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TWO-DIMENSIONAL PAULI
EQUATION IN NONCOMMUTATIVE PHASE-SPACE

We study the Pauli equation in a two-dimensional noncommutative phase-space by considering
a constant magnetic field perpendicular to the plane. The noncommutative problem is related
to the equivalent commutative one through a set of two-dimensional Bopp-shift transforma-
tions. The energy spectrum and the wave function of the two-dimensional noncommutative
Pauli equation are found, where the problem in question has been mapped to the Landau prob-
lem. In the classical limit, we have derived the noncommutative semiclassical partition function
for one- and N-particle systems. The thermodynamic properties such as the Helmholtz free
energy, mean enerqy, specific heat and entropy in noncommutative and commutative phase-
spaces are determined. The impact of the phase-space noncommutativity on the Pauli system
1s successfully examined.
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1. Introduction

In a few last years, there has been a growing interest
in the study of two-dimensional systems, which have
become an active area of researches because of their
implications in the nanofabrication technology. Such
as in graphene [1, 2] and other materials like Weyl
semimetals [3|, semiconductor quantum wells, quan-
tum Hall and fractional Hall effects [4, 5], as well the
Dirac relativistic oscillator [6], etc. However, despite
the experimental success, it is very important to un-
derstand these systems from a theoretical point of
view in which quantum mechanics plays the central
role. Motivated by the efforts to understand string
theory [7] and black hole models and to describe the
quantum gravitation [8-10] using a noncommutative
geometry and by trying to have drawn a consider-
able attention to the phenomenological implications,
we concentrate on studying the problem of a non-
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relativistic spin-1/2 particle in the presence of an elec-
tromagnetic field within a two-dimensional noncom-
mutative phase-space. We also mention several arti-
cles devoted to the noncommutative geometry, partic-
ularly in quantum field theory [11, 12] and quantum
mechanics [13, 14].

We present the essential formulas of a noncommu-
tative algebra we need in this work. At very tiny
scales (the string scale), the position coordinates
do not commute with one another, neither do the
momenta.

In the two-dimensional noncommutative phase-
space, the operators of coordinates z'/“ and momenta
p;“ satisty the following Heisenberg-like commutation

relations:
(27 3] = [wj, 2a], = 1Oesn,
(P3¢, ppc] = [pjs prl, = e,
[a7°, pp] = [z, px], = ihdji,
The noncommutative phase-space can be obtained
using the ordinary coordinates x; and momenta p;
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operators and with replacing the ordinary product by
the Moyal xproduct, which can be used as follows [15]:

F (2", p") G (¢, p") = F (2,p) x G (2,p) =
= HOunde it Il F (20, o) G (wrom), (2)

where F, G are two functions that vary in terms of z,
p and are assumed to be infinitely differentiable. The
effective Planck constant (deformed Planck constant)
is given by [16,17]

ﬁ—h(lJrB;), (3)

where 4@7@ < 1 is the condition of consistency in the
usual commutative spacetime quantum mechanics. It
is expected to be generally satisfied, since the small
parameters © and 7 are of the second order. ¢;; is the
identity matrix, €;; is the Levi-Civita symbol, with
€12 = —€21 = 1, €11 = €22 = 0. The quantities @, n
are the real-valued noncommutative parameters with
dimensions of length? and momentum?, respectively,
which are assumed to be extremely small. Note that
the experimental and theoretical investigations of the
noncommutative systems of noncommutativity con-
stants led to obtaining the following upper bound on
the value of the noncommutative parameters [17]

© <4107 m?;, 5 =< 1.76.107% Kg?m2s .  (4)

In addition, the recent studies [18-20] revealed that
the noncommutative parameters associated with dif-
ferent particles are not the same in noncommutative
quantum mechanics.

The set of operators z7'¢, p7“ is related to the set
Z;, pj in usual quantum mechanics by a non-canonical
linear transformation referred to as Bopp-shift as fol-
lows [21]:

nc 1

=& — Opy; ne = £ 3
x T = 5Oy et =Dat oy -
nc __ ]‘ . nc __ 1
Y=y + 2h@px, Py" =Py = 55

The quantum mechanical system will become
merely a noncommutative one with the use of Eq. (5)
or (2). Let H (z,p) be the Hamiltonian operator of
the usual quantum system, then the corresponding
noncommutative Schrédinger equation is given by

H (z,p) x 1 (z,p) =

O i
=H (xi— Thjpj’ pi+72’£$j>7/1:E1/f~ (6)
772

Noting that the noncommutative term always can
be treated as a perturbation in quantum mechanics.

In the ordinary two-dimensional commutative
phase-space, the canonical variables x; and p; satisfy
the following canonical commutation relations:

[, xk] =0,
[pjapk} :O7 (jak:172) (7)
[‘Tjapk] = Z716]’167

The paper is organized as follows. The formulation
of the two-dimensional noncommutative geometry is
briefly outlined in Section I. The exact solution to
the two-dimensional noncommutative Pauli equation
is presented in Section II. Section III presents the
thermodynamic properties of the problem in question,
concluding with some remarks.

2. Two-Dimensional
Noncommutative Pauli Equation

The time-independent Pauli equation is given by [22]

1
2me

2
(P~ SA) ¢+ o+ ppo B =Ey,  (8)

where ¥ = (¢ z/Jg)T is a two-component spinor, p =
= ¢hV is the momentum operator, m. and e are the
mass and charge of the electron, and c is the speed
of light. As well, up = g‘;li is the Bohr magneton,
B is the applied magnetic field vector, A (r,t) is the
vector potential, ¢ (r, t) is the Coulomb potential, and
o = (0,0y,0,) are the Pauli matrices.

The time-independent Pauli equation in the non-
commutative phase-space is given by

1 2 _ _
{2m (p"c - EA*) +ep + ppo - B} Y =Ey, (9)

where 1) is the noncommutative spinor wave func-
tion. Let the magnetic field B be oriented along the
axis (Oz), which is often referred to as the Landau
system. Based on the proposal that noncommutative
observables correspond to the commutative ones [23],
we have the following deduced noncommutative sym-
metric gauge:

A* = (A;,AZ,A:) = (_ync,mnc’o)) Aa = e¢* =0.

(10)

o |
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Here, the electron is unbound ¢ = 0. Using
Eq. (10), with [pl'¢, A}] = 0, Eq. (9) becomes

nc)2 nc A * 2 (A* 2 B B
LD E AL | oY = B,
2Me cMe 2¢*m
(11)
where o, = +£1. It is easy to check that
2
ne n n
(P )2:pi+p§_ﬁLz+ﬁ(I2+y2)7 (12)
B2 62 C]
2 2 2 2 2
=T e G G2 ) - S
ne -Bfo© , 2 ) 2
P AT = 2{25 (Vs +py) + 55 (0¥ +2%) =
On
— 14+ —) L., 14
(+52) w0
with
L. = (xXDPp), =py&— pay. (15)

Using the three-equations (12)—(14) above, the
Pauli equation reads

{(pi +p7)

o —wL, +

o> _ _
+ (@ +y7) +uBazB}w = EY, (16)
with
. Me 5o eBh+cn
- e®B 20 - ~ e© B\’
(L+<P) 2¢him 1+ 557) an

—m

1_ 5 1 [(enB n? e?B?
w” = + — + .
2 2m. \ 2ch ~ 4h? c?4

We assume that @ is the deformed cyclotron fre-
quency, where, in the © — 0, n — 0 limits, @ is
reduced to < = 23‘26.

On the other hand, in the case of atomic hydrogen,
the electron is bound to a proton by the Coulomb

potential Aj, which is given by

N e e

0= :
meo [z 4y 4 @52+ p2) - OL.

(18)

Our system looks like a two-dimensional harmonic
oscillator with an additional interaction (—&L.+
+ upo.B). This system corresponds to the Landau
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level problem, it corresponds to the motion of a
charged particle in the xy plane that is subjected to
the action of a uniform magnetic field (in the symmet-
ric gauge) oriented along the axis (Oz). This means
that the particle is in interaction with its orbital
and spin angular momenta. The Hamiltonian from
Eq. (16) can be written as

lgguli = H,};bg - a)Lz + /'LBJZB' (19)

This problem will be solved simply by introducing
the operators of creation and annihilation of a har-
monic oscillator. Thus, we define

RN PN SN

a—2 7 r =1y B mpa: 1Dy ), 20)

3V T Ty 2“771:1 Dz T 1Dy ),

with
1 /@ . ) 1 .

aT:§ E(x—i—zy)—é\/ﬁ(px-i-zpy), o
1 /o 7 1

| P e SN WA il _

The above equations satisfy the commutation rela-
tions
la,a’] = [b,b7] = 1. (22)

In terms of the ladder operators (20), (21) our
Hamiltonian terms can be re-written as

L. =h(a'a—b'D), (23)
H! = h (a'a+ b0+ 1) — ha (afa — b'b) =
= 2hi (bT b+ ;) (24)

Eigenstates of our Hamiltonian are labeled by the
number j of excitation quanta of the oscillator a, and

the number n of excitation quanta of the oscillator b,
a'a|n,j)=7|n,j) and b'b [ n,j) =n|n,j), (25)

where both n and j can take on any positive integer
value. Therefore, our Pauli system becomes

{ha (3b'0 — a’a + 1) + ppo.B} | n,j) = E | n, j),
(26)
773
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where +1 are the eigenvalues of o,. Therefore, the
energy spectrum of our system (discretely quantized)

reads
E=hv@Bn—j+1)+ upB. (27)

The effect of the phase-space noncommutativity is
reduced in @. Thus, by using Eq. (17), we have

e©B
4ch

eBh+ ¢
En,j (@,77): iU (

2cme >(3n / ) B

The above spectrum is a bit different from that
obtained in ref. [24] in the limit of n — 0. However,
the slight difference is, because the authors considered
the magnetic field term proportional to ﬁ In the
limits of ® — 0 and n — 0, the noncommutative
energy spectrum becomes a commutative one, i.e.,
that of a commutative Landau system [25].

After finding the energy spectrum, we now find the
wave function. The time-independent Pauli equation

(16) reads

—h? [ 0? 0?
Py (ax * ay) — oLt
~2 ~

w*m
2

+ r? 4+ /J,BO'ZB}¢ = Ex), (29)

with r = /22 + y2. Now, we use cylindrical coordi-
nates (r,®) to solve the corresponding Pauli equa-
tion. The wave function ¢ (r, ®) can be given by

W (r,®) = R(r)e™?, (30)

knowing that m = 0,41, 4+2, 43, ... are the eigenval-
ues of the orbital angular momentum operator L,. By
replacing Eq. (30) in Eq. (29), we obtain

e e ey
2m \rdr dr 12 wm
%m

T

r? + MBO'ZB}R = ER. (31)

We can now solve the two-dimensional Pauli equa-
tion by assuming a new functional form for R (r)
which is

(32)

and choosing the lower eigenvalue of .. Thus, the
resulting equation for Y (r) is

{ 1 & m?-1 .
T o= —mwt

C2mdr? T 2mr2
mi2r?
g MBB}y =FE). (33)

We have used natural units with h=c=e =1 to
simplify this part only. Let us find the corresponding
wave functions. We can re-write the left-hand side of
Eq. (33) in the form A;.As, with

d 1
A= — — <|m|—|—2> + o,

r

(34)
1
Ay = ,i — (|m|2> + mar,

dr T

where the decomposition holds, if |m| < 0, which
leads to Ey > 0. The equality Ey = 0 exists, if and
only if the solution of the equation Ay () = 0. Thus,

d |m| + % N -
<dr — ( " 2) +mwr) o (r) = 0. (35)
Hence,

7 1
dz/Jo (r) = <|m| 3 ﬁuh“) dr. (36)
o (1) T

We solve the above equation to find
B (1) — foplml T 1o —
Yo (1) = kor Zexp | —gmwr” | =

B

= kor‘7’L|+%eXp [—4 Jr—E)nBrQ} (37)

where kg is the normalization factor, v (r) is square
integrable, as the polynomial factor is dominated by
the exponential, and the overall integral is conver-
gent. In the limits of ® — 0 and n — 0, the above
result reduces to the commutative one, which corre-
sponds to that of ref. [26] (with a little difference in
“4” instead of “2”. In our calculations A o< £ (the sym-
metric gauge), whereas the author of the mentioned
work considered A « B), and it is given by

Yo (r) = korlmH%exp [—er]. (38)
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3. Semiclassical Partition
Function and Thermodynamic Properties
in Noncommutative Phase-Space

In the language of the classical treatment, we in-
vestigate the thermodynamic properties of the two-
dimensional noncommutative Pauli equation using
the semiclassical partition function. We initially focus
on the calculation of the semiclassical partition func-
tion Z. Our studied system is semiclassical, where the
Hamiltonian is split as follows:

H%’guli = Hlassic + anl,07 (39)

with Hye o = ppo.B. Therefore, the noncommuta-
tive partition function is separable into two indepen-
dent parts, as followed from our work Ref. [27]:

Z = chchla (40)

where Z,, is the non-classical part of the partition
function. To study our non-classical partition func-
tion, we assume that the passage between noncommu-
tative classical mechanics and noncommutative quan-
tum mechanics can be realized through the following
generalized Dirac quantization condition [28, 29]:
{f.9)= = [F.G, (1)
ih
where F', G stand for the operators associated with
classical observables f, g, and {,} stands for the Pois-

son bracket. Using the condition above, we obtain
from Eq. (1) that

{afe,ape} = O,
{pie ppe} = njr,
Ok
{7 PR0) = 0 + =™ = de-
It is important to mention that, in terms of the
classical limit, 2% <« 1 (check ref. [29]). Thus,

an?

{x?c,p};c} = J,i. Now based on the proposal that
the noncommutative observables F™¢ corresponding
to the commutative one F(z,p) can be defined by

[23, 30, 31
FTEC — F(xnc’pnc).

(42)

(43)

For non-interacting particles, the classical partition
function in the noncommutative phase-space for N
particles is written as follows [27, 28]:

1
- - / efﬁHclaSS;C d2N$ncd2anC. (44)
N(2mh)2N

cl
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Let % be Gibbs’s correction factor considered
due to accounting for the indistinguishability, which
means that there are N! ways of arranging N particles
at N sites; ;115 is the appropriate factor that makes the
volume of the noncommutative phase-space dimen-
sionless; [ is defined as ﬁ, and Ky is the Boltz-
mann constant.

Using Eq. (40), we may derive the important ther-
modynamic quantities such as the Helmholtz free
energy

F- _%mz, (45)

and the average energy
U=N(E)=—% (46)

where ¢ is the mean energy, which is given by
—(%anl. The specific heat (heat capacity) is

0
Co = = (6), (47)
and the entropy reads

oF KglnZ 1 0
S = T Ba—Tan. (48)

Now for a single particle, the noncommutative clas-
sical partition function is given by

1
ch,l — ﬁig /veflgj'lclassic(Cﬂ,P)dQZZ:’nCdenc7 (49)

where d? is a shorthand notation serving as a remin-
der that the x and p are vectors in two-dimensional
phase-space. The relation between Eqgs. (44) and (49)
is given by the formula

(ch’ )N
Zo = Tll (50)
From Eq. (5), we simply have
On
2 _nc j2, nc __ 2 2
d“z"d*p (W)d:cdp. (51)
We have also i ~ Az Ap™©, which is given by
2= (1+ 21+ o). (52)
2h?
775
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Following Eq. (49), we now present the single-par-
ticle noncommutative classical partition function as

1 _3 [F’i"'_pg —oL, 4 me? (12+y2)]
ch 1= ﬁ e 2m 2 d2xn0d2pnc'

(53)

We should mention again (as we emphasized in our
previous work [27]) that it is always possible within
the classical limit to factorize our Hamiltonian into
momentum and position terms. Thus, we have

(pl +py
cl 1= = 2m

« 6—6%(:8 +y )eﬁuDdeQpnchmnc. (54)

Using the same method used in our previous work
[27], which depends on expanding exponentials con-

taining w, and considering terms up to the second
order in @, we find

1 -8 [pif’”g] 1
ch,l = ? /6 : " (1 +ﬁa}Lz + 252@2[/5) X

X (1 - B&P%(aﬁ + y2)> d*predane.

(55)

Knowing that

On On 36 2 2
( W)(l 27#) 1 ﬁJrO(@ + %), (56)

we have the convenient expression of Z 1

1— 30n B [pifpi}
Zein h;ﬁz /e L 1 @PpdPe +
(1 — 3677) 5 [P2+p2
72 _B|PzTPy
+h724ﬁ®/e { " ]dede%Jr
(1- %) _p [
+T4hﬁ2&2/e 2[ " }Lﬁdede
@4,%3) [t
- L B&? / L (@ A dPpdPe. (57)

On the right-hand side of the above equation, the
second integral goes to zero, the third and fourth in-
tegrals cancel each other. Then, by using the known

776

integral of the Gaussian function [ e~ dz = VE,
we find

1— 3@;7 7ﬁ|:pﬁ+p§i|
4k 2 2 m 2
Ze1 = - 2 /dme d°p =

2 (1-52)

RN

(58)

with [d?z = 1%, A = h(QWmEKBT)_% are the area
and the thermal de Broglie wavelength, respectively.

We also propose another method based on the
substitution of variables with the Jacobian matrix
to compute integral (53), explained in Appendix A,
which gives the same results.

The non-classical partition function for NV particles
is given by

N
chl = Z’rjle:( Z eﬁlﬂaﬂ';B) :2NCOShN (BMBB)

o.—=t1
(59)

It is worth to note that, for a canonical ensemble
that is classical and discrete, the canonical partition
function is defined using the summation, as in the
case of Hy . But, for a canonical ensemble that is
classical and continuous, the canonical partition func-
tion is defined using the integration.

Finally, the Pauli partition function (40) for a sys-
tem of N particles in the two-dimensional noncom-
mutative phase-space is

N
30n
9N 2N (1 — —2)
n cosh™ (BupB).

N

(60)

In the vanishing limit of the noncommutativity,
ie. ® — 0, n — 0, the expression for Z reduces to
that of the usual commutative phase-space, which is

2Nl2N N
Z= AQNN'COSh (BupB). (61)
Following relations (45, 46, 47, 48), and (60), we

can express the thermodynamic quantities in the non-
commutative phase-space. Thus, we have

30
e N [ (-5
eB®)2

5 A2 (1 + 8ch

1
cosh (BupB) +BlnN!,

(62)
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where InN! =~ NInN — N,
KN InN!
Sne = ;2{1 + HT + BupB tanh (BupB) —

_ 397
212 (( h ))2 cosh (B B)
SCh

} &

- [ - nnBtanh (35| (64

(") = B — ppBtanh (BupB), (65)
ne _ i (MBB)Q

G =Ko lﬁz cosh? (BupB) | (66)

In the vanishing limit of the noncommutativity, the
result of this paper will be reduced to that of the
commutative phase space. Namely,

N 212
F= —Eln {AQ cosh (BMBB)] BlnN!7 (67)
as well
KgN InN!
S = ;2 {1 + HT + BupBtanh (BupB) —
2
—In {3112 cosh (ﬁ,uBB)]}. (68)

Through the higher derivatives, we can go deeper
and calculate the rest of the thermodynamic prop-
erties, using the obtained partition function, such as
the temperature T, pressure P, magnetization (M),
and chemical potential p.

4. Conclusion

In this work, we have discussed the problem of a
charged particle with a spin that interacts with an
electromagnetic field and moves in a two-dimensional
noncommutative phase-space, by considering a con-
stant magnetic field perpendicular to the plane. The
approach that we have took to map the noncommu-
tative problem to the equivalent commutative one
is the Bopp-shift transformation. We found the en-
ergy spectrum, which is discretely quantized and the
wave function of the two-dimensional noncommuta-
tive Pauli equation. Here, we can say that we success-
fully examined the influence of the noncommutativ-
ity on the problem in question. In addition, according

ISSN 2071-0194. Ukr. J. Phys. 2021. Vol. 66, No. 9

to Eq. (17), we can see an emerge of a modified fre-
quency @, which represents the effect of the noncom-
mutativity on the cyclotron frequency. In the limits
© — 0 and n — 0, the noncommutative results reduce
to those for the usual commutative phase-space.

Furthermore, within the classical treatment, some
classical statistical quantities are determined in the
two-dimensional noncommutative phase-space using
a semiclassical partition function from the Pauli sys-
tem of the one-particle and N-particle systems in two
dimensions, all according to the canonical ensemble
theory. It is shown that the Helmholtz free energy and
entropy were significantly affected by the noncommu-
tativity of the phase space. In contrast, the specific
heat and average energy showed no dependence on
the noncommutativity.

Note that result (58) is of the classical Maxwell-
Boltzmann gas, as this happens in the classical cal-
culation of the Landau problem. On the other hand,
the quantum partition function for the Landau prob-
lem represents the de Haas—van Alphen effect.

The results of the present work can be used to ex-
pand the study onto a possible generalization to make
consideration of anyons, i.e., particles with arbitrary
non-integer spin, which can exist in a two-dimensional
space.

The author is very thankful to the anonymous ref-
eree for the constructive comments and suggestions,
which led to improving the article.

APPENDIX A.
Integration using the substitution
of multiple variables with a Jacobian matrix

Here is a method based on the substitution of multiple vari-
ables with the determinant of the Jacobian matrix to compute
integral (53).

The substitution of multiple variables is as follows:

T =ux,
y=1y,
Py = pz + mwy,
Py =py

(A1)
— mux,

where integral (53) is

2
):| d2xncd2pnc

=Y &L, +"W (22 +y?)

X

T



1. Haouam

_ 397

1 _ B 2, p2
x dxdydp,dp, = Tgfﬂ/e = [(P2+P2)] x
x |Det J (z,y, Pr, Py)| dedydP,dPy. (A2)
The corresponding Jacobian matrix is
9z Oz Oz Oz
oz oy Opx  Opy
9y 9y 9y Oy
ox oy Opg op
I @y, Pos Py) = | op. op, op, BPZ =
oz By  Opa Opy
apP, 9P, 0P, 0P,
9z 9y Opx Opy
1 0 00
0 1 00
=1 0 ma 1ol (A3)
—mw 0 01
The determinant of the Jacobian matrix J is
1 0 00
0 1 00
DetJ(z,v, P, Py)=| o o 1 0 =
-mw 0 01
1 00
:1m~10:‘(1)(1’:, (A4)
0 01
Therefore, integral (A1) becomes
1_% — o [(P24+P2)]
= T e 2m e Y IIdPdPy | drdy =
_ an2 w;ne /d:cdy. (A5)

2

h? (1 + 1%5’)

By wusing the known integral of the Gaussian function

Je @ ) de — T with [d2z = 12, A = h (2rmeKpT) ™2,
we find

2 (1 227)

Int = 5 -
OB
A2 (1 + e4ch)

(A6)
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1. Xayam

JBOBUMIPHE PIBHAHHSA ITAVJII
B HEKOMYTATHBHOMY ®A30BOMY ITPOCTOPI

Posrnsnyro piBusnas [laysi B 1BoBUMipHOMY HEKOMYTATUBHO-
My a30BOMY IIPOCTOPi B IPUCYTHOCTI ITOCTIiHOrO MarHiTHOroO

ISSN 2071-0194. Ukr. J. Phys. 2021. Vol. 66, No. 9

[10JIs1, EePIeHAUKYJIsApHOro miomuni. HekomyTaTuBHy 3ama4dy
3BE€JIEHO JI0 €KBiBaJIEHTHOI KOMYTATHBHOI IIJISIXOM JIBOBHUMip-
HUX II€peTBOpeHDb 31 3cyBoM Bomnma. 3maiineno cmexTp emep-
rif i XBUWIbOBY (DYHKINIO I JBOBUMIPHOI'O HEKOMYTATHBHOI'O
piBusinas Ilayni B pa3si, kosm 3ajada Moxke OyTH IepeTBOpe-
Ha B 3ajady Jlanmay. Y KjIacu4Hill rpaHuIl 3HaNEHO HEKO-
MyTaTUBHI HAIiBKJIACUYHI CTATHUCTUYHI CyMH JJisi OmHO- i N-
YaCTHHKOBUX CHUCTeM. Po3paxoBaHO Taki TepMoOIMHAMIYHI Be-
JIMYUHM, sIK BlJIbHA eHeprisa ['esibMrosibiia, cepeiHst eHeprisi, Te-
IUIOEMHICTD i €HTPOIIiA B HEKOMYTaTHBHOMY I KOMYTaTHBHOMY
daszoBux mpocTopax. BuBueHo BIIINB HEKOMYTATUBHOCTI dazo-
BOTO mpocTopy Ha cucremy Ilayuri.

Katowoei cao6a: HEKOMyTaTUBHUI (a30BUil pocTip, pis-
usuHs [layni, 3cys Bonma, HaniBk/IacudHa CTATUCTUYHA CyMa,
TEPMOJIMHAMIYHI BJIACTUBOCTI.
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