate
electron gas. However, since the electron gas is degen-
erate in real metals, then, according to works [15,16],
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the following reduction of the pressure variation 𝛿𝑝
and the quantities dependent on it is required:

2

3
𝑛0

⟨𝑚*v𝑒
2

2

⟩
→ 𝑚*𝑢𝑝

2, 𝛿f𝑒 = 𝑚*𝑢𝑝
2∇2q,

𝑢𝑝 = 𝜔𝑝𝑟D, 𝜔𝑝
2 =

4𝜋𝑒2𝑛0

𝑚* ,

(4)

where 𝜔𝑝 is the cyclic plasma frequency, and 𝑟D the
Debye radius of electron screening in the metal.

Given the expression for 𝛿f𝑒 (see Eqs. (4)), the
dynamic equation for the specific metal polarization
P = 𝑒𝑛0q in a magnetostatic field H0 can be written
in the following form:

𝜕2P

𝜕𝑡2
+ 2𝛾

𝜕P

𝜕𝑡
+ (𝜔0

2 − 𝑢𝑝
2∇2)P−

−
(︁𝜕P
𝜕𝑡

× 𝜔𝐻

)︁
=

𝜔𝑝
2

4𝜋
E, 𝜔𝐻 =

𝑒H0

𝑚*𝑐
, (5)

where the electric field of plasmons E is described by
the Maxwell equations (see below), 𝛾 is the plasmon
damping parameter, 𝜔𝐻 is the cyclotron frequency
vector, and the expression (𝜔2

0 − 𝑢2
𝑝∇2) describes the

wave character of plasmon propagation (the spatial
dispersion of plasmons). In most real metals, 𝜔2

0 → 0.
The wave equation (5) has to be supplemented with

a boundary condition. As a natural relationship, this
is the zero value of the normal component of the
plasmon electric current density vector j = 𝜕P̃

𝜕t at the
metal surface 𝑆,

(n j)
⃒⃒⃒
r∈𝑆

= 0, j =
𝜕P

𝜕𝑡
, (6)

The electric field of plasmons E and the metal po-
larization P are approximated by plane monochro-
matic waves,

E = E0 exp (𝑖kr− 𝑖𝜔𝑡) + c.c,

P = P0 exp (𝑖kr− 𝑖𝜔𝑡) + c.c.
(7)

After substituting expressions (7) into the dynamic
equation (5), we obtain an algebraic equation that
relates the amplitudes of electric field and metal po-
larization waves to each other,

−(𝜔2 − 𝜔2
𝑘 + 2𝑖𝛾𝜔)P0 + 𝑖𝜔(P0 × 𝜔𝐻) =

𝜔2
𝑝

4𝜋
E0, (8)

where

𝜔2
𝑘 = 𝜔2

0 + 𝑢2
𝑝k

2.

In the matrix form, Eq. (8) reads

𝐷𝛼𝛽 𝑃 𝛽
0 =

𝜔2
𝑝

4𝜋
𝐸0𝛼, (9)

where the matrix 𝐷𝛼𝛽 has the following structure:

𝐷𝛼𝛽 = 𝐷
(𝑠)
𝛼𝛽 + 𝑖𝐷

(𝑎)
𝛼𝛽 , (10)

where

𝐷
(𝑠)
𝛼𝛽 = −𝐷0𝛿𝛼𝛽 , 𝐷

(𝑎)
𝛼𝛽 = 𝜔𝑒𝛼𝛽𝛾𝜔𝐻

𝛾 ,

and

𝐷0 = 𝜔2 − 𝜔𝑘
2 + 2𝑖𝛾𝜔.

Hereafter, 𝛿𝛼𝛽 and 𝑒𝛼𝛽𝛾 are the Kronecker delta and
the Levi-Civita symbol, respectively, in the flat three-
dimensional space.

The general solution of the matrix equation (9)
looks like

P0 =
𝜔2
𝑝

4𝜋
𝐷̂−1E0, (11)

where

𝐷̂−1
𝛼𝛽 = − 𝐷0

𝐷0
2 − 𝜔2𝜔𝐻

2
𝛿𝛼𝛽 +

+
𝜔2𝜔𝐻𝛼𝜔𝐻𝛽

𝐷0(𝐷0
2 − 𝜔2𝜔𝐻

2)
− 𝑖

𝜔𝑒𝛼𝛽𝛾𝜔𝐻
𝛾

𝐷0
2 − 𝜔2𝜔𝐻

2
. (12)

Then, expression (11) for the amplitude of the spe-
cific polarization vector of the metal has the form

P0 = −𝜔𝑝
2

4𝜋

(︃
𝐷0E0

𝐷0
2 − 𝜔2𝜔𝐻

2
−

− 𝜔2𝜔𝐻(𝜔𝐻 E0)

𝐷0(𝐷0
2 − 𝜔2𝜔𝐻

2)
− 𝑖

𝜔(𝜔𝐻 ×E0)

𝐷0
2 − 𝜔2𝜔𝐻

2

)︃
. (13)

From this expression, one can see that the magnetic
field H0 induces an additional polarization of the
metal, with the third term in Eq. (13) pointing to
the gyroscopic effect induced by the magnetic field
H0 [18].

The tensor of the dielectric permittivity of the
metal, 𝜖𝛼𝛽 , is determined in the usual way via the
matrix 𝐷−1,

𝜖𝛼𝛽 = 𝛿𝛼𝛽 + 𝜒𝛼𝛽 , 𝜒𝛼𝛽 = 𝜔𝑝
2𝐷−1

𝛼𝛽(𝜔,k). (14)
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The dependence of the tensor 𝜖𝛼𝛽 on the wave vector
k means the account for the plasmon spatial disper-
sion effects.

If the magnetic field is absent – i.e., if 𝜔𝐻 → 0 –
and the spatial dispersion is negligibly weak, expres-
sion (12) turns into that, for the dielectric permit-
tivity of the metal in the standard Drude–Lorentz
model [1, 2],

𝜔𝐻 → 0, 𝜖𝛼𝛽 →

(︃
1− 𝜔𝑝

2

𝜔(𝜔 + 2𝑖𝛾)

)︃
𝛿𝛼𝛽 . (15)

The tensor relationship (13) between the metal po-
larization and the plasmon electric field introduces
qualitative features into their magnetodynamics (see
below). In particular, in optics of metals character-
ized by the tensor of dielectric permittivity (14), one
should expect such phenomena as birefringence and
optical activity [18].

3. Boundary Conditions
at the Metal-Insulator Interface
in an External Static Electromagnetic Field

In what follows, we consider surface plasmons at the
insulator-metal interface. From this point of view, a
practically important application task is the study
of the mechanisms of influence of external factors –
in particular, these are the static electric, E0, and
magnetic, H0, fields – on the value of the surface
plasmon frequency.

Under the action of the electrostatic field E0, there
arise surface electric charges at the metal surface,

𝜌𝑠 = 𝜎𝛿(n r)
⃒⃒⃒
r∈𝑆

, 𝜎 =
1

4𝜋
(E0 n)

⃒⃒⃒
r∈𝑆

, (16)

where n is the external normal vector to the metal
surface 𝑆. In this paper, we consider the case where
the electrostatic field E0 is directed perpendicularly
to the metal surface. Otherwise, there arises an elec-
tric current in the metal, which, in turn, in the pres-
ence of the magnetostatic field H0, leads to the ap-
pearance of electric charges associated with the Hall
effect on the metal surface. Their role in the theory of
surface plasmons will be considered in the next paper.

The appearance of surface charges does not appre-
ciably affect the dynamics of bulk plasmons. At the
same time, they give rise to a reduction of boundary
conditions for the electric field induction vector D

and the magnetic field strength H at the metal sur-
face [17], which is a substantial factor for the theory
of surface plasmon-polaritons.

The reduction of boundary conditions associated
with induced surface charges (16) can be described
by means of the following reduction of the electric
field induction vector D of plasmon-polaritons:

D → D+ 4𝜋P𝑠𝛿(n r)
⃒⃒⃒
r∈𝑆

,

P𝑠 =
1

4𝜋
(E0 n)q(r, 𝑡)

⃒⃒⃒
r∈𝑆

,
(17)

where P𝑠 is the vector of local (surface) polarization,
which is determined by the surface charge density
(16). The corresponding dynamic equation for P𝑠 at
the metal surface can be obtained by reducing the
equation for bulk metal polarization to the following
form;

𝜕2P𝑠

𝜕𝑡2
+ 2𝛾𝑠

𝜕P𝑠

𝜕𝑡
+ (𝜔𝑠

2 − 𝑢𝑠
2∇𝑠

2)P𝑠 −

−

(︃
𝜕P𝑠

𝜕𝑡
× 𝜔𝐻

)︃
=

𝜔𝑝
2

4𝜋
(𝜎𝑅𝑝)E, (18)

where 𝑅𝑝 = 1
𝑒𝑛0

is the Hall constant. The subscript 𝑠
in Eq. (18) indicates that all quantities in this equa-
tion are renormalized to their values in the near-
surface metal region. At the same time, the operator
∇2

𝑠 = (∇· 𝑛̂ ·∇) acts only in the plane tangent to the
metal surface. Hereafter, 𝑛𝛼𝛽 = n2𝛿𝛼𝛽 − 𝑛𝛼𝑛𝛽 is the
tensor of vector projection onto the metal surface.

The solutions of Eq. (18) can be obtained by re-
naming the variables in formulas (13) and (14). Fol-
lowing this algorithm, we can find expressions for the
local polarization P𝑠 and the electric current density
j𝑠 at the metal surface in the form

P𝑠 =
1

4𝜋
𝜒̂(𝑠)E, j𝑠 =

𝜔

4𝜋𝑖
P𝑠, (19)

where
𝜒̂(𝑠) =

𝑅𝑝

4𝜋
(nE0)𝜒̂(𝜔,k𝑠)

is the surface polarizability of the metal (with 𝛾 → 𝛾𝑠
in the corresponding expression), and the wave vector
k𝑠 is tangent to the metal surface.

The surface polarization P𝑠 and the surface elec-
tric current j𝑠 induced by the external electric field
change the boundary conditions for the normal com-
ponents of the electric induction D and the tangential
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components of the magnetic field strength H created
by plasmons [17]. To obtain the required boundary
conditions, we have to solve the following Maxwell
equations in the standard way [17]:⎧⎪⎪⎪⎨⎪⎪⎪⎩
(∇ (D+ 4𝜋P𝑠𝛿(n r))) = 0 →

→ (∇D) + 4𝜋(∇ 𝑛̂P𝑠)𝛿(n r) = 0;

(∇×H) =
4𝜋

𝑐

𝜕P𝑠

𝜕𝑡
𝛿(n r).

(20)

As a result, we obtain the following boundary con-
ditions for the formulated problem:⎧⎨⎩
((D(1) −D(2))n) = −4𝜋(∇ 𝑛̂P𝑠);

((H(1) −H(2))× n) =
4𝜋

𝑐

(︁
𝑛
𝜕P𝑠

𝜕𝑡

)︁
.

(21)

The superscripts (1) and (2) in Eq. (21) denote
the insulator and the metal, respectively. The depen-
dence of the boundary conditions (21) on the surface
charges (16) induced by the external electric field E0

essentially affects the dispersion of surface plasmons
and plasmon-polaritons (see below).

In the case of insulator, the influence of the elec-
trostatic field E0 on its dielectric permittivity tensor
is usually described by the following expression [17]:

𝜀𝛼𝛽 ≃ 𝜀
(1)
𝛼𝛽 + 𝜒

(2)
𝛼𝛽𝜈 𝐸

𝜈
0 + 𝜒

(2)
𝛼𝛽𝜈𝜇 𝐸

𝜈
0 𝐸𝜇

0 + ... . (22)

Here, the first term on the right-hand side is the or-
dinary dielectric permittivity tensor of the insulator,
whereas the second and the third ones describe the
Pockels and Kerr effects, respectively. In so doing, it
should be borne in mind that the Pockels and Kerr
effects lead, as a rule, to the insulator anisotropy.

Hence, the magnetostatic field, the appearance of
induced charges at the metal surface, and the Pockels
and Kerr effects, all those factors taken in that or
another combination make it possible to control the
frequency of surface plasmons.

4. Bulk Plasmons

If the anisotropy and spatial dispersion effects are
taken unto consideration, the electromagnetic field
created by plasmon-polaritons and approximated by
plane monochromatic waves

E = E0 exp(𝑖kr− 𝑖𝜔𝑡) + c.c.,

H = H0 exp(𝑖kr− 𝑖𝜔𝑡) + c.c.,
(23)

satisfies the Maxwell equations⎧⎨⎩(k×E) =
𝜔

𝑐
B,

(k×H) = −𝜔

𝑐
D,

(kB) = 0;

(kD) = 0,
(24)

the constitutive relations{︃
B = 𝜇̂(𝜔,k)H;

D = 𝜀(𝜔,k)E
(25)

and the corresponding dispersion equation

(k 𝜂 k)k2 − 𝑞0
2(Tr(𝜂)(k 𝜂 k)−

− (k 𝜂 𝜂 k)) + 𝑞0
4 det(𝜂) = 0, (26)

where 𝜂 = 𝜇̂ 𝜀 and 𝑞0 = 𝜔
𝑐 . In non-magnetic media,

which are considered below, 𝜇̂(𝜔,k) = 1.
The electric field of bulk plasmons satisfies the sim-

plified Maxwell equations{︃
(k×E) = 0, (kB) = 0;

(k×H) = 0, (kD) = 0,
(27)

which can be obtained from Eqs. (24) by neglecting
the retardation effects (𝑐 → ∞). Equations (27) have
the following solution:

E = k𝐴0 exp (𝑖kr− 𝑖𝜔𝑡) + c.c.,
(k 𝜀(𝜔,k)k) = 0,

(28)

where 𝐴0 is an integration constant.
As concerning plasmon-polaritons, they will be

considered in the next paper.
In the general case, taking the structure of dielec-

tric permittivity into account (see Eq. (12)), the dis-
persion equation for bulk plasmons in Eq. (28) at
𝛾 = 0 can be rewritten in the form of the following
cubic equation in the quantity 𝜔2,

(𝜔2 − 𝜔𝑘
2)3 − 𝜔𝑝

2(𝜔2 − 𝜔𝑘
2)2 −

−𝜔2(𝜔𝐻
2(𝜔2 − 𝜔𝑘

2)− 𝜔𝑝
2(𝜔𝐻 e𝑘)

2) = 0, (29)

which has three real roots. Hereafter, e𝑘 = k/ |k|.
In terms of the dimensionless variables

𝑤 =
𝜔

𝜔𝑝
, 𝑤𝑘 =

𝜔𝑘

𝜔𝑝
= 𝑟𝐷|k|, w𝐻 =

𝜔𝐻

𝜔𝑝
(30)

Eq. (29) can be rewritten in a form that is more con-
venient for the analysis,

(𝑤2 − 𝑤𝑘
2)3 − (𝑤2 − 𝑤𝑘

2)2 −
−𝑤2(w𝐻

2(𝑤2 − 𝑤𝑘
2)− (w𝐻 e𝑘)

2) = 0. (31)
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4.1. The magnetic field is absent
(w𝐻 = 0) and the spatial dispersion
is substantial (𝑤𝑘 ̸= 0)

In this case, Eq. (31) takes the form

(𝑤2 − 𝑤𝑘
2 − 1)(𝑤2 − 𝑤𝑘

2)2 = 0. (32)

As a result, we obtain two solutions of Eq. (32), which
correspond to high-frequency (the optical frequency
interval, 𝜔1) and low-frequency (the ultra-high fre-
quency (UHF) interval, 𝜔2) bulk plasmons (see Figs. 1

Fig. 1. Spatial dispersion of high-frequency bulk plasmons

Fig. 2. Spatial dispersion of low-frequency bulk plasmons

and 2, respectively),{︃
𝑤1

2 = 1 + 𝑤𝑘
2;

𝑤2
2 = 𝑤𝑘

2,
→

{︃
𝜔1

2 = 𝜔𝑝
2 + 𝜔𝑘

2;

𝜔2
2 = 𝜔𝑘

2.
(33)

Note that the description of plasmons with the fre-
quency 𝜔1 at k = is reduced to the plasmons consid-
ered in the framework of the standard Drude–Lorentz
model [1, 2], whereas the existence of low-frequency
plasmons with the frequency 𝜔2 is possible exclusively
due to the spatial dispersion, which, in turn, is deter-
mined by the Debye radius 𝑟D of electron screening
in the metal.
4.2. The spatial dispersion is negligibly
weak (𝑤𝑘 ≪ 1) and the magnetic field is
substantial (w𝐻 ̸= 0)

In this case, Eq. (31) takes the form

𝑤4 − (1 +w𝐻
2)𝑤2 + (w𝐻 e𝑘)

2 = 0. (34)

Its solutions are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑤1
2 =

1

2
(1 +w𝐻

2)+

+
1

2

√︀
(1 +w𝐻

2)2 − 4(w𝐻 e𝑘)2);

𝑤2
2 =

1

2
(1 +w𝐻

2)−

− 1

2

√︀
(1 +w𝐻

2)2 − 4(w𝐻 e𝑘)2),

(35)

or, in terms of physical variables,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜔1
2 =

1

2
(𝜔𝑝

2 + 𝜔𝐻
2)+

+
1

2

√︀
(𝜔𝑝

2 + 𝜔𝐻
2)2 − 4𝜔𝑝

2(𝜔𝐻 e𝑘)2);

𝜔2
2 =

1

2
(𝜔𝑝

2 + 𝜔𝐻
2)−

− 1

2

√︀
(𝜔𝑝

2 + 𝜔𝐻
2)2 − 4𝜔𝑝

2(𝜔𝐻 e𝑘)2.

(36)

From Eqs. (36), one can see that the frequencies of the
high-frequency, 𝜔1, and low-frequency, 𝜔2, bulk plas-
mons considerably depend on the relative orientation
of their propagation direction e𝑘 and the direction
of the magnetic field H0 (see Figs. 3 and 4). In two
limiting cases, we have{︃
𝜔1

2 = 𝜔𝑝
2;

𝜔2
2 = 𝜔𝐻

2, if (𝜔𝐻 e𝑘) = 0,
(37)

and{︃
𝜔1

2 = 𝜔𝑝
2 + 𝜔𝐻

2;

𝜔2
2 = 0, if (𝜔𝐻 e𝑘) = ±|𝜔𝐻 |.

(38)
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Thus, we established that the frequency variation for
the plasmons of both types by changing the relative
orientation of their propagation direction e𝑘 and the
direction of the magnetic field H0 can be performed
within an interval of (0, |𝜔𝐻 |).

Note also that the description of plasmons with the
frequency 𝜔1 at H0 = 0 is reduced to the plasmons
considered in the framework of the standard Drude–
Lorentz model [1, 2] (the optical frequency interval),
whereas the existence of low-frequency plasmons (the
UHF interval) with the frequency 𝜔2 is possible exclu-
sively due to the specific feature of electron interac-
tion with the magnetic field H0. In this case, the rela-
tion between the induction D and the electric field E
of plasmons has an essentially tensor character. The-
refore, the appearance of low-frequency plasmons al-
lows us to draw an analogy with birefringence in the
optics of anisotropic crystals.

4.3. The General Case of Bulk Plasmons

In the general case, the dispersion equation for bulk
plasmons (31) can be reduced to a 3rd-order poly-
nomial, and thus it has three solutions (see Figs. 5
to 7). It is quite clear that these solutions correspond
to the plasmons known from the standard Drude-
Lorentz model (high-frequency plasmons) [1, 2] and
to additional plasmons induced by the external mag-
netostatic field H0 (low-frequency plasmons) and the
spatial dispersion (acoustic plasmons).

From Figs. 5 and 6, one can see that the spatial
dispersion weakly affects the dynamics of high- and
low-frequency plasmons. At the same time, the influ-
ence of the magnetostatic field H0 on the dynamics
of acoustic plasmons is considerable if the vectors k
and H0 are oriented orthogonally to each other (see
Fig. 7), i.e., when the action of the Lorentz force on
plasmons is maximum.

It is obvious that low-frequency plasmons lead to
additional frequency intervals of metal transparency
for electromagnetic waves, and this fact can be of
practical importance for plasmonics.

5. Surface Plasmons
at the Interface between Anisotropic
Metal and Anisotropic Insulator

Let the metal-insulator interface be determined by
the condition r ∈ (𝑟𝑥, 𝑟𝑦, 0) in the Cartesian coordi-
nate system {𝑋,𝑌, 𝑍}, and 𝜀 and 𝜖 be the dielectric

permittivities of the insulator and the non-magnetic
metal (𝜇̂ = 1) that occupy the half-spaces 𝑧 > 0
and 𝑧 < 0, respectively. In such a geometry, the ap-
proximate (neglecting the retardation effects, 𝑐 → ∞)
electric fields of surface plasmons are collinear to
their wave vectors: p0 = (k, 𝑖𝛼) in the insulator and

Fig. 3. Influence of the propagation direction e𝑘 of high-
frequency bulk plasmons with respect to the direction of the
magnetostatic field vector H0 (0 ≤ 𝜃 ≤ 𝜋) on their cyclic
frequency 𝜔

Fig. 4. Influence of the propagation direction e𝑘 of low-fre-
quency bulk plasmons with respect to the direction of the mag-
netostatic field vector H0 (0 ≤ 𝜃 ≤ 𝜋) on their cyclic fre-
quency 𝜔

ISSN 2071-0194. Ukr. J. Phys. 2022. Vol. 67, No. 6 437



N.M. Chepilko, S.A. Ponomarenko

Fig. 5. Influence of the magnetostatic field H0 on the disper-
sion of high-frequency bulk plasmons

Fig. 6. Influence of the magnetostatic field H0 on the disper-
sion of low-frequency bulk plasmons

Fig. 7. Influence of the magnetostatic field H0 on the disper-
sion of acoustic bulk plasmons

p1 = (k,−𝑖𝛽) in the metal, i.e.,

E =

{︃
P0𝐴 exp (𝑖(P0r− 𝜔𝑡)) if 𝑧 > 0;

P1𝐵 exp (𝑖(P1r− 𝜔𝑡)) if 𝑧 < 0,
(39)

where k = (𝑘𝑥, 𝑘𝑦).
The quantities 𝛼 and 𝛽 describe the decay rate of

the electric field when moving away from the interface
between two media, and they are determined by the
dispersion equations

(P0 𝜀(𝜔,P0)P0) = 0, (P1 𝜖(𝜔,P1)P1) = 0 (40)

analogous to Eqs. (28).
Let the insulator contacting with the metal be an

isotropic linear crystal with the dielectric permittivity
𝜀𝛼𝛽 = 𝜀𝛿𝛼𝛽 . Let us consider some special cases.

5.1. Spatial dispersion
in the theory of surface plasmons
if the static electromagnetic
field is absent

Let us analyze the role of spatial dispersion in the the-
ory of surface plasmons provided that the static elec-
tromagnetic field is absent (H0 = 0, E0 = 0). Under
those conditions, Eqs. (40) have the following solu-
tions:
𝛼 = |k|,

𝛽1 = |k|, 𝛽2 = |k|

√︃
1−

𝜔2 − 𝜔2
𝑝

𝜔2
𝑘

.
(41)

The availability of two possible values of the pa-
rameter 𝛽 complicates the structure of the electric
field created by surface plasmons because their elec-
tric field in the metal becomes two-component,

E =

⎧⎪⎪⎨⎪⎪⎩
P0𝐴 exp (𝑖 (P0r− 𝜔𝑡)) if 𝑧 > 0;

P1𝐵1 exp (𝑖 (P1r− 𝜔𝑡))+

+P2𝐵2 exp (𝑖 (P2r− 𝜔𝑡)) if 𝑧 < 0.

(42)

In this case, the electrostatic boundary conditions are
not enough. As an additional boundary condition, let
us use the boundary condition (5) for the electric cur-
rent density vector j = 𝜕P

𝜕𝑡 . Then, taking into account
that 𝜖(𝜔,p1) = 𝜖1(𝜔) if p1

2 = 0, and 𝜖(𝜔,p2) = 0, we
obtain a closed system of boundary conditions in the
form⎧⎪⎨⎪⎩
𝐴−𝐵1 −𝐵2 = 0;

𝛼𝜀𝐴+ 𝛽1𝜖1𝐵1 = 0;

𝛽1(𝜖1 − 1)𝐵1 − 𝛽2𝐵2 = 0.

(43)
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From the non-triviality condition for the solution of
the system of linear equations (43), we find the dis-
persion equation for surface plasmons in which the
effects of spatial dispersion are taken into account,

(𝛼𝜀+ 𝛽1𝜖1)𝛽2 + 𝛼𝜀(𝜖1 − 1)𝛽1 = 0. (44)

In terms of dimensionless variables (31), it can be
rewritten as follows:

((𝜀+ 1)𝑤2 − 1)
√︁
1 + 𝑤2

𝑘 − 𝑤2 − 𝜀𝑤𝑘 = 0. (45)

This equation has three roots, two of which have a
physical meaning,⎧⎨⎩𝑤1

2 =
1

𝜀+ 1
+

𝑤𝑘
2

2
+ 𝑤𝑘

√︂(︁𝑤𝑘

2

)︁2
+

𝜀

𝜀+ 1
;

𝑤3
2 = 1.

(46)

In terms of physical variables, they can be rewritten
as follows:⎧⎪⎨⎪⎩𝜔1

2 =
𝜔𝑝

2

𝜀+ 1
+

𝜔𝑘
2

2
+ 𝜔𝑘

√︂(︁𝜔𝑘

2

)︁2
+

𝜀𝜔𝑝
2

𝜀+ 1
;

𝜔3
2 = 𝜔𝑝

2.

(47)

The frequency 𝜔1 = 𝜔1(k) corresponds to ordinary
surface plasmons but taking the spatial dispersion
into account (see Fig. 8). On the other hand, the fre-
quency 𝜔3 = 𝜔𝑝 corresponds to exotic surface plas-
mons (with the frequency of bulk plasmons, 𝜔𝑝),
which are a result of the two-component structure
of their electric field in the metal.

5.2. Dispersion equation for surface
plasmons at negligibly weak spatial dispersion
and substantial static electromagnetic fields

Let the spatial dispersion in contacting media be neg-
ligibly weak. In this case, the dispersion equations
(40) have the following solutions:

𝛼 = |k|, 𝛽 = −𝑖|k| (e𝑘 𝜂 n)
(n 𝜂 n)

+

+ |k|

⎯⎸⎸⎷ (e𝑘 𝜂 e𝑘)

(n 𝜂 n)
−

(︃
(e𝑘 𝜂 n)

(n 𝜂 n)

)︃2
, (48)

where 𝜂𝛼𝛽 = 1
2 (𝜖𝛼𝛽+𝜖𝛽𝛼) is the symmetric part of the

metal dielectric permittivity tensor 𝜖, n = (0, 0, 1) is
the vector directed normally to the interface between

Fig. 8. Spatial dispersion of surface plasmons with the two-
component (in the metal) electric field

the two media r ∈ (𝑟𝑥, 𝑟𝑦, 0), and the unit vector
e𝑘 = k/ |k| = (𝑒𝑥, 𝑒𝑦, 0) determines the direction of
motion of surface plasmons. It is quite clear that the
expression given for the parameter 𝛽 has a physical
meaning only if the radicand in the left-hand side
of Eq. (48) is positive. As for the magnetic field of
surface plasmons, H, it is negligibly low in this case
(H → 0).

According to Eq. (21), the electric field of surface
plasmons (39) must satisfy the boundary conditions⎧⎪⎨⎪⎩

𝐸𝑥,𝑦(𝑥, 𝑦, 𝑧 = +0) = 𝐸𝑥,𝑦(𝑥, 𝑦, 𝑧 = −0);

𝐷𝑧(𝑥, 𝑦, 𝑧 = +0)−𝐷𝑧(𝑥, 𝑦, 𝑧 = −0) =

= −4𝜋𝑖(k 𝜒̂(𝑠) E(𝑥, 𝑦, 𝑧 = −0)),

(49)

where 𝜒̂𝑠 is the surface polarizability of the metal (see
Eq. (20)) under the action of the external electrostatic
field E0. From the first equation in (49), we obtain
that 𝐴 = 𝐵 in Eq. (40), and from the second one the
dispersion equation for surface plasmons,

𝜀+ 𝑖(n 𝜉 e𝑘) + sign(n 𝜂 n)×

×
√︀
(e𝑘 𝜂 e𝑘)(n 𝜂 n)− (e𝑘 𝜂 n)(n 𝜂 e𝑘) =

= −4𝜋((e𝑘 𝜒̂
(𝑠) e𝑘)|k| − 𝑖𝛽(e𝑘 𝜒̂

(𝑠) n)), (50)

where
(n 𝜂 n) = 1− 𝜔𝑝

2

𝜔2

(︁𝜔2 − (n𝜔𝐻)2

𝜔2 − 𝜔𝐻
2

)︁
,

ISSN 2071-0194. Ukr. J. Phys. 2022. Vol. 67, No. 6 439



N.M. Chepilko, S.A. Ponomarenko

Fig. 9. Spatial dispersion of surface plasmons induced by the
electrostatic field E0 at 𝑔 > 0

Fig. 10. Spatial dispersion of surface plasmons induced by
the electrostatic field E0 at 𝑔 < 0

(e𝑘 𝜂 e𝑘) = 1− 𝜔𝑝
2

𝜔2

(︁𝜔2 − (e𝑘 𝜔𝐻)2

𝜔2 − 𝜔𝐻
2

)︁
,

(n 𝜂 e𝑘) = (e𝑘 𝜂 n) =
𝜔𝑝

2

𝜔2

(︁(n𝜔𝐻)(e𝑘 𝜔𝐻)

𝜔2 − 𝜔𝐻
2

)︁
,

(n 𝜉 e𝑘) = −𝑖
𝜔𝑝

2

𝜔2

(︁𝜔(ne𝑘 𝜔𝐻)

𝜔2 − 𝜔𝐻
2

)︁
,

and 𝜉𝛼𝛽 = 1
2 (𝜖𝛼𝛽 − 𝜖𝛽𝛼) is the antisymmetric part of

the metal dielectric permittivity tensor 𝜖.
It is evident that the dispersion equation in (50) can

have real solutions for the cyclic frequency 𝜔 if one

of the contacting media has negative components in
its dielectric permittivity tensor. In the case of sur-
face plasmons, the condition Re(𝜖𝛼𝛽) < 0 must be
satisfied.

Essential for practical applications of surface plas-
mons is the fact that their cyclic frequency 𝜔 can be
affected by varying the intensities of the magneto-
static, H0 (see Eq. (14)), and electrostatic, E0 (see
Eqs. (16) and (22)), fields. In this case, owing to the
presence of surface electric charges induced by the
electrostatic field E0, the frequency of surface plas-
mons becomes dependent on the magnitude of their
wave vector k (see Eq. (50)).

In the general case, the right-hand side of the dis-
persion equation in (50) is complex-valued, which
leads to the damping of surface plasmons. This phe-
nomenon can be explained as occurring when the cur-
vature radius of the electron trajectory exceeds the
characteristic localization depth of surface plasmons
in the metal, Δ𝑍1 = Re

(︀
1
𝛽

)︀
, which takes place owing

to the specificity of surface plasmon dynamics in the
static electromagnetic fields E0 and H0. If one takes
the construction of the tensor 𝜒̂(𝑠) into account, it
becomes clear that such damping of surface plasmons
can be suppressed provided that only one of the static
electromagnetic fields, E0 or H0, can affect the dy-
namics of surface plasmons (see below).

Now, let us consider some particular cases.

5.3. The magnetostatic field is absent
(H0 = 0) and the electrostatic field E0 is
perpendicular to the metal surface

In this case, the dispersion equation (50) for surface
plasmons, if being rewritten in terms of the dimen-
sionless variables

𝑤 =
𝜔

𝜔𝑝
, 𝑔 = ±𝑅0|k|, 𝑅0 = |𝑅𝑝E0| (51)

acquires the simple form

𝜀+ 𝜖 =
𝑔

𝑤2
(52)

and has the following solution

𝑤𝑠 =

√︂
1 + 𝑔

𝜀+ 1
, 𝜔𝑠 = 𝜔𝑝𝑤𝑠 = 𝜔𝑝

√︂
1±𝑅0|k|
𝜀+ 1

, (53)

where 𝜔𝑠 is the cyclic frequency depending on the
magnitude of the surface plasmon wave vector k (see
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Figs. 9 and 10), 𝑅𝑝 is the Hall constant, and the sign
of the quantity 𝑔 in Eqs. (51)–(53) is determined by
the sign of the quantity 𝑅𝑝(n ·E0).

The dependence of the cyclic frequency of surface
plasmons on the wave vector magnitude testifies to
the transition of their dynamics from oscillatory dy-
namics to wave one.

5.4. The electrostatic field
is absent (E0 = 0) and the magnetostatic
field H0 is arbitrarily oriented
with respect to the metal surface

In this case, the right-hand side of the dispersion
equation in (50) equals zero.

In three specific geometries of the problem –
namely, if the vector 𝜔𝐻 is collinear to one of the
vectors n, e𝑘, and (n× e𝑘) – the dispersion equation
becomes strongly simplified and looks like

𝜀+ sign
(︁
1− 𝜔𝑝

2

𝜔2

)︁
×

×

√︃(︁
1− 𝜔𝑝

2

𝜔2

)︁(︁
1− 𝜔𝑝

2

𝜔2 − 𝜔𝐻
2

)︁
= 0, if 𝜔𝐻 ||n,

𝜀+ sign
(︁
1− 𝜔𝑝

2

𝜔2 − 𝜔𝐻
2

)︁
×

×

√︃(︁
1− 𝜔𝑝

2

𝜔2 − 𝜔𝐻
2

)︁(︁
1− 𝜔𝑝

2

𝜔2

)︁
= 0, if 𝜔𝐻 ||e𝑘,

𝜀+
𝜔𝑝

2

𝜔2

(︁𝜔((n× e𝑘)𝜔𝐻)

𝜔2 − 𝜔𝐻
2

)︁
+

+
(︁
1− 𝜔𝑝

2

𝜔2 − 𝜔𝐻
2

)︁
= 0, if 𝜔𝐻 ||(n× e𝑘).

(54)

The physically meaningful solutions of these equa-
tions can be written as follows:

𝜔1,2
2=

(𝜀2−1)𝜔𝐻
2−2𝜔𝑝

2+
√︀
(𝜀2−1)2𝜔𝐻

4+4𝜀2𝜔𝑝
4

2(𝜀2−1)
,

if 𝜔𝐻 ||n, 𝜔𝐻 ||e𝑘,

𝜔3,4 = ±|𝜔𝐻 |
2

+

√︂(︁|𝜔𝐻 |
2

)︁2
+

𝜔𝑝
2

𝜀+ 1
,

if ((n× e𝑘)𝜔𝐻) = ∓|𝜔𝐻 |.

(55)

At 𝜔𝐻 → 0, solutions (55) of dispersion equa-
tions (54) are reduced to the expression obtained
in the framework of the standard Drude–Lorentz

Fig. 11. Influence of the orientation of the magnetostatic field
H0 on the surface plasmon dispersion

model [1,2]. At an arbitrary orientation of the magne-
tostatic field vector H0, the cyclic frequency 𝜔𝑠 of sur-
face plasmons is determined by the projection of the
position of the vector 𝜔𝐻 on the 𝑆2 sphere onto the
dispersion “surface” of surface plasmons (see Fig. 11).

6. Conclusions

To summarize, in this work, it was shown that the
generalization of the Drude–Lorentz model makes it
possible to describe the complex influence of static
electromagnetic fields and spatial dispersion on the
physical characteristics of both bulk and surface plas-
mons. It was found that the magnetostatic field H0

and the spatial dispersion lead to the appearance of
additional types of bulk plasmons with the dispersion
depending on the relative orientation of their propa-
gation direction e𝑘 and the direction of the magneto-
static field H0. In the case of surface plasmons, the
spatial dispersion leads to the two-component char-
acter of the electric field E generated by surface plas-
mons in the metal, and the electrostatic field E0 in-
duces the spatial dispersion. At the same time, the
orientation of the magnetic field H0 substantially af-
fects the total dispersion of surface plasmons.

It is essential that no analogs of low-frequency bulk
plasmons induced by the magnetostatic field H0 and
the spatial dispersion arise in the case of surface
plasmons. This circumstance can be explained by the
fact that the curvature of the electron trajectory in
the magnetostatic field H0 exceeds the characteris-
tic localization size of surface plasmons in the metal,
Δ𝑍1 = Re 𝛽−1.
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The dependence of the physical properties of plas-
mons on static electromagnetic fields can be used to
implement control methods in application problems
of metal plasmonics.
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УЗАГАЛЬНЕНА МОДЕЛЬ ДРУДЕ–ЛОРЕНЦА
ТА ЇЇ ЗАСТОСУВАННЯ У МЕТАЛОПЛАЗМОНIЦI

Узагальнено модель Друде–Лоренца на випадок плазмонiв
у немагнiтних провiдниках, що знаходяться у статичних ма-
гнiтних H0 та електричних E0 полях iз врахуванням ефе-
ктiв просторової дисперсiї. Показано, що магнiтостатичне
поле H0 та просторова дисперсiя формують два додатко-
вi типи низькочастотних об’ємних плазмонiв, а дисперсiя
всiх типiв об’ємних плазмонiв суттєво залежить вiд вза-
ємної орiєнтацiї напряму їх розповсюдження e𝑘 та векто-
ра магнiтостатичного поля H0. Що стосується поверхневих
плазмонiв, то тут просторова дисперсiя приводить до дво-
компонентної структури (в металi) їх електричного поля E,
а зовнiшнє електростатичне поле E0 – до наведеної просто-
рової дисперсiї, залежної вiд величини постiйної Холла 𝑅𝑝.
У той самий час, орiєнтацiя магнiтостатичного поля H0 сут-
тєво впливає на загальну дисперсiю поверхневих плазмонiв.

Ключ о в i с л о в а: об’ємнi плазмони, поверхневi плазмони,
просторова дисперсiя, магнiтостатичне поле.

442 ISSN 2071-0194. Ukr. J. Phys. 2022. Vol. 67, No. 6


