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TWO-DIMENSIONAL PAULI
EQUATION IN NONCOMMUTATIVE PHASE-SPACE

We study the Pauli equation in a two-dimensional noncommutative phase-space by considering
a constant magnetic field perpendicular to the plane. The noncommutative problem is related
to the equivalent commutative one through a set of two-dimensional Bopp-shift transforma-
tions. The energy spectrum and the wave function of the two-dimensional noncommutative
Pauli equation are found, where the problem in question has been mapped to the Landau prob-
lem. In the classical limit, we have derived the noncommutative semiclassical partition function
for one- and 𝑁-particle systems. The thermodynamic properties such as the Helmholtz free
energy, mean energy, specific heat and entropy in noncommutative and commutative phase-
spaces are determined. The impact of the phase-space noncommutativity on the Pauli system
is successfully examined.
K e yw o r d s: noncommutative phase-space, Pauli equation, Bopp-shift, semiclassical partition
function, thermodynamic properties.

1. Introduction

In a few last years, there has been a growing interest
in the study of two-dimensional systems, which have
become an active area of researches because of their
implications in the nanofabrication technology. Such
as in graphene [1, 2] and other materials like Weyl
semimetals [3], semiconductor quantum wells, quan-
tum Hall and fractional Hall effects [4, 5], as well the
Dirac relativistic oscillator [6], etc. However, despite
the experimental success, it is very important to un-
derstand these systems from a theoretical point of
view in which quantum mechanics plays the central
role. Motivated by the efforts to understand string
theory [7] and black hole models and to describe the
quantum gravitation [8–10] using a noncommutative
geometry and by trying to have drawn a consider-
able attention to the phenomenological implications,
we concentrate on studying the problem of a non-
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relativistic spin-1/2 particle in the presence of an elec-
tromagnetic field within a two-dimensional noncom-
mutative phase-space. We also mention several arti-
cles devoted to the noncommutative geometry, partic-
ularly in quantum field theory [11, 12] and quantum
mechanics [13, 14].

We present the essential formulas of a noncommu-
tative algebra we need in this work. At very tiny
scales (the string scale), the position coordinates
do not commute with one another, neither do the
momenta.

In the two-dimensional noncommutative phase-
space, the operators of coordinates 𝑥𝑛𝑐𝑗 and momenta
𝑝𝑛𝑐𝑗 satisfy the following Heisenberg-like commutation
relations:[︀
𝑥𝑛𝑐𝑗 , 𝑥𝑛𝑐𝑘

]︀
= [𝑥𝑗 , 𝑥𝑘]⋆ = 𝑖Θ𝜖𝑗𝑘,[︀

𝑝𝑛𝑐𝑗 , 𝑝𝑛𝑐𝑘
]︀
= [𝑝𝑗 , 𝑝𝑘]⋆ = 𝑖𝜂𝜖𝑗𝑘, (𝑗, 𝑘 = 1, 2).[︀

𝑥𝑛𝑐𝑗 , 𝑝𝑛𝑐𝑘
]︀
= [𝑥𝑗 , 𝑝𝑘]⋆ = 𝑖~̃𝛿𝑗𝑘,

(1)

The noncommutative phase-space can be obtained
using the ordinary coordinates 𝑥𝑗 and momenta 𝑝𝑗
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operators and with replacing the ordinary product by
the Moyal ⋆product, which can be used as follows [15]:

ℱ (𝑥𝑛𝑐, 𝑝𝑛𝑐)𝒢 (𝑥𝑛𝑐, 𝑝𝑛𝑐) = ℱ (𝑥, 𝑝) ⋆ 𝒢 (𝑥, 𝑝) =

= 𝑒
𝑖
2 [Θ𝑎𝑏𝜕𝑥𝑎𝜕𝑥𝑏

+𝜂𝑎𝑏𝜕𝑝𝑎𝜕𝑝𝑏 ]ℱ (𝑥𝑎, 𝑝𝑎)𝒢 (𝑥𝑏, 𝑝𝑏), (2)

where ℱ , 𝒢 are two functions that vary in terms of 𝑥,
𝑝 and are assumed to be infinitely differentiable. The
effective Planck constant (deformed Planck constant)
is given by [16, 17]

~̃ = ~
(︂
1 +

Θ𝜂

4~2

)︂
, (3)

where Θ𝜂
4~2 ≪ 1 is the condition of consistency in the

usual commutative spacetime quantum mechanics. It
is expected to be generally satisfied, since the small
parameters Θ and 𝜂 are of the second order. 𝛿𝑖𝑗 is the
identity matrix, 𝜖𝑗𝑘 is the Levi-Civita symbol, with
𝜖12 = −𝜖21 = 1, 𝜖11 = 𝜖22 = 0. The quantities Θ, 𝜂
are the real-valued noncommutative parameters with
dimensions of length2 and momentum2, respectively,
which are assumed to be extremely small. Note that
the experimental and theoretical investigations of the
noncommutative systems of noncommutativity con-
stants led to obtaining the following upper bound on
the value of the noncommutative parameters [17]

Θ ⪯ 4.10−40 m2; 𝜂 ⪯ 1.76.10−61 Kg2m2s
−2
. (4)

In addition, the recent studies [18–20] revealed that
the noncommutative parameters associated with dif-
ferent particles are not the same in noncommutative
quantum mechanics.

The set of operators 𝑥𝑛𝑐𝑖 , 𝑝𝑛𝑐𝑗 is related to the set
𝑥𝑖, 𝑝𝑗 in usual quantum mechanics by a non-canonical
linear transformation referred to as Bopp-shift as fol-
lows [21]:

𝑥𝑛𝑐 = 𝑥− 1

2~
Θ𝑝𝑦; 𝑝𝑛𝑐𝑥 = 𝑝𝑥 +

1

2~
𝜂𝑦,

𝑦𝑛𝑐 = 𝑦 +
1

2~
Θ𝑝𝑥; 𝑝𝑛𝑐𝑦 = 𝑝𝑦 −

1

2~
𝜂𝑥.

(5)

The quantum mechanical system will become
merely a noncommutative one with the use of Eq. (5)
or (2). Let 𝐻 (𝑥, 𝑝) be the Hamiltonian operator of
the usual quantum system, then the corresponding
noncommutative Schrödinger equation is given by

𝐻 (𝑥, 𝑝) ⋆ 𝜓 (𝑥, 𝑝) =

= 𝐻

(︂
𝑥𝑖 −

Θ𝑖𝑗

2~
𝑝𝑗 , 𝑝𝑖 +

𝜂𝑖𝑗
2~
𝑥𝑗

)︂
𝜓 = 𝐸𝜓. (6)

Noting that the noncommutative term always can
be treated as a perturbation in quantum mechanics.

In the ordinary two-dimensional commutative
phase-space, the canonical variables 𝑥𝑗 and 𝑝𝑖 satisfy
the following canonical commutation relations:

[𝑥𝑗 , 𝑥𝑘] = 0,

[𝑝𝑗 , 𝑝𝑘] = 0, (𝑗, 𝑘 = 1, 2).

[𝑥𝑗 , 𝑝𝑘] = 𝑖~𝛿𝑗𝑘,
(7)

The paper is organized as follows. The formulation
of the two-dimensional noncommutative geometry is
briefly outlined in Section I. The exact solution to
the two-dimensional noncommutative Pauli equation
is presented in Section II. Section III presents the
thermodynamic properties of the problem in question,
concluding with some remarks.

2. Two-Dimensional
Noncommutative Pauli Equation

The time-independent Pauli equation is given by [22]

1

2𝑚𝑒

(︁
p− 𝑒

𝑐
A
)︁2
𝜓 + 𝑒𝜑𝜓 + 𝜇B𝜎 ·B𝜓 = 𝐸𝜓, (8)

where 𝜓 = (𝜓1 𝜓2)
𝑇 is a two-component spinor, p =

= 𝑖~∇ is the momentum operator, 𝑚𝑒 and 𝑒 are the
mass and charge of the electron, and 𝑐 is the speed
of light. As well, 𝜇B = |𝑒|~

2𝑚𝑐 is the Bohr magneton,
B is the applied magnetic field vector, A (r, 𝑡) is the
vector potential, 𝜑 (r, 𝑡) is the Coulomb potential, and
𝜎 = (𝜎𝑥, 𝜎𝑦, 𝜎𝑧) are the Pauli matrices.

The time-independent Pauli equation in the non-
commutative phase-space is given by{︂

1

2𝑚𝑒

(︁
p𝑛𝑐 − 𝑒

𝑐
A⋆
)︁2

+ 𝑒𝜑+ 𝜇B𝜎 ·B
}︂
𝜓 = 𝐸𝜓, (9)

where 𝜓 is the noncommutative spinor wave func-
tion. Let the magnetic field B be oriented along the
axis (Oz), which is often referred to as the Landau
system. Based on the proposal that noncommutative
observables correspond to the commutative ones [23],
we have the following deduced noncommutative sym-
metric gauge:

A⋆ =
(︀
𝐴⋆

𝑥, 𝐴
⋆
𝑦, 𝐴

⋆
𝑧

)︀
=
𝐵

2
(−𝑦𝑛𝑐, 𝑥𝑛𝑐, 0), 𝐴⋆

0 = 𝑒𝜑⋆ = 0.

(10)
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Here, the electron is unbound 𝜑 = 0. Using
Eq. (10), with [𝑝𝑛𝑐𝑖 , 𝐴⋆

𝑖 ] = 0, Eq. (9) becomes{︃
(p𝑛𝑐)

2

2𝑚𝑒
− 𝑒p𝑛𝑐.A⋆

𝑐𝑚𝑒
+
𝑒2 (A⋆)

2

2𝑐2𝑚𝑒
+ 𝜇B𝜎𝑧𝐵

}︃
𝜓 = 𝐸𝜓,

(11)
where 𝜎𝑧 = ±1. It is easy to check that

(p𝑛𝑐)
2
= 𝑝2𝑥 + 𝑝2𝑦 −

𝜂

~
𝐿𝑧 +

𝜂2

4~2
(𝑥2 + 𝑦2), (12)

(A⋆)
2
=
𝐵2

4

{︂
𝑥2 + 𝑦2 +

Θ2

4~2
(︀
𝑝2𝑥 + 𝑝2𝑦

)︀
− Θ

~
𝐿𝑧

}︂
, (13)

p𝑛𝑐 ·A⋆ =
−𝐵
2

{︂
Θ

2~
(︀
𝑝2𝑥 + 𝑝2𝑦

)︀
+

𝜂

2~
(︀
𝑦2 + 𝑥2

)︀
−

−
(︂
1 +

Θ𝜂

4~2

)︂
𝐿𝑧

}︂
, (14)

with

𝐿𝑧 = (x× p)𝑧 = 𝑝𝑦𝑥− 𝑝𝑥𝑦. (15)

Using the three-equations (12)–(14) above, the
Pauli equation reads{︃(︀
𝑝2𝑥 + 𝑝2𝑦

)︀
2𝑚̃

− 𝜔̃𝐿𝑧 +

+
𝑚̃𝜔̃2

2
(𝑥2 + 𝑦2) + 𝜇B𝜎𝑧𝐵

}︃
𝜓 = 𝐸𝜓, (16)

with
𝑚̃ =

𝑚𝑒(︀
1 + 𝑒Θ𝐵

4𝑐~
)︀2 , 𝜔̃ =

𝑒𝐵~+ 𝑐𝜂

2𝑐~𝑚̃
(︀
1 + 𝑒Θ𝐵

4𝑐~
)︀,

1

2
𝑚̃𝜔̃2 =

1

2𝑚𝑒

(︂
𝑒𝜂𝐵

2𝑐~
+

𝜂2

4~2
+
𝑒2𝐵2

𝑐24

)︂
.

(17)

We assume that 𝜔̃ is the deformed cyclotron fre-
quency, where, in the Θ → 0, 𝜂 → 0 limits, 𝜔̃ is
reduced to 𝜔𝑐

2 = 𝑒𝐵
2𝑐𝑚𝑒

.
On the other hand, in the case of atomic hydrogen,

the electron is bound to a proton by the Coulomb
potential 𝐴⋆

0, which is given by

𝐴⋆
0 =

𝑒

4𝜋𝜖0

𝑒√︁
𝑥2 + 𝑦2 + Θ2

4~2 (𝑝2𝑥 + 𝑝2𝑦)− Θ
~ 𝐿𝑧

. (18)

Our system looks like a two-dimensional harmonic
oscillator with an additional interaction (−𝜔̃𝐿𝑧 +
+𝜇B𝜎𝑧𝐵). This system corresponds to the Landau

level problem, it corresponds to the motion of a
charged particle in the 𝑥𝑦 plane that is subjected to
the action of a uniform magnetic field (in the symmet-
ric gauge) oriented along the axis (Oz). This means
that the particle is in interaction with its orbital
and spin angular momenta. The Hamiltonian from
Eq. (16) can be written as

𝐻𝑛𝑐
Pauli = 𝐻ℎ𝑜

𝑛𝑐 − 𝜔̃𝐿𝑧 + 𝜇B𝜎𝑧𝐵. (19)

This problem will be solved simply by introducing
the operators of creation and annihilation of a har-
monic oscillator. Thus, we define

𝑎 =
1

2

√︂
𝜔̃

~
(𝑥− 𝑖𝑦) +

𝑖

2

√︂
1

~𝜔̃
(𝑝𝑥 − 𝑖𝑝𝑦),

𝑏 =
1

2

√︂
𝜔̃

~
(𝑥+ 𝑖𝑦) +

𝑖

2

√︂
1

~𝜔̃
(𝑝𝑥 + 𝑖𝑝𝑦),

(20)

with

𝑎† =
1

2

√︂
𝜔̃

~
(𝑥+ 𝑖𝑦)− 𝑖

2

√︂
1

~𝜔̃
(𝑝𝑥 + 𝑖𝑝𝑦),

𝑏† =
1

2

√︂
𝜔̃

~
(𝑥− 𝑖𝑦)− 𝑖

2

√︂
1

~𝜔̃
(𝑝𝑥 − 𝑖𝑝𝑦).

(21)

The above equations satisfy the commutation rela-
tions[︀
𝑎, 𝑎†

]︀
=
[︀
𝑏, 𝑏†

]︀
= 1. (22)

In terms of the ladder operators (20), (21) our
Hamiltonian terms can be re-written as

𝐿𝑧 = ~
(︀
𝑎†𝑎− 𝑏†𝑏

)︀
, (23)

𝐻ℎ𝑜
𝑛𝑐 = ~𝜔̃

(︀
𝑎†𝑎+ 𝑏†𝑏+ 1

)︀
− ~𝜔̃

(︀
𝑎†𝑎− 𝑏†𝑏

)︀
=

= 2~𝜔̃
(︂
𝑏†𝑏+

1

2

)︂
. (24)

Eigenstates of our Hamiltonian are labeled by the
number 𝑗 of excitation quanta of the oscillator 𝑎, and
the number 𝑛 of excitation quanta of the oscillator 𝑏,

𝑎†𝑎 | 𝑛, 𝑗⟩ = 𝑗 | 𝑛, 𝑗⟩ and 𝑏†𝑏 | 𝑛, 𝑗⟩ = 𝑛 | 𝑛, 𝑗⟩, (25)

where both 𝑛 and 𝑗 can take on any positive integer
value. Therefore, our Pauli system becomes{︀
~𝜔̃
(︀
3𝑏†𝑏− 𝑎†𝑎+ 1

)︀
+ 𝜇B𝜎𝑧𝐵

}︀
| 𝑛, 𝑗⟩ = 𝐸 | 𝑛, 𝑗⟩,

(26)

ISSN 2071-0194. Ukr. J. Phys. 2021. Vol. 66, No. 9 773



I. Haouam

where ±1 are the eigenvalues of 𝜎𝑧. Therefore, the
energy spectrum of our system (discretely quantized)
reads

𝐸 = ~𝜔̃ (3𝑛− 𝑗 + 1)± 𝜇B𝐵. (27)

The effect of the phase-space noncommutativity is
reduced in 𝜔̃. Thus, by using Eq. (17), we have

𝐸𝑛,𝑗 (Θ, 𝜂)=
𝑒𝐵~+ 𝑐𝜂

2𝑐𝑚𝑒

(︂
1+

𝑒Θ𝐵

4𝑐~

)︂
(3𝑛− 𝑗+1)±𝜇B𝐵.

(28)

The above spectrum is a bit different from that
obtained in ref. [24] in the limit of 𝜂 → 0. However,
the slight difference is, because the authors considered
the magnetic field term proportional to 1

2𝑚𝑒
. In the

limits of Θ → 0 and 𝜂 → 0, the noncommutative
energy spectrum becomes a commutative one, i.e.,
that of a commutative Landau system [25].

After finding the energy spectrum, we now find the
wave function. The time-independent Pauli equation
(16) reads{︃
−~2

2𝑚̃

(︂
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2

)︂
− 𝜔̃𝐿𝑧 +

+
𝜔̃2𝑚̃

2
𝑟2 + 𝜇B𝜎𝑧𝐵

}︃
𝜓 = 𝐸𝜓, (29)

with 𝑟 =
√︀
𝑥2 + 𝑦2. Now, we use cylindrical coordi-

nates (𝑟,Φ) to solve the corresponding Pauli equa-
tion. The wave function 𝜓 (𝑟,Φ) can be given by

𝜓 (𝑟,Φ) = 𝑅 (𝑟) 𝑒𝑖𝑚Φ, (30)

knowing that 𝑚 = 0,±1,±2,±3, ... are the eigenval-
ues of the orbital angular momentum operator 𝐿𝑧. By
replacing Eq. (30) in Eq. (29), we obtain{︃
−~2

2𝑚̃

(︂
1

𝑟

𝑑

𝑑𝑟
+
𝑑2

𝑑𝑟
− 𝑚2

𝑟2

)︂
− 𝜔̃𝑚+

+
𝜔̃2𝑚̃

2
𝑟2 + 𝜇B𝜎𝑧𝐵

}︃
𝑅 = 𝐸𝑅. (31)

We can now solve the two-dimensional Pauli equa-
tion by assuming a new functional form for 𝑅 (𝑟)
which is

𝑅 (𝑟) =
𝒴 (𝑟)√
𝑟
, (32)

and choosing the lower eigenvalue of 𝜎𝑧. Thus, the
resulting equation for 𝒴 (𝑟) is{︃
− 1

2𝑚̃

𝑑2

𝑑𝑟2
+
𝑚2 − 1

4

2𝑚̃𝑟2
−𝑚𝜔̃+

+
𝑚̃𝜔̃2𝑟2

2
− 𝜇B𝐵

}︃
𝒴 = 𝐸𝒴. (33)

We have used natural units with ~ = 𝑐 = 𝑒 = 1 to
simplify this part only. Let us find the corresponding
wave functions. We can re-write the left-hand side of
Eq. (33) in the form 𝒜1𝒜2, with

𝒜1 =
𝑑

𝑑𝑟
−
(︂|𝑚|+ 1

2

𝑟

)︂
+ 𝑚̃𝜔̃𝑟,

𝒜2 = − 𝑑

𝑑𝑟
−
(︂|𝑚| − 1

2

𝑟

)︂
+ 𝑚̃𝜔̃𝑟,

(34)

where the decomposition holds, if |𝑚| ≤ 0, which
leads to 𝐸0 ≥ 0. The equality 𝐸0 = 0 exists, if and
only if the solution of the equation 𝒜𝜓0 (𝑟) = 0. Thus,(︂
𝑑

𝑑𝑟
−
(︂|𝑚|+ 1

2

𝑟

)︂
+ 𝑚̃𝜔̃𝑟

)︂
𝜓0 (𝑟) = 0. (35)

Hence,

𝑑𝜓0 (𝑟)

𝜓0 (𝑟)
=

(︂|𝑚|+ 1
2

𝑟
− 𝑚̃𝜔̃𝑟

)︂
𝑑𝑟. (36)

We solve the above equation to find

𝜓0 (𝑟) = 𝑘0𝑟
|𝑚|+ 1

2 exp
[︂
−1

2
𝑚̃𝜔̃𝑟2

]︂
=

= 𝑘0𝑟
|𝑚|+ 1

2 exp
[︂
− 𝐵 + 𝜂

4 + Θ𝐵
𝑟2
]︂
, (37)

where 𝑘0 is the normalization factor, 𝜓0 (𝑟) is square
integrable, as the polynomial factor is dominated by
the exponential, and the overall integral is conver-
gent. In the limits of Θ → 0 and 𝜂 → 0, the above
result reduces to the commutative one, which corre-
sponds to that of ref. [26] (with a little difference in
“4” instead of “2”. In our calculations𝐴 ∝ 𝐵

2 (the sym-
metric gauge), whereas the author of the mentioned
work considered 𝐴 ∝ 𝐵), and it is given by

𝜓0 (𝑟) = 𝑘0𝑟
|𝑚|+ 1

2 exp
[︂
−𝐵

4
𝑟2
]︂
. (38)
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3. Semiclassical Partition
Function and Thermodynamic Properties
in Noncommutative Phase-Space

In the language of the classical treatment, we in-
vestigate the thermodynamic properties of the two-
dimensional noncommutative Pauli equation using
the semiclassical partition function. We initially focus
on the calculation of the semiclassical partition func-
tion 𝒵. Our studied system is semiclassical, where the
Hamiltonian is split as follows:

ℋ2𝐷
Pauli = 𝐻classic +𝐻𝑛𝑐𝑙,𝜎, (39)

with 𝐻𝑛𝑐𝑙,𝜎 = 𝜇B𝜎𝑧𝐵. Therefore, the noncommuta-
tive partition function is separable into two indepen-
dent parts, as followed from our work Ref. [27]:

𝒵 = 𝑍𝑐𝑙𝑍𝑛𝑐𝑙, (40)

where 𝑍𝑛𝑐𝑙 is the non-classical part of the partition
function. To study our non-classical partition func-
tion, we assume that the passage between noncommu-
tative classical mechanics and noncommutative quan-
tum mechanics can be realized through the following
generalized Dirac quantization condition [28, 29]:

{𝑓, 𝑔} =
1

𝑖~
[𝐹,𝐺], (41)

where 𝐹 , 𝐺 stand for the operators associated with
classical observables 𝑓 , 𝑔, and {,} stands for the Pois-
son bracket. Using the condition above, we obtain
from Eq. (1) that{︀
𝑥𝑛𝑐𝑗 , 𝑥𝑛𝑐𝑘

}︀
= Θ𝑗𝑘,{︀

𝑝𝑛𝑐𝑗 , 𝑝𝑛𝑐𝑘
}︀
= 𝜂𝑗𝑘,{︀

𝑥𝑛𝑐𝑗 , 𝑝𝑛𝑐𝑘
}︀
= 𝛿𝑗𝑘 +

Θ𝑗𝑙𝜂𝑙𝑘

4~2 = 𝛿𝑗𝑘.

(42)

It is important to mention that, in terms of the
classical limit, Θ𝜂

4~2 ≪ 1 (check ref. [29]). Thus,{︀
𝑥𝑛𝑐𝑗 , 𝑝𝑛𝑐𝑘

}︀
= 𝛿𝑗𝑘. Now based on the proposal that

the noncommutative observables 𝐹𝑛𝑐 corresponding
to the commutative one 𝐹 (𝑥, 𝑝) can be defined by
[23, 30, 31]

𝐹𝑛𝑐 = 𝐹 (𝑥𝑛𝑐, 𝑝𝑛𝑐). (43)

For non-interacting particles, the classical partition
function in the noncommutative phase-space for 𝑁
particles is written as follows [27, 28]:

𝑍𝑐𝑙 =
1

𝑁 !(2𝜋~̃)2𝑁

∫︁
𝑒−𝛽𝐻classic𝑑2𝑁𝑥𝑛𝑐𝑑2𝑁𝑝𝑛𝑐. (44)

Let 1
𝑁 ! be Gibbs’s correction factor considered

due to accounting for the indistinguishability, which
means that there are𝑁 ! ways of arranging𝑁 particles
at 𝑁 sites; 1

~̄2 is the appropriate factor that makes the
volume of the noncommutative phase-space dimen-
sionless; 𝛽 is defined as 1

𝐾B𝑇 , and 𝐾B is the Boltz-
mann constant.

Using Eq. (40), we may derive the important ther-
modynamic quantities such as the Helmholtz free
energy

𝐹 = − 1

𝛽
ln𝒵, (45)

and the average energy

𝑈 ≡ 𝑁 ⟨𝜀⟩ = − 𝜕

𝜕𝛽
ln𝒵, (46)

where 𝜀 is the mean energy, which is given by
− 𝜕

𝜕𝛽 ln𝒵1. The specific heat (heat capacity) is

𝐶𝑣 =
𝜕

𝜕𝑇
⟨𝜀⟩, (47)

and the entropy reads

𝑆 = −𝜕𝐹
𝜕𝑇

= −𝐾Bln𝒵
𝛽2

+
1

𝛽

𝜕

𝜕𝑇
ln𝒵. (48)

Now for a single particle, the noncommutative clas-
sical partition function is given by

𝑍𝑐𝑙,1 =
1

~̃2

∫︁
𝑒−𝛽𝐻classic(𝑥,𝑝)𝑑2𝑥𝑛𝑐𝑑2𝑝𝑛𝑐, (49)

where 𝑑2 is a shorthand notation serving as a remin-
der that the 𝑥 and 𝑝 are vectors in two-dimensional
phase-space. The relation between Eqs. (44) and (49)
is given by the formula

𝑍𝑐𝑙 =
(𝑍𝑐𝑙,1)

𝑁

𝑁 !
. (50)

From Eq. (5), we simply have

𝑑2𝑥𝑛𝑐𝑑2𝑝𝑛𝑐 =

(︂
1− Θ𝜂

4~2

)︂
𝑑2𝑥𝑑2𝑝. (51)

We have also ~̃ ∼ △𝑥𝑛𝑐△𝑝𝑛𝑐, which is given by

~̃2 = ~2
(︂
1 +

Θ𝜂

2~2

)︂
+𝒪(Θ2𝜂2). (52)
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Following Eq. (49), we now present the single-par-
ticle noncommutative classical partition function as

𝑍𝑐𝑙,1=
1

~̃2

∫︁
𝑒
−𝛽

[︂
𝑝2𝑥+𝑝2𝑦

2𝑚̃ −𝜔̃𝐿𝑧+
𝑚̃𝜔̃2

2 (𝑥2+𝑦2)
]︂
𝑑2𝑥𝑛𝑐𝑑2𝑝𝑛𝑐.

(53)

We should mention again (as we emphasized in our
previous work [27]) that it is always possible within
the classical limit to factorize our Hamiltonian into
momentum and position terms. Thus, we have

𝑍𝑐𝑙,1 =
1

~̃2

∫︁
𝑒−𝛽

(𝑝2𝑥+𝑝2𝑦)

2𝑚̃ ×

× 𝑒−𝛽 𝑚̃𝜔̃2

2 (𝑥2+𝑦2)𝑒𝛽𝜔̃𝐿𝑧𝑑2𝑝𝑛𝑐𝑑2𝑥𝑛𝑐. (54)

Using the same method used in our previous work
[27], which depends on expanding exponentials con-
taining 𝜔̃, and considering terms up to the second
order in 𝜔̃, we find

𝑍𝑐𝑙,1 =
1

~̃2

∫︁
𝑒
− 𝛽

2

[︂
𝑝2𝑥+𝑝2𝑦

𝑚̃

]︂(︂
1 + 𝛽𝜔̃𝐿𝑧 +

1

2
𝛽2𝜔̃2𝐿2

𝑧

)︂
×

×
(︂
1− 𝛽𝜔̃2 𝑚̃

2
(𝑥2 + 𝑦2)

)︂
𝑑2𝑝𝑛𝑐𝑑2𝑥𝑛𝑐. (55)

Knowing that(︂
1− Θ𝜂

4~2

)︂(︂
1− Θ𝜂

2~2

)︂
= 1− 3Θ𝜂

4~2
+𝒪(Θ2 + 𝜂2), (56)

we have the convenient expression of 𝑍𝑐𝑙,1

𝑍𝑐𝑙,1 =
1− 3Θ𝜂

4~2

ℎ2

∫︁
𝑒
− 𝛽

2

[︂
𝑝2𝑥+𝑝2𝑦

𝑚̃

]︂
𝑑2𝑝𝑑2𝑥+

+

(︁
1− 3Θ𝜂

4~2

)︁
ℎ2

𝛽𝜔̃

∫︁
𝑒
− 𝛽

2

[︂
𝑝2𝑥+𝑝2𝑦

𝑚̃

]︂
𝐿𝑧𝑑

2𝑝𝑑2𝑥+

+

(︁
1− 3Θ𝜂

4~2

)︁
ℎ2

𝛽2𝜔̃2

∫︁
𝑒
− 𝛽

2

[︂
𝑝2𝑥+𝑝2𝑦

𝑚̃

]︂
𝐿2
𝑧𝑑

2𝑝𝑑2𝑥−

−

(︁
1− 3Θ𝜂

4~2

)︁
ℎ2

𝛽𝜔̃2

∫︁
𝑒
− 𝛽

2

[︂
𝑝2𝑥+𝑝2𝑦

𝑚̃

]︂
(𝑥2 + 𝑦2)𝑑2𝑝𝑑2𝑥. (57)

On the right-hand side of the above equation, the
second integral goes to zero, the third and fourth in-
tegrals cancel each other. Then, by using the known

integral of the Gaussian function
∫︀
𝑒−𝑎𝑥2

𝑑𝑥 =
√︀

𝜋
𝑎 ,

we find

𝑍𝑐𝑙,1 =
1− 3Θ𝜂

4~2

ℎ2

∫︁
𝑑2𝑥𝑒

− 𝛽
2

[︂
𝑝2𝑥+𝑝2𝑦

𝑚̃

]︂
𝑑2𝑝 =

=
𝑙2
(︁
1− 3Θ𝜂

4~2

)︁
𝛬2
(︀
1 + 𝑒Θ𝐵

4𝑐~
)︀2 , (58)

with
∫︀
𝑑2𝑥 = 𝑙2, 𝛬 = ℎ (2𝜋𝑚𝑒𝐾B𝑇 )

− 1
2 are the area

and the thermal de Broglie wavelength, respectively.
We also propose another method based on the

substitution of variables with the Jacobian matrix
to compute integral (53), explained in Appendix A,
which gives the same results.

The non-classical partition function for 𝑁 particles
is given by

𝑍𝑛𝑐𝑙 = 𝑍𝑁
𝑛𝑐𝑙,1=

(︃ ∑︁
𝜎𝑧=±1

𝑒𝛽𝜇B𝜎𝑧𝐵

)︃𝑁
=2𝑁cosh𝑁 (𝛽𝜇𝐵𝐵).

(59)

It is worth to note that, for a canonical ensemble
that is classical and discrete, the canonical partition
function is defined using the summation, as in the
case of 𝐻𝑛𝑐𝑙,𝜎. But, for a canonical ensemble that is
classical and continuous, the canonical partition func-
tion is defined using the integration.

Finally, the Pauli partition function (40) for a sys-
tem of 𝑁 particles in the two-dimensional noncom-
mutative phase-space is

𝒵 =
2𝑁 𝑙2𝑁

𝛬2𝑁𝑁 !

(︁
1− 3Θ𝜂

4~2

)︁𝑁
(︀
1 + 𝑒𝐵Θ

8𝑐~
)︀2𝑁 cosh𝑁 (𝛽𝜇B𝐵). (60)

In the vanishing limit of the noncommutativity,
i.e. Θ → 0, 𝜂 → 0, the expression for 𝒵 reduces to
that of the usual commutative phase-space, which is

𝒵 =
2𝑁 𝑙2𝑁

𝛬2𝑁𝑁 !
cosh𝑁 (𝛽𝜇B𝐵). (61)

Following relations (45, 46, 47, 48), and (60), we
can express the thermodynamic quantities in the non-
commutative phase-space. Thus, we have

𝐹𝑛𝑐=−𝑁
𝛽

ln

⎡⎣2𝑙2
𝛬2

(︁
1− 3Θ𝜂

4~2

)︁
(︀
1 + 𝑒𝐵Θ

8𝑐~
)︀2 cosh (𝛽𝜇B𝐵)

⎤⎦+1

𝛽
ln𝑁 !,

(62)
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where ln𝑁 ! ≈ 𝑁 ln𝑁 −𝑁 ,

𝑆𝑛𝑐 =
𝐾B𝑁

𝛽2

{︃
1 +

ln𝑁 !

𝑁
+ 𝛽𝜇B𝐵 tanh (𝛽𝜇B𝐵)−

− ln

[︃
2𝑙2

𝛬2

(︁
1− 3Θ𝜂

4~2

)︁
(︀
1 + 𝑒𝐵Θ

8𝑐~
)︀2 cosh (𝛽𝜇B𝐵)

]︃}︃
, (63)

𝑈𝑛𝑐 = 𝑁

[︂
1

𝛽
− 𝜇B𝐵 tanh (𝛽𝜇B𝐵)

]︂
, (64)

⟨𝜀𝑛𝑐⟩ = 1

𝛽
− 𝜇B𝐵 tanh (𝛽𝜇B𝐵), (65)

𝐶𝑛𝑐
𝑣 = −𝐾B

[︃
1

𝛽2
+

(𝜇B𝐵)
2

cosh2 (𝛽𝜇B𝐵)

]︃
. (66)

In the vanishing limit of the noncommutativity, the
result of this paper will be reduced to that of the
commutative phase space. Namely,

𝐹 = −𝑁
𝛽

ln
[︂
2𝑙2

𝛬2
cosh (𝛽𝜇B𝐵)

]︂
+

1

𝛽
ln𝑁 !, (67)

as well

𝑆 =
𝐾B𝑁

𝛽2

{︂
1 +

ln𝑁 !

𝑁
+ 𝛽𝜇B𝐵 tanh (𝛽𝜇B𝐵)−

− ln

[︂
2𝑙2

𝛬2
cosh (𝛽𝜇B𝐵)

]︂}︂
. (68)

Through the higher derivatives, we can go deeper
and calculate the rest of the thermodynamic prop-
erties, using the obtained partition function, such as
the temperature 𝑇 , pressure 𝑃 , magnetization ⟨𝑀⟩,
and chemical potential 𝜇.

4. Conclusion

In this work, we have discussed the problem of a
charged particle with a spin that interacts with an
electromagnetic field and moves in a two-dimensional
noncommutative phase-space, by considering a con-
stant magnetic field perpendicular to the plane. The
approach that we have took to map the noncommu-
tative problem to the equivalent commutative one
is the Bopp-shift transformation. We found the en-
ergy spectrum, which is discretely quantized and the
wave function of the two-dimensional noncommuta-
tive Pauli equation. Here, we can say that we success-
fully examined the influence of the noncommutativ-
ity on the problem in question. In addition, according

to Eq. (17), we can see an emerge of a modified fre-
quency 𝜔̃, which represents the effect of the noncom-
mutativity on the cyclotron frequency. In the limits
Θ → 0 and 𝜂 → 0, the noncommutative results reduce
to those for the usual commutative phase-space.

Furthermore, within the classical treatment, some
classical statistical quantities are determined in the
two-dimensional noncommutative phase-space using
a semiclassical partition function from the Pauli sys-
tem of the one-particle and 𝑁 -particle systems in two
dimensions, all according to the canonical ensemble
theory. It is shown that the Helmholtz free energy and
entropy were significantly affected by the noncommu-
tativity of the phase space. In contrast, the specific
heat and average energy showed no dependence on
the noncommutativity.

Note that result (58) is of the classical Maxwell–
Boltzmann gas, as this happens in the classical cal-
culation of the Landau problem. On the other hand,
the quantum partition function for the Landau prob-
lem represents the de Haas–van Alphen effect.

The results of the present work can be used to ex-
pand the study onto a possible generalization to make
consideration of anyons, i.e., particles with arbitrary
non-integer spin, which can exist in a two-dimensional
space.

The author is very thankful to the anonymous ref-
eree for the constructive comments and suggestions,
which led to improving the article.

APPENDIX A.
Integration using the substitution
of multiple variables with a Jacobian matrix

Here is a method based on the substitution of multiple vari-
ables with the determinant of the Jacobian matrix to compute
integral (53).

The substitution of multiple variables is as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑥 = 𝑥,

𝑦 = 𝑦,

𝑃𝑥 = 𝑝𝑥 + 𝑚̃𝜔̃𝑦,

𝑃𝑦 = 𝑝𝑦 − 𝑚̃𝜔̃𝑥,

(A1)

where integral (53) is

Int=
1

~̃2

∫︁
𝑒
−𝛽

[︃
𝑝2𝑥+𝑝2𝑦

2𝑚̃
−𝜔̃𝐿𝑧+

𝑚̃𝜔̃2

2 (𝑥2+𝑦2)

]︃
𝑑2𝑥𝑛𝑐𝑑2𝑝𝑛𝑐 =

=
1− 3Θ𝜂

4~2

ℎ2

∫︁
𝑒
−𝛽

[︃
𝑝2𝑥+𝑝2𝑦

2𝑚̃
−𝜔̃𝐿𝑧+

𝑚̃𝜔̃2

2 (𝑥2+𝑦2)

]︃
×
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× 𝑑𝑥𝑑𝑦𝑑𝑝𝑥𝑑𝑝𝑦 =
1− 3Θ𝜂

4~2

ℎ2

∫︁
𝑒
− 𝛽

2𝑚̃

[︁(︁
𝑃2
𝑥+𝑃2

𝑦

)︁]︁
×

× |Det J (𝑥, 𝑦, 𝑃𝑥, 𝑃𝑦)| 𝑑𝑥𝑑𝑦𝑑𝑃𝑥𝑑𝑃𝑦 . (A2)

The corresponding Jacobian matrix is

J (𝑥, 𝑦, 𝑃𝑥, 𝑃𝑦) =

⎡⎢⎢⎢⎢⎢⎢⎣

𝜕𝑥
𝜕𝑥

𝜕𝑥
𝜕𝑦

𝜕𝑥
𝜕𝑝𝑥

𝜕𝑥
𝜕𝑝𝑦

𝜕𝑦
𝜕𝑥

𝜕𝑦
𝜕𝑦

𝜕𝑦
𝜕𝑝𝑥

𝜕𝑦
𝜕𝑝𝑦

𝜕𝑃𝑥
𝜕𝑥

𝜕𝑃𝑥
𝜕𝑦

𝜕𝑃𝑥
𝜕𝑝𝑥

𝜕𝑃𝑥
𝜕𝑝𝑦

𝜕𝑃𝑦

𝜕𝑥

𝜕𝑃𝑦

𝜕𝑦

𝜕𝑃𝑦

𝜕𝑝𝑥

𝜕𝑃𝑦

𝜕𝑝𝑦

⎤⎥⎥⎥⎥⎥⎥⎦ =

=

⎡⎣ 1 0 0 0
0 1 0 0
0 𝑚̃𝜔̃ 1 0

−𝑚̃𝜔̃ 0 0 1

⎤⎦. (A3)

The determinant of the Jacobian matrix 𝐽 is

DetJ (𝑥, 𝑦, 𝑃𝑥, 𝑃𝑦) =

⃒⃒⃒⃒
⃒⃒ 1 0 0 0

0 1 0 0
0 𝑚̃𝜔̃ 1 0

−𝑚̃𝜔̃ 0 0 1

⃒⃒⃒⃒
⃒⃒ =

= 1

⃒⃒⃒⃒
⃒ 1 0 0
𝑚̃𝜔̃ 1 0
0 0 1

⃒⃒⃒⃒
⃒ = ⃒⃒⃒

1 0
0 1

⃒⃒⃒
= 1. (A4)

Therefore, integral (A1) becomes

=
1− 3Θ𝜂

4~2

ℎ2

∫︁
𝑒−

𝛽
2𝑚̃ [(𝑃2

𝑥+𝑃2
𝑌 )]𝑑𝑃𝑥𝑑𝑃𝑦

∫︁
𝑑𝑥𝑑𝑦 =

=
1− 3Θ𝜂

4~2

ℎ2
(︁
1 + 𝑒Θ𝐵

4𝑐~

)︁2 2𝜋𝑚𝑒

𝛽

∫︁
𝑑𝑥𝑑𝑦. (A5)

By using the known integral of the Gaussian function∫︀
𝑒−𝑎(𝑥2+𝑦2)𝑑𝑥 = 𝜋

𝑎
, with

∫︀
𝑑2𝑥 = 𝑙2, 𝛬 = ℎ (2𝜋𝑚𝑒𝐾B𝑇 )−

1
2 ,

we find

Int =
𝑙2

(︁
1− 3Θ𝜂

4~2

)︁
𝛬2

(︁
1 + 𝑒Θ𝐵

4𝑐~

)︁2 . (A6)
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I. Хауам

ДВОВИМIРНЕ РIВНЯННЯ ПАУЛI
В НЕКОМУТАТИВНОМУ ФАЗОВОМУ ПРОСТОРI

Розглянуто рiвняння Паулi в двовимiрному некомутативно-
му фазовому просторi в присутностi постiйного магнiтного

поля, перпендикулярного площинi. Некомутативну задачу
зведено до еквiвалентної комутативної шляхом двовимiр-
них перетворень зi зсувом Боппа. Знайдено спектр енер-
гiї i хвильову функцiю для двовимiрного некомутативного
рiвняння Паулi в разi, коли задача може бути перетворе-
на в задачу Ландау. У класичнiй границi знайдено неко-
мутативнi напiвкласичнi статистичнi суми для одно- i 𝑁 -
частинкових систем. Розраховано такi термодинамiчнi ве-
личини, як вiльна енергiя Гельмгольца, середня енергiя, те-
плоємнiсть i ентропiя в некомутативному i комутативному
фазових просторах. Вивчено вплив некомутативностi фазо-
вого простору на систему Паулi.

Ключ о в i с л о в а: некомутативний фазовий простiр, рiв-
няння Паулi, зсув Боппа, напiвкласична статистична сума,
термодинамiчнi властивостi.

ISSN 2071-0194. Ukr. J. Phys. 2021. Vol. 66, No. 9 779


