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CsPd0.875Cr0.125I3: PROMISING CANDIDATE
FOR THERMOELECTRIC APPLICATIONS

We study the electronic structure, magnetization, and thermoelectric properties of
CsPd0.875Cr0.125I3 obtained by doping CsPdI3 with atoms of the 3𝑑 transition metal Cr. By
applying the generalized-gradient-approximation (GGA) and the GGA + U one, we found that
CsPd0.875Cr0.125I3 alloy exhibits a completely metallic characteristic. Changes in the thermo-
electric properties of the alloy are determined with the use of the BoltzTrap code. The elec-
tronic thermal conductivities (𝑘/𝜏), Seebeck coefficients (S), power factors (PF), and electrical
conductivities (𝜎/𝜏) are calculated. The value of the 𝑍𝑇 merit factor is near 1 at room temper-
ature, by indicating that CsPd0.875Cr0.125I3 is a good candidate for thermoelectric applications
at high and low temperatures.
K e yw o r d s: thermoelectric, perovskite, solar cell, DFT, magnetic materials.

1. Introduction

Perovskites are vastly studied materials due do
their extensive variety of propititud physical
properties, including those for spintronics and
superconductivity (CH3NH3PbI3−𝑥Cl𝑥) [1], solar
cells (FA)𝑦(MA)1−𝑦PbBr𝑥I3−𝑥) [2], multiferroicity
(BiFe1−𝑦Sc𝑦O3) [3], and colossal magnetoresistance
(RE1−𝑥AE𝑥MnO3 (RE = La, Pr, Sm, etc. and AE =
= Ca, Sr, Ba,Pb)) [4].

The power conversion efficiency of perovskite-ba-
sed solar cells is now becoming comparable to that
of silicon photovoltaics, which is employed in the first
successful experimental implementation of halide per-
ovskite materials in solar cells by Kojima et al. [5].
Compared to other twenty-eight conventional solar
cell materials, they provide the lowest cost in the so-
lar energy technology [6–8]. In 2012, researchers first
discovered how to make a stable, thin-film perovskite
solar cell with light photon-to-electron conversion ef-
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ficiencies over 10%, using lead halide peroviskites as
the light-absorbing layer. Since then, the sunlight-to-
electrical-power conversion efficiency of perovskite so-
lar cells has skyrocketed, with the laboratory record
standing at 25.2% [9]. Researchers are also combin-
ing perovskite solar cells with conventional silicon
solar cells, whose record efficiencies for these “per-
ovskite on silicon” tandem cells are currently 29.15%
[10] (surpassing the record of 27% for conventional
silicon cells) and rise rapidly. With this rapid surge
in cell efficiency, perovskite solar cells and perovskite
tandem solar cells may soon become cheap, highly ef-
ficient alternatives to conventional silicon solar cells
[10–12].

Perovskite semiconductors offer an option that has
the potential to rival the efficiency of multijunction
solar cells [13], but can be synthesized under more
common conditions at a greatly reduced cost. Riva-
ling the double, triple, and quadruple solar cells, there
are all-solar cells with a max power conversion effi-
ciency of 31.9% [14], all-perovskite triple-junction cell
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Fig. 1. Crystal structure of CsPd0.875Cr0.125I3

Fig. 2. Band structure for high-symmetry directions in
the Brillouin zone for CsPd0.875ir0.125I3 using the GGA+U
method

reaching 33.1% [15]. These multijunction perovskite
solar cells, in addition to being available for cost-
effective synthesis, also maintain a high power conver-
sion efficiency under varying weather extremes mak-
ing them utilizable world wide [16].

Until know, due to their extraordinary features, the
perovskite groups are received much attentions, par-
ticularly by theoretician workers [17–28]. Neverthe-
less, although large efforts were spent on different per-
ovskite compounds [29–37], we need the clarification
and identification of the fundamental physical charac-
teristics of alloys. For that purpose, the current con-
tribution reports on the electronics, magnetism, and
thermoelectric properties of Cr-doped CsPdI3. The
computations are performed using ab initio calcula-
tions based on the density functional theory (DFT)

within the GGA-PBE and GGA+U. More details
about the methods used are given in the following
section.

2. Computational Method

The considered CsPdI3 is presumed to have the ideal
cubic perovskite structure (#221). The computations
are based on the super cell (i.e., 2× 2× 2) in which
the Pb atom that is at (0.5, 0.5, 0.5) site in the su-
per cell cubic structure of CsPdI3 is replaced by Cr
atoms, respectively. We have established an elemen-
tary crystal structure which contains 40-atoms. The
positions of the atoms during the relaxation are es-
tablish to correspond to the cubic symmetry of the
space group PM-3M(n∘221). The structure of the
crystal for the Pd0.875Cr0.125I3 material is shown in
Fig. 1. We have used the full-potential linearized aug-
mented plane wave (FP-LAPW) as implemented in
the WIEN2K code [38]. To include the exchange-
correlation part in the total electronic energy, the
revised Perdew–Burke–Ernzerhof scheme within the
GGA [39] is used. The Cr 3𝑑 is described through
the use of the GGA+U approach [40]. This method
uses an effective parameter, 𝑈eff = 𝑈 +𝐽 , in which U
represents the Hubbard parameter, and 𝐽 represents
the exchange parameter. The Hubbard parameter ap-
proach, which includes the exchange-correlation po-
tential, is also very efficient to study strongly corre-
lated electrons, in which the band-gap of the given
materials could be found more precisely. Then, foo
such cases, we took the core electrons as relativistic,
while the valence electrons are taken to be semirela-
tivistic. These assumptions seem to be more accurate
for the present method and for the full potential sys-
tem. We considered the 𝑈eff value as 4.97 eV. This is
similar to those found in Refs. [41, 42].

The thermoelectric properties of CsPd0.875Cr0.125I3
materials have been obtained, when we apply the
theory of Boltzmann transport and use a BoltzTraP
code [43, 44].

3. Results and Discussion

The electronic band structure and the density of
states are computed using GGA and GGA +U for
CsPd0.875Cr0.125I3 along high-symmetry directions in
the Brillouin zone as indicated in Figs. 2 and 3. The
non-existence of a forbidden gap at the Fermi level
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Individual and net magnetic moment (𝜇𝐵)

Compounds Approximations 𝑚Pd 𝑚Cr 𝑚I 𝑚Cs 𝑚int 𝑚total

CsPd0.875Cr0.125I3 GGA + 𝑈 0.0957 3.9214 –0.03 0.0055 0.1752 4.6021
GGA 0.1608 3.8756 –0.03 0.0001 0.2835 4.5961

BiCrO3 [45] EXP – 3.87 – – – 4.161

Ba2CrTaO6 [46] GGA + 𝑈 – 2.391 – – – 3.00

PrCrO3 [47] GGA + 𝑈 – 2.34734 – – – 5.00003

Fig. 3. Total density of states (TDOS)

oh the studied material confirms its metallic behav-
ior indicating the existence of conductor features.

The obtained interstitial, atom-resolved and total
magnetism moment of CsPi0.875Cr0.125I3 are given in
Table. The main thing, namely the total magnetic
moment, is due to the Cr atoms. Small contributions
come from interstitial regions and the moments of
Cs, Pd, and I are negligible. The obtained data re-
garding the magnetic moment for Cr atoms are in
agreement with those of experiment and theory cited
in Refs. [45–47].

Presently, using thermoelectrics, it is possible to
recapture some of the waste energy lost into the at-
mosphere and to convert it into electricity. The effi-
ciency of a thermoelectric material in any power gen-
erator or cooler depends on the dimensionless con-
stant 𝑍𝑇 = 𝑆2𝜎𝑇/𝜅, where 𝑆 is the Seebeck coeffi-
cient, 𝜎 is the electrical conductivity, 𝜅 designates the
thermal conductivity, and PF is a power factor. The
thermoelectric transport parameters for both pris-
tine and doped CsPd0.875Cr0.125I3 materials are il-

Fig. 4. SeebecK coefficient as a function of the chemical po-
tential

lustrated in Figs. 4–8. 𝑇𝜎 is related to the tempera-
ture effect with the essential thermoelectric param-
eters that are (ℎ/𝜏), (𝑆), (𝜅/𝜏), the power factor
𝑃𝐹 = 𝑆2𝜎/𝜏, and the (ZT ) factor. They have been
considered in Refs. [48, 49]. The BoltzTrap code has
been used to determine the thermoelectric properties;
the efficiency of these properties is assessed by de-
termining the transport parameters as functions of
the temperature (𝑇 ). The last coefficient character-
izes the efficiency of this material, and the criterion
𝑍𝑇 ≥ 1 is retained in general for applications.

The Seebeck coefficient (𝑆) for both pristine and
doped CsPdt3 at three constant temperatures is
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Fig. 5. Electrical conductivity as a function of the chemical
potential

shown in Fig. 4. Ar 300 K, CsPd0.875Cr0.125l3 and
CsPdI3 compounds of interest are remarked to have
high (𝑆) values for 𝑛-type carriers which diminish,
as the temperature grows; CsPd0.875Co0.125I3 show
larger 𝑆 than that of CsPdI3 compound [50, 51].

The total thermal conductivity 𝜅𝑒 (see Fig. 5) for
both pristine and doped CsPdI3 includes electron 𝜅𝑒

and lattice 𝜅lat thermal conductivities. The value of
𝜅𝑒 is calculated by using 𝜅𝑒 = 𝐿𝑇𝜎, where L is the
Lorenz number with the standard value. We remark
also that the thermal conductivity is enhanced, when
the temperature is increased for CsPd0.875Cr0.125I3
in the positive range of the chemical potential. The
maxima are localized at 14.6 (900 K), 9.4 (900 K) and
151.2 (900 K) for CsPd0.875Cr0.125I3 (up) and CsPdI3
(down), respectively. Meanwhile, we can clearly seen
that the thermal conductivity at room temperature
is smaller than those that correspond to 600 and
900 K. Thus, the thermal properties of the mate-
rial of interest are completely sensitive to the en-
ergy of solar photons. The intrinsically low ther-
mal conductivity (𝜅 ≈ 0.70 W/mK (up) and 𝜅 ≈
≈ 0.96 W/mK (down)) of CsPd0.875Cr0.125I3 (up)

Fig. 6. Thermal conductivity as a function of the chemical
potential

and CsPdI3 (down) is comparable to those of
other materials such as AgSbTe2 (𝜅 ≈ 0.73 W/mK
at 600 K) [52], Ag9TlTe5 (𝜅 ≈ 0.27 W/mK at
600 K) [53], BiCuOSe (𝜅 ≈ 0.45 W/mK at 600 K)
[54], 𝑡2Bi8Se13 (𝜅 ≈ 0.43 W/mK at 600 K) [55],
Ag4Mo9Se11 (𝜅 ≈ 0.73 W/mK at 600 K) [56], and
(𝜅 ≈ 0.67 W/mK at 600 K) of both XBi44S7

(X = Mn, Fe) compounds [57].
The results for the electrical conductivity (𝜎/𝜏) ac-

cording to (𝜇) are shown in Fig. 6. It is seen that, in
all cases, the temperature 𝑇 = 300 K induces the
largest electric conductivity, depicting the mobility
which becomes higher at the largest temperature, by
diminishing the electrical conductivity. The variation
of the coefficients with a change in the chemical po-
tential is dramatic. This indicates that the smallest
carrier concentration is sufficient for achieving the
efficient thermoelectric performance. The calculated
electrical conductivities (𝜎/𝜏) for CsPd0.875Cr0.125I3
(up) and CsPdI3 (down) at 300 K are 10.14 × 1019

and 8.30 × 1019 Ω−1m−1s−1, respectively. By com-
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Fig. 7. Power factor (S2𝜎/𝜏) as a function of the chemical
potential

paring the results on the electrical conductivity with
those reported in [58–61], we found that the value
of (𝜎/𝑡) in our systems is higher than that found in
ts2BiAg(Cl, Br)6 [58]. This may be due to the metal-
lic character exhibited by these materials which show
a lot of electron energy levels which are near the Fermi
level. Some there exist a lot of electrons which are
ready to move. The higher electrical conductivity for
those materials induces a larger dielectric constant
[62] that is important for reducing the exciton bind-
ing energy [63]. These materials can be used for solar
cell applications.

We define the power factor (PF) as PF = 𝑆2𝜎/𝜏 .
Figure 7 depicts the change in PF versus (𝜇) and
𝑇 (K). We note that the PF is augmented, when the
temperature varies from 0 to 900 K. For temperatures
which are smaller than 300 K, the PF rate of enhance-
ment seems to be very moderate. However, beyond
this temperature, it augments rapidly with augment-
ing the temperature. For PF which is lower than one,
the voltage and current are not in phase. In fact, for
the same amount of useful power transferred, a load
with a low PF in an electric power system shows a
higher current than with loads with a higher PF. By

Fig. 8. Thermoelectric figure of merit (𝑍𝑇 ) as a function of
the chemical potential

comparing the results on PF with those reported for
SnSe. The PFs remain at a high value ∼50.60× 1010

and 30.34 × 1010 (Wm−1K−1) around 773 K for
CsPd0.875Cr0.125I3 (up) and CsPdI3 (down), which
is twice higher than that of ∼6.4 Wm−1K−2 at 773 K
for the SnSe [64].

To know the efficiency of a thermoelectric mate-
rial, it is necessary to determine the value of 𝑍𝑇 . In
the present study, 𝑍𝑇 contains the total thermal con-
ductivity 𝜅 = 𝜅𝑒 + 𝜅lat. Our calculated ZT for both
pristine and doped CsPdI3 are plotted in Fig. 8. The
value of ZT for CsPd0.875Cr0.125I3 (up) and CsPdI3
(down) is high and almost constant up to 300 K. Then
it decreases slightly, as the temperature increases. We
observe that the ZT value is about 0.976 and 0.325
at room temperature for CsPd0.875Cr0.125I3 (up) and
CsPdI3 (down), respectively. It turns out that these
values are very high as compared to the available ther-
moelectric materials, and we can explain this by the
high Seepeck coefficients in the studied systems. The
present results also indicate the maximum potential
of the CsPd0.875Cr0.125I3 as a high temperature ther-
moelectric material, rather than the CsPdI3. Keeping
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in view the above results on thermoelectric proper-
ties, we conclude that CsPd0.875Cr0.125I3 shows a con-
siderable thermoelectric performance accompanied by
a significant 𝑍𝑇 which are than for many peroviskite
compounds reported till now. We cannot compare our
results due to shortage of experimental or theoretical
results. Nevertheless, these simulations can be con-
sidered as reference data for future investigations.

4. Conclusions

In the present work, the electronic, magnetic, and
thermoelectric properties of CsPd0.875Cr0.125I3 have
been studied using the FP-LAPW method, in
which we have applied GGA and GGA +U appro-
ximations. A metallic character has been shown
by the electronic structures of the ferromagnetic
configuration for CsPd0.875Cr0.125I3 alloy. The main
contribution to the magnetic moment is made
by the Cr ions. High 𝑍𝑇 values of 0.976 and
0.988 were obtained for CsPd0.875Cr0.125I3(up) and
CsPd0.875Cr0.125I3(down), respectively. Our thermo-
electric study predicts CsPd0.875 Cr0.125I3 as a prob-
able thermoelectric material with considerable values
of the 𝑍𝑇 factor at low temperatures. Finally, the in-
vestigated properties suggest the application of this
material in thermoelectric devices.
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sition as a route to high-performance perovskite-sensitized
solar cells. Nature. 499, 316 (2013).
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CsPd0,875Cr0,125I3: ПЕРСПЕКТИВНИЙ КАНДИДАТ
ДЛЯ ЗАСТОСУВАНЬ В ОБЛАСТI ТЕРМОЕЛЕКТРИКИ

Вивчаються електронна структура, магнiтнi та термоеле-
ктричнi властивостi сполуки CsPd0,875Cr0,125I3, отриманої
допуванням CsPdI3 атомами 3𝑑 перехiдного металу Cr. Ви-
користовуючи узагальнене градiєнтне наближення (УГН) i
УГН+U, ми знаходимо, що сплав CsPd0,875Cr0,125I3 має
властивостi металу. Змiни термоелектричних параметрiв
розраховано iз застосуванням програми BoltzTrap. Обчи-
слено електроннi теплопровiдностi (𝑘/𝜏), коефiцiєнти Зе-
єбека (𝑆), фактори потужностi та електричнi провiдностi
(𝜎/𝜏). Розраховане значення зведеного коефiцiєнта 𝑍𝑇 зна-
ходиться близько 1 при кiмнатнiй температурi, вказуючи на
те, що CsPd0,875Cr0,125I3 є хорошим кандидатом для засто-
сування в областi термоелектрики при низьких i високих
температурах.

Ключ о в i с л о в а: термоелектричний, перовскiт, сонячний
елемент, теорiя функцiонала густини, магнiтнi матерiали.
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