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THE EFFECT OF SUPERPOSITION
ON THE QUANTUM FEATURES OF THE CAVITY
RADIATION OF A THREE-LEVEL LASER

We study the statistical and squeezing properties of the cavity light produced by a degenerate
three-level laser with the use of the solution of the pertinent quantum Langevin equation. Mo-
reover, applying the density operator to the cavity radiation superposition, we investigated
the quantum properties of the superposed cavity light beams generated by a pair of degenerate
three-level lasers. Superposing the cavity radiation increases the mean and the variance of the
photon number without affecting the quadrature squeezing. It is observed that the degree of
squeezing of the separate cavity radiation, as well as the superposed cavity radiation, increases
with the rate at which the atoms are injected into the cavity. We have also shown that the mean
photon number of the superposed cavity radiation is the sum of the mean photon numbers of
the individual cavity radiation. However, the variance of the photon number of the superposed
cavity radiation turns out to be four times that of the component cavity radiation.
K e yw o r d s: superposition, squeezing, photon statistics.

1. Introduction

Quantum properties of the cavity radiation produced
by various quantum optical systems have obtained
a considerable attention in recent years [1–10]. One
of such systems is a degenerate three-level laser. In
it, the crucial role is played by the atomic coherence
which can be introduced either by initially prepared
three-level atoms injected into a cavity in a coherent
superposition of the top and bottom levels [2–8, 10]
or by coupling these levels by strong coherent light
[9,11–13]. When the atom decays from the top level to
a bottom level via the intermediate level, two photons
are produced. If these two photons have the same
frequency, the three-level laser is referred to as de-
generate. Otherwise, it is called non-degenerate. Re-
cently, the atomic coherence was also induced by elec-
trically pumped three-level lasers [1, 14]. We define a
three-level laser as a quantum optical system in which
the injected three-level atoms in a cascade configu-
ration are initially prepared in a coherent superpo-
sition of the top and bottom levels and coupled to
a vacuum reservoir via a single port mirror. A light
mode to be in a squeezed state, if either the change
in plus quadrature or the change in minus quadra-
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ture is less than one. Because of a less noise in one
quadrature component, the squeezed states of light
have important applications in information process-
ing systems like quantum computations [15], photon
detection [16], and in the field of high-precision mea-
surements [17].

Three-level lasers under certain conditions are good
sources of squeezed light due to the correlation be-
tween the photons emitted from the top and inter-
mediate levels, when the atom decays to the bot-
tom level from the top-level via the intermediate level
[10]. For instance, using the steady-state solution of
the equation of evolution of the moments of the cav-
ity mode operators, Alebachew [9] considered a three-
level laser, where the atomic coherence is induced by
initially prepared three-level atoms in a coherent su-
perposition of the top and bottom levels, and the
cavity modes are driven by coherent fields. He pre-
dicted that the system generates intensively entan-
gled and two-mode squeezed light. On the other hand,
the atomic coherence in a two-mode three-level cas-
cade atomic system introduced by coupling the top
and the bottom levels by an intense coherent field
was studied in [19]. Squeezed states of light can also
be realizable in two-level atoms. For example, Bashu
and Kassahun [20] studied a cavity mode driven by
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coherent light and interacting with a two-level atom,
by employing the steady-state solution of the perti-
nent quantum Langevin equation. They found that
the system generates squeezed light with the maxi-
mum quadrature squeezing being 50% below the shot-
noise limit. In addition to three-level lasers and two-
level atomic systems, the squeezed state of light can
be generated by the quantum optical systems with
parametric oscillation [21] and four-wave mixing [22].

In this work, we introduce a model that generates
bright and squeezed light from a pair of degenerate
three-level lasers. It has been shown for a long period
that the three-level laser is a well-known source of
squeezed light. In this contribution, we show that su-
perposing the cavity radiations produced from a pair
of degenerate three-level lasers substantially enhances
the mean and the variance of the photon number. Ho-
wever, it has no effect on the quadrature squeez-
ing. Applying the solution of the quantum Langevin
equation, we first calculate the mean photon num-
ber, variance of the photon number, quadrature vari-
ance, and global and local quadrature squeezings of
the individual cavity light beams. We will also ana-
lyze the squeezing and the statistical properties of a
pair of the superposed cavity radiation from a pair of
degenerate three-level lasers. Employing the density
operator for the superposed cavity radiation, we cal-
culate the mean and variance of the photon number,
as well as the quadrature variance and global quadra-
ture squeezing of the superposed cavity radiation. In
particular, we are interested in the effect of superpos-
ing cavity light beams on the quantum features of the
superposed cavity radiation.

2. Single Cavity Radiation

In this section, we demonstrate the quadrature
squeezing and statistical properties of the cavity ra-
diation produced by one of the three-level lasers.

2.1. The master equation

Here, we consider a three-level laser that consists of
a cavity with degenerate three-level atoms in a cas-
cade configuration. They are injected at a constant
rate 𝑟𝑎 into this cavity coupled to a vacuum reser-
voir and are removed after a large enough decay time
𝜏 . We denote the top, intermediate, and bottom lev-
els of the three-level atoms by eigenkets |𝑎⟩, |𝑏⟩, and
|𝑐⟩, respectively. We assume the cavity mode to be

at resonance with the two transitions |𝑎⟩ → |𝑏⟩ and
|𝑏⟩ → |𝑐⟩, with the direct transition between |𝑎⟩ and
|𝑐⟩ being dipole-forbidden. The Hamiltonian describ-
ing the interaction between a three-level atom and
the cavity mode in the dipole and rotating wave ap-
proximations is expressible as

𝐻̂ = 𝑖𝑔
[︀
(|𝑎⟩⟨𝑏|+ |𝑏⟩⟨𝑐|)𝑎̂− 𝑎̂†(|𝑏⟩⟨𝑎|+ |𝑐⟩⟨𝑏|)

]︀
, (1)

where 𝑔 is the coupling constant between the three-
level atom and the cavity mode, and 𝑎̂ is the annihi-
lation operator for the cavity mode. We assume the
initial state of a single three-level atom to be

|𝜓𝐴(0)⟩ = 𝐶𝑎|𝑎⟩+ 𝐶𝑐|𝑐⟩, (2)

where 𝐶𝑎 and 𝐶𝑐 are the probability amplitudes for
the atom to be initially in the top and bottom lev-
els. The corresponding initial density operator is

𝜌𝐴(0) = 𝜌(0)𝑎𝑎 |𝑎⟩⟨𝑎|+ 𝜌(0)𝑎𝑐 |𝑎⟩⟨𝑐|+ 𝜌(0)*𝑎𝑐 |𝑐⟩⟨𝑎|+

+ 𝜌(0)𝑐𝑐 |𝑐⟩⟨𝑐|, (3)

where 𝜌(0)𝑎𝑎 and 𝜌(0)𝑐𝑐 are the probabilities of the three-
level atom to be initially on the top and bottom levels,
respectively, and 𝜌(0)𝑎𝑐 is the injected atomic coherence
of the three-level atom. Moreover, we introduce a pa-
rameter 𝜂 and relate the probability of the atom to
be initially on the top level with this parameter as

𝜌(0)𝑎𝑎 =
1− 𝜂

2
. (4)

It then follows that

𝜌(0)𝑐𝑐 =
1 + 𝜂

2
(5)

and
𝜌(0)𝑎𝑐 =

1

2

√︀
1− 𝜂2. (6)

Now with the aid of Eq. (1) and employing the lin-
ear and adiabatic approximation schemes, the master
equation of the cavity mode is found, following the
procedure presented in [23], to be

𝑑𝜌

𝑑𝑡
=
𝐴𝜌

(0)
𝑎𝑎

2
(2𝑎̂†𝜌𝑎̂− 𝜌𝑎̂𝑎̂† − 𝑎̂𝑎̂†𝜌)+

+
1

2
(𝐴𝜌(0)𝑐𝑐 + 𝜅)(2𝑎̂𝜌𝑎̂† − 𝜌𝑎̂†𝑎̂− 𝑎̂†𝑎̂𝜌)+

+
𝐴𝜌

(0)
𝑎𝑐

2
(𝜌𝑎̂†2 + 𝑎̂†2𝜌− 2𝑎̂†𝜌𝑎̂†)+

762 ISSN 2071-0194. Ukr. J. Phys. 2021. Vol. 66, No. 9



The Effect of Superposition on the Quantum Features

+
𝐴𝜌

(0)
𝑐𝑎

2
(𝜌𝑎̂2 + 𝑎̂2𝜌− 2𝑎̂𝜌𝑎̂), (7)

in which

𝐴 =
2𝑔2𝑟𝑎
Γ

(8)

is the linear gain coefficient, Γ is the spontaneous de-
cay constant taken to be the same for the transitions
of the atom from |𝑎⟩ → |𝑏⟩ and |𝑏⟩ → |𝑐⟩, and 𝜅 is
the cavity decay rate. We proceed to obtain the equa-
tion of evolution for the moments of the cavity mode
variables. To this end, using the master equation, we
readily get the following equations:

𝑑

𝑑𝑡
⟨𝑎̂(𝑡)⟩ = −𝜆

2
⟨𝑎̂(𝑡)⟩, (9)

𝑑

𝑑𝑡
⟨𝑎̂†(𝑡)⟩ = −𝜆

2
⟨𝑎̂†(𝑡)⟩, (10)

𝑑

𝑑𝑡
⟨𝑎̂(𝑡)𝑎̂(𝑡)⟩ = −𝜆⟨𝑎̂2(𝑡)⟩+𝐴𝜌(0)𝑎𝑐 , (11)

𝑑

𝑑𝑡
⟨𝑎̂†(𝑡)𝑎̂(𝑡)⟩ = −𝜆⟨𝑎̂†(𝑡)𝑎̂(𝑡)⟩+𝐴𝜌(0)𝑎𝑎 , (12)

𝑑

𝑑𝑡
⟨𝑎̂(𝑡)𝑎̂†(𝑡)⟩ = −𝜆⟨𝑎̂(𝑡)𝑎̂†(𝑡)⟩+𝐴𝜌(0)𝑐𝑐 + 𝜅, (13)

where

𝜆 = 𝐴(𝜌(0)𝑐𝑐 − 𝜌(0)𝑎𝑎 ) + 𝜅. (14)

In view of Eq. (9), we can write

𝑑

𝑑𝑡
𝑎̂(𝑡) = −𝜆

2
𝑎̂(𝑡) + 𝐹 (𝑡), (15)

where 𝐹 (𝑡) is the vacuum noise operator whose two-
time correlation properties are given by [24]

⟨𝐹 (𝑡)⟩ = 0, (16)

⟨𝐹 †(𝑡)𝐹 (𝑡
′
)⟩ = 𝐴𝜌(0)𝑎𝑎 𝛿(𝑡− 𝑡

′
), (17)

⟨𝐹 (𝑡)𝐹 †(𝑡′)⟩ = (𝐴𝜌(0)𝑐𝑐 + 𝜅)𝛿(𝑡− 𝑡
′
). (18)

2.2. Photon statistics

We now determine the mean and the variance of the
photon number of one of the cavity radiation com-
ponents. To this end, we represent the mean photon
number of the cavity light as

𝑛̄ = ⟨𝑎̂†𝑎̂⟩. (19)

Fig. 1. Scheme of a degenerate three-level laser in the cascade
configuration

In view of the solutions of Eq. (15) and its adjoint,
the mean photon number takes the form

𝑛̄ = ⟨𝑎̂†(0)𝑎̂(0)⟩𝑒−𝜆𝑡 +

+

𝑡∫︁
0

𝑡∫︁
0

𝑒
−𝜆(2𝑡−𝑡

′
−𝑡

′′
)

2 ⟨𝐹 †(𝑡
′′
)𝐹 (𝑡

′
)⟩𝑑𝑡

′
𝑑𝑡

′′
. (20)

Let us carry out the integration and use the two-time
correlation properties described in Eq. (17) along
with the assumption that the cavity light is initially
in a vacuum state. Then the mean photon number of
the cavity light turns out to be

𝑛̄ =
𝐴(1− 𝜂)

2(𝐴𝜂 + 𝜅)
(1− 𝑒−𝜆𝑡). (21)

This result is identical to the expression obtained by
Fessha [3] in the absence of the parametric interac-
tion. It is clearly seen in Fig. 2 that the mean photon
number of the cavity radiation is maximum, when
the probabilities of the injected atoms to be initially
in the top and bottom levels are equal. We also note
that the mean photon number of the cavity radiation
decreases with the atomic coherence and increases
with the rate at which the atoms are injected into
the cavity.

We now proceed to calculate the variance of the
photon number for the cavity light coupled to the
vacuum reservoir. The variance of the photon number
for the cavity light reads

(Δ𝑛)2 = ⟨𝑛̂2⟩ − ⟨𝑛̂⟩2 (22)
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Fig. 2. Plots of the steady-state mean photon number versus
𝜂 for 𝜅 = 0.8 and 𝐴 = 5 (solid curve) and 𝐴 = 10 (dashed
curve)

Fig. 3. Plots of the steady-state mean photon number 𝑛̄ (solid
curve) and the variance in the photon number Δ𝑛2 (dashed
curve) versus 𝜂 for 𝜅 = 0.8 and the linear gain coefficient 𝐴 = 5

Fig. 4. Plots of the steady-state photon number variance
(Δ𝑛2) versus 𝜂 for 𝜅 = 0.8, 𝐴 = 5 (solid curve), and 𝐴 = 10

(dashed curve)

and can also be written as

(Δ𝑛)2 = ⟨𝑎̂†(𝑡)𝑎̂(𝑡)𝑎̂†(𝑡)𝑎̂(𝑡)⟩ − ⟨𝑎̂†(𝑡)𝑎̂(𝑡)⟩2. (23)

Since 𝑎̂ is a Gaussian variable with a vanishing mean,
we have

(Δ𝑛)2 = ⟨𝑎̂†(𝑡)𝑎̂(𝑡)⟩⟨𝑎̂(𝑡)𝑎̂†(𝑡)⟩+ ⟨𝑎̂†2(𝑡)⟩⟨𝑎̂2(𝑡)⟩. (24)

Employing the solution of the quantum Langevin
equation and using the two-time correlation proper-

ties of the noise operators, we can easily show that

⟨𝑎̂⟩ = 0, (25)

⟨𝑎̂(𝑡)𝑎̂†(𝑡)⟩ =
(︂
𝐴(𝜂 − 1)

2(𝐴𝜂 + 𝜅)

)︂
𝑒−𝜆𝑡 +

+
𝐴(1 + 𝜂) + 2𝜅

2(𝐴𝜂 + 𝜅)
, (26)

⟨𝑎̂2(𝑡)⟩ = 𝐴(
√︀
1− 𝜂2)

2(𝐴𝜂 + 𝜅)
(1− 𝑒−𝜆𝑡), (27)

⟨𝑎̂†2(𝑡)⟩ = (𝐴
√︀
1− 𝜂2)

2(𝐴𝜂 + 𝜅)
(1− 𝑒−𝜆𝑡). (28)

Now, by substituting the steady-state values of
Eqs. (21), (26), (27), and (28) into Eq. (24), we have

Δ𝑛2 =
𝐴(1− 𝜂)

2(𝐴𝜂 + 𝜅)

𝐴(1 + 𝜂) + 2𝜅

2(𝐴𝜂 + 𝜅)
+
𝐴2(1− 𝜂2)

4(𝐴𝜂 + 𝜅)2
. (29)

As can be seen from Fig. 3, the variance of the pho-
ton number is larger than the mean photon num-
ber. So, we realize that the cavity radiation exhibits
super-Poissonian photon statistics. In Fig. 4, we plot
the steady-state photon number variance of the cav-
ity radiation against 𝜂. We see from this figure that
the fluctuations of the photon number variance de-
crease with the parameter 𝜂. This implies that, like
the mean photon number, the fluctuation of the pho-
ton number decreases with the atomic coherence. Mo-
reover, it is observed from Fig. 4 that there is no
photon number fluctuations of the cavity radiation
at 𝜂 = 1 regardless of the value of the linear gain co-
efficient, 𝐴. We then infer from this result that all the
atoms are initially on the bottom level. Hence, there
is no possibility for the emission of photons, as well
as for photon number fluctuations.

We also note that the variance of the photon num-
ber increases with the linear gain coefficient, 𝐴.

2.3. Quadrature squeezing

We now analyze the squeezing properties of the cavity
light produced by a degenerate three-level laser cou-
pled to a vacuum reservoir. In order to investigate the
squeezing properties, we firstly determine the quadra-
ture variance of the cavity radiation generated by a
three-level laser. To this end, the squeezing properties
of the cavity light are described by two quadrature
operators, defined as

𝑎̂+ = 𝑎̂+ 𝑎̂† (30)
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and

𝑎̂− = 𝑖(𝑎̂† − 𝑎̂). (31)

The variances of the quadrature operators are de-
fined by

(Δ𝑎±)
2 = ⟨𝑎̂2±⟩ − ⟨𝑎̂±⟩2. (32)

In view of Eqs. (30) and (31), we have

(Δ𝑎±)
2 = ±⟨𝑎̂†2⟩+ ⟨𝑎̂†𝑎̂⟩+ ⟨𝑎̂𝑎̂†⟩ ± ⟨𝑎̂2⟩. (33)

Now, with regard for Eqs. (21), (26), (27), and (28),
the quadrature variances take the form

(Δ𝑎±)
2 =

𝐴(1− 𝜂)

2(𝐴𝜂 + 𝜅)
(1− 𝑒−𝜆𝑡) +

𝐴(𝜂 − 1)

2(𝐴𝜂 + 𝜅)
(𝑒−𝜆𝑡)+

+
𝐴(1 + 𝜂) + 2𝜅

2(𝐴𝜂 + 𝜅)
± 𝐴(

√︀
1− 𝜂2)

(𝐴𝜂 + 𝜅)
(1− 𝑒−𝜆𝑡). (34)

In Fig. 5, the fluctuations in the minus quadrature
are below the vacuum level with enhanced fluctu-
ations in the plus quadrature. This shows that the
cavity light is in a squeezed state, and the squeezing
occurs in the minus quadrature. We next study the
squeezing properties of the cavity radiation produced
by a degenerate three-level laser coupled to a vacuum
reservoir. We determine the quadrature squeezing of
the cavity radiation in the entire frequency interval
(the global quadrature squeezing) with respect to the
quadrature variance of the vacuum state given as [1]

𝑆 =
(Δ𝑎−)

2
vac − (Δ𝑎−)

2

(Δ𝑎−)2vac
, (35)

in which (Δ𝑎−)
2
vac is the quadrature variance of the

vacuum state:

(Δ𝑎−)
2
vac = 1. (36)

Thus, substituting Eqs. (34) and (36) into (35) leads
to

𝑆 = 1−
(︂
− (𝐴

√︀
1− 𝜂2)

(𝐴𝜂 + 𝜅)
+

𝐴+ 𝜅

𝐴𝜂 + 𝜅

)︂
. (37)

Figure 6 illustrates the global quadrature squeezing
as a function of the parameter 𝜂 for different values
of the linear gain coefficient. As can be seen from this
figure, the cavity radiation is in a squeezed state for
all values of 𝜂 between 0 and 1. We also note that the

Fig. 5. Plots of the steady-state quadrature variance (Δ𝑎+)2

(dashed curve) and (Δ𝑎−)2 (solid curve) versus 𝜂 for 𝜅 = 0.8

and 𝐴 = 10

Fig. 6. Plots of the steady-state quadrature squeezing versus
𝜂 for 𝜅 = 0.8, the linear gain coefficient 𝐴 = 5 (dashed curve),
and 𝐴 = 25 (dotted curve)

quadrature squeezing of the cavity radiation increases
with the rate at which the atoms are injected into a
cavity. Moreover, it is not difficult to see from the
trends in Fig. 6 that a substantial amount of squeez-
ing can be obtained for small values of the parameter
𝜂 and large values of the linear gain coefficient. The
maximum quadrature squeezing of the cavity light
for 𝜅 = 0.8 and 𝐴 = 25 is 77.5% below the vacuum
state level.

Here, we will calculate the quadrature squeezing of
the cavity light in a given frequency interval (local
quadrature squeezing). In order to do so, we firstly
obtain the spectrum of quadrature fluctuations by the
relation [14]

𝑆±(𝜔) =
1

𝜋
Re

∞∫︁
0

⟨𝑎̂±(𝑡), 𝑎̂±(𝑡+ 𝜏)⟩𝑠𝑠𝑒𝑖(𝜔−𝜔0)𝜏𝑑𝜏, (38)

in which 𝜔0 is the central frequency of the cavity radi-
ation. The two-time correlation functions that appear
in Eq. (38) can be written applying the relation [1]

⟨𝐶, 𝐷̂⟩ = ⟨𝐶𝐷̂⟩ − ⟨𝐶⟩⟨𝐷̂⟩, (39)
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Fig. 7. The plot of local quadrature squeezing 𝑆±𝜇 versus 𝜇

for 𝜅 = 0.8, linear gain coefficient 𝐴 = 25 and 𝜂 = 0.2024

by the expression

⟨𝑎̂±(𝑡), 𝑎̂±(𝑡+ 𝜏)⟩𝑠𝑠 = ⟨𝑎̂±(𝑡)𝑎̂±(𝑡+ 𝜏)⟩𝑠𝑠 −

−⟨𝑎̂±(𝑡)⟩𝑠𝑠⟨𝑎̂±(𝑡+ 𝜏)⟩𝑠𝑠. (40)

Now, employing the solution of the quantum
Langevin equation, we easily find the following two-
time correlation functions:

⟨𝑎̂†(𝑡)𝑎̂(𝑡+ 𝜏)⟩𝑠𝑠 = ⟨𝑎̂†(𝑡)𝑎̂(𝑡)⟩𝑠𝑠𝑒−𝜆𝜏/2, (41)

⟨𝑎̂†(𝑡)𝑎̂†(𝑡+ 𝜏)⟩𝑠𝑠 = ⟨𝑎̂†2(𝑡)⟩𝑠𝑠𝑒−𝜆𝜏/2, (42)

⟨𝑎̂(𝑡)𝑎̂†(𝑡+ 𝜏)⟩𝑠𝑠 = ⟨𝑎̂(𝑡)𝑎̂†(𝑡)⟩𝑠𝑠𝑒−𝜆𝜏/2, (43)

and

⟨𝑎̂(𝑡)𝑎̂(𝑡+ 𝜏)⟩𝑠𝑠 = ⟨𝑎̂2(𝑡)⟩𝑠𝑠𝑒−𝜆𝜏/2. (44)

Thus, introducing Eqs. (41)–(44) into Eq. (40) along
with Eq. (38) and performing the integration, we re-
duce the spectrum of the quadrature fluctuations to

𝑆±(𝜔) =
1

𝜋
(Δ𝑎±)

2

(︂
𝜆/2

(𝜆/2)2 + (𝜔 − 𝜔0)2

)︂
. (45)

The variances of the quadrature operators in the
interval between 𝜔′ = −𝜇 to 𝜔′ = +𝜇 are given by

(Δ𝑎±)
2
±𝜇 =

+𝜇∫︁
−𝜇

𝑆±(𝜔
′)𝑑𝜔′. (46)

Introducing Eq. (45) into (46) and carrying out the
integration, we get

(Δ𝑎±)
2
±𝜇 =

2

𝜋
(Δ𝑎±)

2 tan−1

(︂
2𝜇

𝜆

)︂
. (47)

The local quadrature squeezing of the cavity light rel-
ative to the vacuum state is given by [1]

𝑆±𝜇 =
(Δ𝑎−)

2
±𝜇vac − (Δ𝑎−)

2
−𝜇

(Δ𝑎−)2±𝜇vac

, (48)

where (Δ𝑎−)
2
±𝜇vac is the local quadrature variance of

the vacuum state. This can be obtained by putting
𝑟𝑎 = 0 in Eq. (47). So, we have

(Δ𝑎−)
2
±𝜇vac =

2

𝜋
tan−1

(︂
2𝜇

𝜅

)︂
. (49)

Thus, substituting Eqs. (47) and (49) into Eq. (48),
we obtain

𝑆±𝜇 = 1−

(︂
− 𝐴(

√
1−𝜂2)

𝐴𝜂+𝜅 + 𝐴+𝜅
𝐴𝜂+𝜅

)︂
tan−1

(︁
2𝜇

𝜅+𝐴𝜂

)︁
tan−1

(︀
2𝜇
𝜅

)︀ .

(50)

In Fig. 7, we plot the local quadrature squeezing
versus the frequency interval 𝜇. As is displayed in this
figure, the local quadrature squeezing of the cavity
light is maximum for the value of the frequency in-
terval close to 0. One can then see that a significant
amount of squeezing is obtained for the frequency of
the cavity radiation near to the central frequency. We
can infer from this result that those cavity photons
with frequencies closest to the central frequency are
more squeezed than the rest of the cavity photons.

We recall that the maximum global quadrature
squeezing of the cavity radiation is 77.5%, and the
corresponding maximum local quadrature squeezing
of the cavity radiation using the same parameters is
found to 95.4% below the coherent state level. We
thus see that the quadrature squeezing of the cavity
radiation is raised by over 17% in the case of local
quadrature squeezing. Moreover, we observe that, as
the value of the frequency interval increases, the lo-
cal quadrature squeezing decreases and tends to the
global quadrature squeezing.

3. Superposition of a Pair
of Radiation Beams

In this section, we investigate the statistical and
squeezing properties of the superposed cavity radi-
ation produced by a pair of degenerate three-level
lasers.
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First, we obtain the 𝑄 function of the cavity radia-
tion employing the antinormally ordered characteris-
tic function. We then determine the density operator
for the superposed cavity radiation in terms of the 𝑄
function. With the aid of the resulting density opera-
tor, we calculate the mean and variance of the photon
number, as well as the quadrature squeezing of the
superposed cavity radiation. To this end, the antinor-
mally ordered characteristic function is defined by

Φ𝑎(𝑧) = 𝑇𝑟(𝜌𝑒−𝑧*𝑎̂𝑒𝑧𝑎̂
†
). (51)

Employing the completeness relation together with
the action of the annihilation operator for coherent
states [1] for operators satisfying the commutation
relation

[𝑎̂, 𝑎̂†] = 𝜇′, (52)

the antinormally ordered characteristic function in
terms of the 𝑄-function can be written as

𝜑𝑎(𝑧) =

∫︁
𝑑2𝛽𝜇′𝑄(𝜇′𝛽) exp(𝜇′𝛽*𝑧 − 𝜇′𝑧*𝛽), (53)

in which
𝑄(𝜇′𝛽) =

1

𝜋
⟨𝛽|𝜌|𝛽⟩ (54)

is the 𝑄 function.
We now proceed to obtain an explicit expression for

the 𝑄 and antinormally ordered characteristic func-
tions. Assuming 𝛼 = 𝜇′𝛽, the antinormally ordered
characteristic function can be put in the form

Φ𝑎(𝑧) =

∫︁
𝑑2𝛼

𝜇′ 𝑄(𝛼) exp(𝛼*𝑧 − 𝑧*𝛼). (55)

Because 𝑄(𝛼)
𝜇′ is the inverse Fourier transform of the

antinormally ordered characteristic function, we get

𝑄(𝛼) =
𝜇′

𝜋2

∫︁
𝑑2𝑧𝜑𝑎(𝑧) exp(𝑧

*𝛼− 𝛼*𝑧). (56)

Now, on applying the Baker–Hausdorff relation [25]
to Eq. (51) along with Eqs. (21), (26), (27) and the
fact that 𝑎̂ is a Gaussian variable with zero mean, we
readily find the antinormally ordered characteristic
function and the 𝑄 function to be

𝜑𝑎(𝑧) = exp (−𝑎𝑧*𝑧 + 𝑏(𝑧2 + 𝑧*2)/2), (57)

𝑄(𝛽) =
𝜇′

𝜋

(︂
1

𝑎2−𝑏2

)︂1/2
exp

(︂
𝑎𝛽𝛽*+𝑏(𝛽2+𝛽*2)/2

𝑎2 − 𝑏2

)︂
,(58)

Fig. 8. Schematic representation of a pair of superposed iden-
tical light beams with 𝜅 = 1 for the upper surface of the mirror,
and 𝜅 = 0 for the lower surface of the mirror

where

𝑎 =
𝐴(𝜂 − 1)𝑒−𝜆𝑡

(𝐴𝜂 + 𝜅)
+
𝐴(1 + 𝜂) + 2𝜅

𝐴𝜂 + 𝜅
(59)

and

𝑏 =
𝐴(

√︀
1− 𝜂2)

(𝐴𝜂 + 𝜅)
(1− 𝑒−𝜆𝑡). (60)

Let 𝜌′(𝑎̂†, 𝑎̂) be the density operator for one of the
cavity light beam. Expanding this density operator
in the normal order with regard for the completeness
relation, we arrive at

𝜌
′
= 𝜇′

∫︁
𝑑2𝛼𝑄

(︂
𝜇′𝛼*, 𝜇′𝛼+

𝜕

𝜕𝛼*

)︂
×

× 𝐷̂(𝛼)|0⟩⟨0|𝐷̂(−𝛼). (61)

Then the density operator for the superposition of
the first of the light beams and another one is expres-
sible as

𝜌 = 𝜇′2
∫︁
𝑑2𝛾𝑑2𝛼𝑄

(︂
𝜇′𝛾*, 𝜇′𝛾 +

𝜕

𝜕𝛾*

)︂
×

×𝑄

(︂
𝜇′𝛼*, 𝜇′𝛼+

𝜕

𝜕𝛼*

)︂
|𝛼+ 𝛾⟩⟨𝛼+ 𝛾|. (62)

3.1. Photon statistics

We proceed to determine the mean and variance of
the photon number of the superposed cavity light
beams produced by a pair of degenerate three-level
lasers coupled to a vacuum reservoir using the density
operator for the superposed cavity light beams. To
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this end, the mean photon number of a pair of super-
posed cavity light beams is expressible as

𝑛̄𝑠 = 𝜇′2
∫︁
𝑑2𝛼𝑑2𝛾𝑄

(︂
𝜇′𝛾*, 𝜇′𝛾 +

𝜕

𝜕𝛾*

)︂
×

×𝑄

(︂
𝜇′𝛼*, 𝜇′𝛼+

𝜕

𝜕𝛼*

)︂
𝑇𝑟(|𝛼+ 𝛾⟩⟨𝛼+ 𝛾|𝑐†𝑐), (63)

where

𝑐 = 𝑎̂+ 𝑏̂, (64)

with 𝑎̂ and 𝑏̂ being the annihilation operators for the
cavity modes to be superposed. This can also be writ-
ten as

𝑛̄𝑠 =
1

𝜇′

∫︁
𝑑2𝛽1𝑄

(︂
𝛽*
1 , 𝛽1 + 𝜇′ 𝜕

𝜕𝛽*
1

)︂
𝛽1𝛽

*
1 +

+
1

𝜇′

∫︁
𝑑2𝛽2𝑄

(︂
𝛽*
2 , 𝛽2 + 𝜇′ 𝜕

𝜕𝛽*
2

)︂
𝛽*
2𝛽2 +

+
1

𝜇′

∫︁
𝑑2𝛽1𝑄

(︂
𝛽*
1 , 𝛽1 + 𝜇′ 𝜕

𝜕𝛽*
1

)︂
𝛽1 ×

× 1

𝜇′ 𝑑
2𝛽2𝑄

(︂
𝛽*
2 , 𝛽2 + 𝜇′ 𝜕

𝜕𝛽*
2

)︂
𝛽*
2 +

+
1

𝜇′

∫︁
𝑑2𝛽1𝑄

(︂
𝛽*
1 , 𝛽1 + 𝜇′ 𝜕

𝜕𝛽*
1

)︂
𝛽*
1 ×

× 1

𝜇′ 𝑑
2𝛽2𝑄

(︂
𝛽*
2 , 𝛽2 + 𝜇′ 𝜕

𝜕𝛽*
2

)︂
𝛽2. (65)

We note that an operator function 𝐴(𝑎̂†, 𝑎̂) can be ex-
panded in the normal order in terms of the 𝑄 function
as [1]

⟨𝐴⟩ = 1

𝜇′

∫︁
𝑑2𝛽𝑄

(︂
𝛽*, 𝛽 + 𝜇′ 𝜕

𝜕𝛽*

)︂
𝐴𝑛(𝜇

′𝛽*, 𝜇′𝛽). (66)

The expression in Eq. (65) can then be written as

𝑛̄𝑠 = ⟨𝑎̂†1𝑎̂1⟩+ ⟨𝑎̂†2𝑎̂2⟩+ ⟨𝑎̂1⟩⟨𝑎̂†2⟩+ ⟨𝑎̂†1⟩⟨𝑎̂2⟩. (67)

The fact that the 𝑄-functions of the two-cavity radi-
ation having identical frequencies are the same and
Eq. (25) yield

𝑛̄𝑠 = 2⟨𝑎̂†𝑎̂⟩ = 2𝑛̄, (68)

in which 𝑛̄ is the mean photon number of one of the
cavity radiation beams. We then see that the mean
photon number of the superposed cavity radiation
from a pair of degenerate three-level lasers is the sum
of the mean photon numbers of the constituent cavity

radiations. We thus realize that one effect of super-
posing cavity radiation is to enhance the brightness of
the superposed cavity radiation by a factor of 2. Now,
in view of Eq. (21), the mean photon number of the
superposed cavity radiation becomes

𝑛̄𝑠 =
𝐴(1− 𝜂)

(𝐴𝜂 + 𝜅)
(1− 𝑒−𝜆𝑡). (69)

We now calculate the variance of the photon num-
ber for the superposed cavity radiation using the den-
sity operator. The variance of the photon number of
the superposed cavity light beams is expressible as

(Δ𝑛𝑠)
2 = ⟨𝑐†𝑐𝑐†𝑐⟩ − ⟨𝑐†𝑐⟩2. (70)

This can also be written as

(Δ𝑛𝑠)
2 = ⟨𝑐†2⟩⟨𝑐2⟩+ ⟨𝑐†𝑐⟩⟨𝑐𝑐†⟩. (71)

Applying the density operator for the superposed cav-
ity light beams, we easily verify the following results:

⟨𝑐†2⟩ = 𝐴(
√︀
1− 𝜂2)

(𝐴𝜂 + 𝜅)
(1− 𝑒−𝜆𝑡), (72)

⟨𝑐2⟩ =
𝐴(

√︀
1− 𝜂2)

(𝐴𝜂 + 𝜅)
(1− 𝑒−𝜆𝑡), (73)

and
⟨𝑐𝑐†⟩ = 2 +

𝐴(1− 𝜂)

(𝐴𝜂 + 𝜅)
(1− 𝑒−𝜆𝑡). (74)

Substituting Eqs. (69), (72), (73), and (74) into (71),
we find the photon number variance in the steady
state to be

(Δ𝑛𝑠)
2 =

𝐴2(1− 𝜂2)

(𝐴𝜂 + 𝜅)2
+
𝐴(1− 𝜂)

(𝐴𝜂 + 𝜅)
×

×
(︂
2𝜅+𝐴(1 + 𝜂)

𝐴𝜂 + 𝜅

)︂
= 4(Δ𝑛)2. (75)

It is clearly seen from this expression that, unlike
the mean photon number, the variance of the pho-
ton number of the superposed cavity light beams is
not the sum of the variances of the photon numbers of
each of the cavity light beams. Instead, the variances
of the superposed cavity radiation from a pair of de-
generate three-level lasers are enhanced by a factor
of 4 relative to that of the photon number variance
of one of the cavity light beams. Thus, we infer that
superposing cavity radiation has a pronounced effect
on the photon number fluctuations.
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3.2. Quadrature Squeezing

We now investigate the squeezing properties of the
superposed cavity radiation from a pair of degener-
ate three-level lasers. The quadrature operators of the
superposed cavity radiation are defined by

𝑐+ = 𝑐† + 𝑐, (76)

𝑐− = 𝑖(𝑐† − 𝑐), (77)

and the corresponding variances of the quadrature
operators of a pair of superposed cavity radiation are
given by

(Δ𝑐±)
2 = ⟨𝑐2±⟩ − ⟨𝑐±⟩2. (78)

This can also be put in the form

(Δ𝑐±)
2 = ±⟨𝑐†2⟩+ ⟨𝑐†𝑐⟩+ ⟨𝑐𝑐†⟩ ± ⟨𝑐2⟩. (79)

Thus, the substitution of Eqs. (69), (72), (73), and
(74) into (79) yields

(Δ𝑐+)
2 = 2+

(︂
2𝐴(

√︀
1− 𝜂2)

(𝐴𝜂 + 𝜅)
+

2𝐴(1− 𝜂)

(𝐴𝜂 + 𝜅)

)︂
(1−𝑒−𝜆𝑡),

(80)

(Δ𝑐−)
2 = 2+

(︂
2𝐴(1− 𝜂)

(𝐴𝜂 + 𝜅)
− 2𝐴(

√︀
1− 𝜂2)

(𝐴𝜂 + 𝜅)

)︂
(1−𝑒−𝜆𝑡).

(81)

Then, comparing Eq. (34) with Eqs. (80) and (81),
we get

(Δ𝑐±)
2 = 2(Δ𝑎±)

2. (82)

Based on this expression, we see that the quadrature
variance of the superposed cavity radiation is the sum
of the quadrature variances of each of the cavity ra-
diation components.

Let us consider the quadrature squeezing of a pair
of superposed cavity radiation beams. For 𝑟𝑎 = 0,
the quadrature variance of the superposed cavity light
beams reduces to

(Δ𝑐−)
2
vac = 2. (83)

The quadrature squeezing of a pair of superposed cav-
ity light beams relative to the quadrature variance of
the superposed vacuum state is given by

𝑆 =
(Δ𝑐−)

2
vac − (Δ𝑐−)

2

(Δ𝑐−)2vac
. (84)

Then, introducing Eq. (81) and (84), we find

𝑆 = 1−
(︂
1+

𝐴(1− 𝜂)

(𝐴𝜂 + 𝜅)
−𝐴(

√︀
1− 𝜂2)

(𝐴𝜂 + 𝜅)

)︂
(1−𝑒−𝜆𝑡). (85)

In view of Eq. (37) and (85), we note that the global
quadrature squeezing of the superposed cavity light
beams is equal to that of the individual cavity light
beams. We note that superposing the cavity light
beams does not affect the quadrature squeezing. We
realize that the quadrature squeezing is an intrinsic
property of the cavity radiation.

4. Conclusions

We have studied the quantum properties of the sep-
arate and superposed cavity radiation beams gener-
ated by degenerate three-level lasers coupled to a vac-
uum reservoir. Applying the solution of the quantum
Langevin equation, we have determined the quantum
properties of one of the cavity radiation beams. In
addition, applying the density operator to the super-
posed cavity radiation produced by a pair of degen-
erate three-level lasers, we have investigated the sta-
tistical and squeezing properties of the superposed
cavity radiation. We have observed that the mean
and the variance of the photon number, as well as
the quadrature squeezing of the cavity light, increase
with the linear gain coefficient, 𝐴. We also found that
the cavity radiation exhibits super-Poissonian photon
statistics. Moreover, we have shown that the maxi-
mum global and local quadrature squeezings of the
cavity light to be 77.5% and 95.4% below the co-
herent state level, respectively. In addition, the local
quadrature squeezing approaches the global quadra-
ture squeezing in the limit of a large frequency inter-
val. Furthermore, it has been proved that the mean
photon number of the superposed cavity light beams
is a simple sum of the mean photon numbers of the
cavity light beams, and the variance of the photon
number for superposed cavity light beams is four
times that of the variance of an individual cavity light
beam. We have also found that superposing the iden-
tical cavity light beams does not affect the quadrature
squeezing.
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ВПЛИВ СУПЕРПОЗИЦIЇ
НА КВАНТОВI ВЛАСТИВОСТI
ВИПРОМIНЮВАННЯ З ПОРОЖНИНИ
ТРИРIВНЕВОГО ЛАЗЕРА

Дослiджено статистичнi властивостi i стиснення свiтла, що
випромiнюється з порожнини за допомогою трирiвневого
лазера, на основi розв’язку вiдповiдного квантового рiвня-
ння Ланжевена. Крiм того, застосовуючи оператор густини
до суперпозицiї випромiнювання з порожнини, ми вивчили
квантовi властивостi суперпозицiї променiв свiтла вiд двох
вироджених трирiвневих лазерiв. Суперпозицiя випромiню-
вання з порожнини збiльшує середнє значення i дисперсiю
числа фотонiв, не змiнюючи квадратурного стиснення. По-
казано, що ступiнь стиснення незалежного i змiшаного ви-
промiнювання зростає зi збiльшенням швидкостi iнжекту-
вання атомiв у порожнину. Ми також знайшли, що сере-
днє число фотонiв суперпозицiї дорiвнює сумi середнiх для
окремих компонент, тодi як дисперсiя числа фотонiв при
суперпозицiї зростає в чотири рази.

Ключ о в i с л о в а: суперпозицiя, стиснення, статистика
фотонiв.
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