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TWO-MODE SQUEEZED
AND ENTANGLED LIGHT PRODUCTION
IN PARAMETRIC OSCILLATIONS

We investigate the statistical and quadrature squeezings, as well as the entanglement properties,
of a two-mode light generated by non-degenerate parametric oscillations coupled to a two-mode
squeezed vacuum reservoir, by employing the solutions of the quantum Langevin equations. It
is found that the two-mode light shows the two-mode squeezing and entanglement for all values
of the time. Moreover, it is observed that the squeezed vacuum reservoir and the growing
amplitude of the pump mode enhance the degrees of two-mode squeezing and entanglement. We
have also shown that the amounts of squeezing and entanglement are significant in a region,
where the mean photon number is higher, and the photon number correlation is lower.
K e yw o r d s: two-mode light, two-mode squeezing, entanglement, photon number correlation.

1. Introduction
Considerable attention has been paid to squeezed
states of light for the last few years [1–13]. Squeezed
states of light are characterized by the reduction of
quantum noise in one quadrature component of light
below the vacuum or a coherent state with increased
noise in the conjugate quadrature with the product of
the uncertainties without violating the uncertainty re-
lation. Having a low noise in one quadrature compo-
nent, squeezed light has a potential application in the
optical communication [14, 15], gravitation wave de-
tection [16,17], and spectroscopic measurements [18].

One of the well-known sources of a squeezed state
of light is the non-degenerate parametric oscillation,
due to the inherent two-photon nature of the inter-
action [7]. The basic process that takes place in a
non-degenerate parametric oscillation is the down-
conversion of a pump photon of frequency 𝜔𝑎 into
a pair of photons of smaller frequencies 𝜔𝑏 and 𝜔𝑐 by
the non-linear crystal. To conserve energy, we require
the frequencies of the pump and down-converted pho-
tons obey the relation 𝜔𝑎 = 𝜔𝑏 + 𝜔𝑐. If the down-
converted photons have the same frequencies, the os-
cillation is referred to as degenerate; otherwise, it is
called non-degenerate, and the down-converted pho-
tons with different frequencies are called the signal
and idler photons.
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It has been shown by many authors that the max-
imum quadrature squeezing of the cavity light gen-
erated by a parametric oscillation coupled to a vac-
uum reservoir following different methods is 50% be-
low the shot noise limit [2–5]. However, the degree of
squeezing more than 60% below the standard quan-
tum limit has been achieved experimentally in a de-
generate parametric oscillation operating below the
threshold [19].

In recent years, the entanglement, a purely quan-
tum measure of correlation, has attracted a great
deal of interest in connection with its potential to be
an essential resource for the quantum computation
and communication [20], quantum dense coding [21],
quantum teleportation [22], and quantum cryptogra-
phy [23]. A model for the generation of a continuous-
variable entanglement was developed for non-degene-
rate parametric oscillations. For instance, Zhang et
al. [24] demonstrated experimentally that entangled
light is generated in a non-degenerate parametric os-
cillation. Recently, two-mode squeezed and entangled
light has also been realized in a non-degenerate three-
level lasers [12, 25, 26].

In this work, we will demonstrate the statistical
and quantum properties of the two-mode cavity light
produced by a non-degenerate parametric oscillation
coupled to a two-mode squeezed vacuum reservoir
as shown in Fig. 1. In particular, the effects of the
squeezed vacuum reservoir and the amplitude of the
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pump mode on the mean photon number sum and
difference, the two-mode squeezing, and the photon
number correlation of the cavity radiation are stud-
ied with the use of solutions of the quantum Langevin
equations. In addition, with the aid of the same solu-
tions, the entanglement of the cavity modes is deter-
mined using the inseparability criteria for the contin-
uous variable state introduced in [27, 28].

2. Hamiltonian and Quantum
Langevin Equations

In a non-degenerate parametric oscillation, a pump
photon with a frequency (𝜔𝑎) splits into two highly
correlated photons in a non-linear crystal called the
signal and idler modes with a frequencies 𝜔𝑏 and
𝜔𝑐, respectively. The crystal is called non-linear, if it
has a quadratic response to the applied electric field
(pump mode).

By representing the annihilation operator for the
external coherent radiation by a real constant 𝛽, the
interaction of the external coherent radiation with the
non-linear crystal responsible for the parametric in-
teraction is described in the rotating wave and dipole
approximations by the Hamiltonian

𝐻𝑠 = 𝑖𝜆(𝑎̂𝑏̂− 𝑎̂†𝑏̂†), (1)

where 𝜆 = 𝑔𝛽 is proportional to the amplitude of the
pump mode, 𝑎̂ is the annihilation operator for the
signal mode, 𝑏̂ is the annihilation operator for the
idler mode, and 𝑔 is the measure of the coupling of
a nonlinear crystal with the cavity modes. The mas-
ter equation for the signal and idler modes coupled
to the two-mode squeezed vacuum reservoir following
the procedure described in [29] is found to be

𝑑𝜌

𝑑𝑡
= 𝜆(𝑎̂𝑏̂𝜌− 𝑎̂†𝑏̂†𝜌− 𝜌𝑎̂𝑏̂+ 𝜌𝑎̂†𝑏̂†)+

+
𝜅

2
(𝑁 + 1)(2𝑎̂𝜌𝑎̂† − 𝑎̂†𝑎̂𝜌− 𝜌𝑎̂†𝑎̂)+

+
𝜅

2
𝑁(2𝑎̂†𝜌𝑎̂− 𝑎̂𝑎̂†𝜌− 𝜌𝑎̂𝑎̂†)+

+
𝜅

2
(𝑁 + 1)(2𝑏̂𝜌𝑏̂† − 𝑏̂†𝑏̂𝜌− 𝜌𝑏̂†𝑏̂)+

+
𝜅

2
𝑁(2𝑏̂†𝜌𝑏̂− 𝑏̂𝑏̂†𝜌− 𝜌𝑏̂𝑏̂†)+

+𝜅𝑀(𝑎̂†𝜌𝑏̂† + 𝑏̂†𝜌𝑎̂† + 𝑎̂𝜌𝑏̂+

+ 𝑏̂𝜌𝑎̂− 𝑎̂†𝑏̂†𝜌− 𝑎̂𝑏̂𝜌− 𝜌𝑎̂†𝑏̂† − 𝜌𝑎̂𝑏̂), (2)

Fig. 1. Scheme of a non-degenerate parametric oscillation
with 𝜅 assumed to be the same for the signal and idler modes

where 𝜅 is the cavity decay rate, and 𝑁 and 𝑀 are
parameters that describe the effect of the squeezed
vacuum reservoir and are given by

𝑀 = sinh(𝑟) cosh(𝑟), (3)

𝑁 = sinh2(𝑟), (4)

where 𝑟 is a real positive squeeze parameter.
We proceed to determine the correlation properties

of the noise operators associated with the two-mode
squeezed vacuum reservoir. To this end, on the basis
of Eqs. (A6) and (A7), we can write

𝑑

𝑑𝑡
𝑎̂(𝑡) = −𝜅

2
𝑎̂(𝑡)− 𝜆𝑏̂†(𝑡) + 𝐹𝑎(𝑡), (5)

𝑑

𝑑𝑡
𝑏̂(𝑡) = −𝜅

2
𝑏̂(𝑡)− 𝜆𝑎̂†(𝑡) + 𝐹𝑏(𝑡), (6)

where 𝐹𝑎(𝑡) and 𝐹𝑏(𝑡) are the noise operators asso-
ciated with the two-mode squeezed vacuum reservoir
whose correlation properties remained to be deter-
mined. We note that Eq. (A6) and the expectation
value of Eq. (5) as well as Eq. (A7) and the expecta-
tion value of Eq. (6) are equal to one another, if and
only if

⟨𝐹𝑎(𝑡)⟩ = ⟨𝐹𝑏(𝑡)⟩ = 0. (7)

In addition, using Eqs. (5) and (6) along with the
relation

𝑑

𝑑𝑡
⟨𝑎̂(𝑡)𝑏̂(𝑡)⟩ =

⟨
𝑑𝑎̂(𝑡)

𝑑𝑡
𝑏̂(𝑡)

⟩
+

⟨̂
𝑎(𝑡)

𝑑𝑏̂(𝑡)

𝑑𝑡

⟩
, (8)

we have
𝑑

𝑑𝑡
⟨𝑎̂(𝑡)𝑏̂(𝑡)⟩ = −𝜅⟨𝑎̂(𝑡)𝑏̂(𝑡)⟩ − 𝜆⟨𝑎̂†(𝑡)𝑎̂(𝑡)⟩ − 𝜆−

−𝜆⟨𝑏̂†(𝑡)𝑏̂(𝑡)⟩+ ⟨𝑏̂(𝑡)𝐹𝑎(𝑡)⟩+ ⟨𝑎̂(𝑡)𝐹𝑏(𝑡)⟩, (9)

so that comparison of Eqs. (A10) and (9) leads to

⟨𝑏̂(𝑡)𝐹𝑎(𝑡)⟩+ ⟨𝑎̂(𝑡)𝐹𝑏(𝑡)⟩ = −𝜅𝑀. (10)
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Now, multiplying the solutions of Eq. (5) from the
right by 𝐹𝑏(𝑡) and the solution of Eq. (6) from the
right by 𝐹𝑎(𝑡), considering the expectation value of
the resulting expressions together with the fact that
the noise operators at a certain time do not affect the
cavity mode operators at the earlier time, and taking
Eq. (10) into account, we see that

⟨𝑎̂(𝑡)𝐹𝑏(𝑡)⟩+ ⟨𝑏̂(𝑡)𝐹𝑎(𝑡)⟩ =
𝑡∫︁

0

𝑒−𝜅(𝑡−𝑡′)/2 ×

×⟨𝐹𝑎(𝑡
′)𝐹𝑏(𝑡)⟩𝑑𝑡′ +

𝑡∫︁
0

𝑒−𝜅(𝑡−𝑡′)/2⟨𝐹𝑏(𝑡
′)𝐹𝑎(𝑡)⟩𝑑𝑡′. (11)

Thus, in view of this expression and the assumption
that

⟨𝐹𝑎(𝑡
′)𝐹𝑏(𝑡)⟩ = ⟨𝐹𝑏(𝑡

′)𝐹𝑎(𝑡)⟩, (12)

we can readily obtain

⟨𝐹𝑎(𝑡
′)𝐹𝑏(𝑡)⟩ = ⟨𝐹𝑏(𝑡

′)𝐹𝑎(𝑡)⟩ = −𝜅𝑀𝛿(𝑡− 𝑡′). (13)

Following a similar procedure, the correlation prop-
erties of the noise operators are found to be

⟨𝐹 †
𝑎 (𝑡

′)𝐹𝑎(𝑡)⟩ = ⟨𝐹 †
𝑏 (𝑡

′)𝐹𝑏(𝑡)⟩ = 𝜅𝑁𝛿(𝑡− 𝑡′), (14)

⟨𝐹𝑎(𝑡
′)𝐹 †

𝑎 (𝑡)⟩ = ⟨𝐹𝑏(𝑡
′)𝐹 †

𝑏 (𝑡)⟩ = 𝜅(𝑁 + 1)𝛿(𝑡− 𝑡′),

(15)

⟨𝐹𝑎(𝑡
′)𝐹𝑎(𝑡)⟩ = ⟨𝐹𝑏(𝑡

′)𝐹𝑏(𝑡)⟩ = ⟨𝐹 †
𝑎 (𝑡

′)𝐹𝑏(𝑡)⟩ =

= ⟨𝐹𝑎(𝑡
′)𝐹 †

𝑏 (𝑡)⟩ = 0. (16)

We next proceed to determine the solutions of the
quantum Langevin equations. To this end, making
use of Eqs. (5) and (6), we can write

𝑑

𝑑𝑡
𝑥̂±(𝑡) = −1/2𝜂±𝑥̂± + 𝐹±(𝑡), (17)

where

𝑥̂±(𝑡) = 𝑎̂(𝑡)± 𝑏̂†(𝑡), (18)

𝜂± = 𝜅± 2𝜆, (19)

𝐹±(𝑡) = 𝐹𝑎(𝑡)± 𝐹 †
𝑏 (𝑡). (20)

On the basis of Eqs. (17) and (19), the equation
of evolution for 𝑥−(𝑡) has no solution for 𝜅 <

2𝜆. We then identify 𝜅 = 2𝜆 as the threshold con-
dition. Thus, for 2𝜆 < 𝜅, the solution of Eq. (17) is
given by

𝑥̂±(𝑡) = 𝑥̂±(0)𝑒
−𝜂±𝑡/2+

𝑡∫︁
0

𝑒−𝜂±(𝑡−𝑡′)/2𝐹±(𝑡
′)𝑑𝑡′. (21)

Now, on account of this expression and Eq. (18), we
easily find

𝑎̂(𝑡) = 𝐴+(𝑡)𝑎̂(0)+𝐴−(𝑡)𝑏̂
†(0)+𝑅+(𝑡)+𝑅−(𝑡), (22)

𝑏̂(𝑡) = 𝐴−(𝑡)𝑎̂
†(0)+𝐴+(𝑡)𝑏̂(0)+𝑅†

+(𝑡)−𝑅†
−(𝑡), (23)

where
𝐴± =

1

2
[𝑒−𝜂+𝑡/2 ± 𝑒−𝜂−𝑡/2], (24)

𝑅̂±(𝑡) =
1

2

[︂ 𝑡∫︁
0

𝑒−𝜂±(𝑡−𝑡′)/2(𝐹𝑎(𝑡
′)± 𝐹 †

𝑏 (𝑡
′)

]︂
𝑑𝑡′. (25)

We now calculate the various expectation values of
the cavity mode operators. In view of Eq. (22) and
its adjoint, one can write

⟨𝑎̂†𝑎̂⟩ = 𝐴2
+⟨𝑎̂†(0)𝑎̂(0)⟩+𝐴+𝐴−(𝑡)⟨𝑎̂†(0)𝑏̂†(0)⟩+

+𝐴+⟨𝑎̂†(0)𝑅+(𝑡)⟩+𝐴+⟨𝑎̂†(0)𝑅−(𝑡)⟩+

+𝐴−𝐴+⟨𝑏̂(0)𝑎̂(0)⟩+𝐴2
−⟨𝑏̂(0)𝑏̂†(0)⟩+

+𝐴−(𝑡)⟨𝑏̂(0)𝑅+(𝑡)⟩+𝐴−(𝑡)⟨𝑏̂(0)𝑅−(𝑡)⟩+

+𝐴+⟨𝑅†
+𝑎̂(0)⟩+𝐴−(𝑡)⟨𝑅†

+(𝑡)𝑏̂
†(0)⟩+

+ ⟨𝑅†
+(𝑡)𝑅+(𝑡)⟩+ ⟨𝑅†

+(𝑡)𝑅−(𝑡)⟩+

+𝐴+(𝑡)⟨𝑅†
−(𝑡)𝑎̂(0)⟩+𝐴−(𝑡)⟨𝑅†

−(𝑡)𝑏̂
†(0)⟩+

+ ⟨𝑅†
−(𝑡)𝑅+(𝑡)⟩+𝐴+(𝑡)⟨𝑅†

−(𝑡)𝑎̂(0)⟩+ ⟨𝑅†
−(𝑡)𝑅−(𝑡)⟩.

(26)

Based on the fact that the noise operator at a cer-
tain time does not affect the cavity mode operator
at an earlier time and on the assumption that the
cavity light is initially in a two-mode vacuum state
along with the correlation properties described by
Eqs. (13)–(16), we get

⟨𝑎̂†𝑎̂⟩ = 𝜅(2𝑁 + 1− 2𝑀)(1− 𝑒−𝜂+𝑡)

4𝜂+
+

+
𝜅(2𝑁 + 1 + 2𝑀)(1− 𝑒−𝜂−𝑡)

4𝜂−
+

+
1

4
(𝑒−𝜂+𝑡 + 𝑒−𝜂−𝑡 − 2). (27)
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It can also be readily established in a similar way that

⟨𝑏̂†𝑏̂⟩ = 𝜅(2𝑁 + 1− 2𝑀)(1− exp−𝜂+𝑡)
4𝜂+

+

+
𝜅(2𝑁 + 1 + 2𝑀)(1− exp−𝜂−𝑡)

4𝜂−
+

+
1

4
(𝑒−𝜂+𝑡 + 𝑒−𝜂−𝑡 − 2), (28)

⟨𝑎̂(𝑡)𝑏̂(𝑡)⟩ = 𝜅(2𝑁 + 1− 2𝑀)(1− 𝑒−𝜂+𝑡)

4𝜂+
=

= −𝜅(2𝑁 + 1 + 2𝑀)(1− 𝑒−𝜂−𝑡)

4𝜂−
+

+
1

4
(𝑒−𝜂+𝑡 − 𝑒−𝜂−𝑡), (29)

⟨𝑎̂(𝑡)𝑏̂†(𝑡)⟩ = ⟨𝑎̂†(𝑡)𝑏̂(𝑡)⟩ = 0, (30)

⟨𝑎̂2(𝑡)⟩ = ⟨𝑏̂2(𝑡)⟩ = 0. (31)

3. Two-Mode Quadrature Squeezing

We next proceed to determine the quadrature vari-
ance and the quadrature squeezing of the two-mode
cavity light produced by a non-degenerate parametric
oscillation coupled to the two-mode squeezed vacuum
reservoir. We represent the two-mode light by the op-
erator 𝑐 defined by

𝑐(𝑡) = 𝑎̂(𝑡) + 𝑏̂(𝑡). (32)

The squeezing properties of a two-mode light are de-
scribed by the plus and minus quadrature operators
defined as

𝑐+ = 𝑐(𝑡) + 𝑐†(𝑡), (33)

𝑐− = 𝑖(𝑐†(𝑡)− 𝑐(𝑡)). (34)

One can readily verify that

[𝑐+, 𝑐−] = 4𝑖. (35)

It then follows that a two-mode light is said to be in
a two-mode squeezed state, if either Δ𝑐+ >

√
2 and

Δ𝑐− <
√
2 or Δ𝑐+ <

√
2 and Δ𝑐− >

√
2 such that

Δ𝑐+ Δ𝑐− ≥ 2. In view of Eqs. (5), (6), and (32), we
can easily verify that

𝑑

𝑑𝑡
𝑐+(𝑡) = −𝜂+

2
𝑐+(𝑡) + 𝐹+(𝑡), (36)

𝑑

𝑑𝑡
𝑐−(𝑡) = −𝜂−

2
𝑐−(𝑡) + 𝑖𝐹−(𝑡), (37)

where

𝐹± = 𝐹 †
𝑎 (𝑡)± 𝐹𝑎(𝑡) + 𝐹 †

𝑏 (𝑡)± 𝐹𝑏(𝑡). (38)

Thus, the solutions of Eqs. (36) and (37) can be writ-
ten as

𝑐+(𝑡) = 𝑐+(0)𝑒
−𝜂+𝑡/2 +

𝑡∫︁
0

𝑒−𝜂+(𝑡−𝑡′)/2 ×

× (𝐹 †
𝑎 (𝑡

′) + 𝐹𝑎(𝑡
′) + 𝐹 †

𝑏 (𝑡
′) + 𝐹𝑏(𝑡

′))𝑑𝑡′, (39)

𝑐−(𝑡) = 𝑐−(0)𝑒
−𝜂−𝑡/2 + 𝑖

𝑡∫︁
0

(𝑒−𝜂−(𝑡−𝑡′)/2 ×

× [𝐹 †
𝑎 (𝑡

′)− 𝐹𝑎(𝑡
′) + 𝐹 †

𝑏 (𝑡
′)− 𝐹𝑏(𝑡

′)]𝑑𝑡′. (40)

The variances of the quadrature operators are de-
fined by

(Δ𝑐±(𝑡))
2 = ⟨𝑐2±(𝑡)⟩ − ⟨𝑐±(𝑡)⟩2. (41)

Now, considering the expectation values of Eqs. (39)
and (40) and the assumption that the cavity light is
initially in a two-mode vacuum state along with the
correlation properties described in Eq. (7), we have

⟨𝑐+(𝑡)⟩ = 0, (42)

⟨𝑐−(𝑡)⟩ = 0. (43)

Moreover, using Eqs. (39) and (40) together with
Eqs. (13)–(16), we arrive at

⟨𝑐2+(𝑡)⟩ = 2𝑒−𝜂+𝑡/2 +

+
𝜅(4𝑁 + 2− 4𝑀)(1− 𝑒−𝜂+𝑡)

𝜂+
, (44)

⟨𝑐2−(𝑡)⟩ = 2𝑒−𝜂−𝑡/2 +

+
𝜅(4𝑁 + 2 + 4𝑀)(1− 𝑒−𝜂−𝑡)

𝜂−
. (45)

Now, by employing Eqs. (42), (43), (44) and (45), we
reduce the variances of the quadrature operators to

(Δ𝑐+(𝑡))
2 = 2𝑒−𝜂+𝑡/2 +

+
𝜅(4𝑁 + 2− 4𝑀)(1− 𝑒−𝜂+𝑡)

𝜂+
, (46)

(Δ𝑐−(𝑡))
2 = 2𝑒−𝜂−𝑡/2 +

+
𝜅(4𝑁 + 2 + 4𝑀)(1− 𝑒−𝜂−𝑡)

𝜂−
. (47)
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Fig. 2. Plots of the variances of the plus quadrature [Eq. (48)]
(dashed curve) and minus quadrature [Eq. (49)] (solid curve)
operators versus 𝜅𝑡 for 𝜆

𝜅
= 0.4 and 𝑟 = 0

Fig. 3. Plots of the quadrature squeezing [Eq. (54)] versus 𝜅𝑡

for r=0 and different values of 𝜆/𝜅

Making use of Eqs. (3), (4), and (19), we find

(Δ𝑐+(𝑡))
2 = 2𝑒−(𝜅+2𝜆)𝑡/2 +

+
2𝜅𝑒−2𝑟

𝜅+ 2𝜆
(1− 𝑒−(𝜅+2𝜆)𝑡), (48)

(Δ𝑐−(𝑡))
2 = 2𝑒−(𝜅−2𝜆)𝑡/2 +

+
2𝜅𝑒2𝑟

𝜅− 2𝜆
(1− 𝑒−(𝜅−2𝜆)𝑡). (49)

In Fig. 2, we plot the variances of the plus and mi-
nus quadrature operators versus the time. The hor-
izontal dotted line in this figure represents the co-
herent or vacuum state level. From Fig. 2, we see
that the variance of the plus quadrature operator
is below the shot noise limit, while the variance of
the minus quadrature operator is above the shot
noise limit. In general, one can see that the cavity
light beams have unequal fluctuations. In the minus
quadrature, the fluctuation is increased or stretched,
and, in the plus quadrature, the fluctuation is reduced
or squeezed. We then note that the squeezing occurs
in the plus quadrature.

It is fascinating to consider some special cases for
the system under consideration. For example, in the
absence of the two-mode squeezed vacuum reservoir,
the system reduces to a non-degenerate paramet-
ric oscillation coupled to a two-mode vacuum reser-
voir. Hence, upon putting 𝑁 = 𝑀 = 0 in Eqs. (46)
and (47), the quadrature variances reduce to

(Δ𝑐+)
2 = 2𝑒−(𝜅+2𝜆)𝑡 +

2𝜅

𝜅+ 2𝜆
(1− 𝑒−(𝜅+2𝜆)𝑡), (50)

(Δ𝑐−)
2 = 2𝑒−(𝜅−2𝜆)𝑡 +

2𝜅

𝜅− 2𝜆
(1− 𝑒−(𝜅−2𝜆)𝑡). (51)

These results are in agreement with the previous stud-
ies [2,5,14–16] obtained within various approaches. In
the case where the parametric oscillation, 𝜆, and the
two-mode squeezed vacuum reservoir, 𝑟, are absent,
the system is in a cavity mode in a two-mode vacuum
state, and the quadrature variances of this system
take the form

(Δ𝑐+)
2 = (Δ𝑐−)

2 = 2. (52)

The quadrature squeezing of the cavity light can
be determined relative to the quadrature variance of
the two-mode vacuum state by the relation [3, 13]

𝑆 =
(Δ𝑐+)

2
vac − (Δ𝑐+)

2

(Δ𝑐+)2vac
, (53)

where (Δ𝑐+)2vac is the quadrature variance of the two-
mode vacuum state. Thus, by substituting Eqs. (48)
and (52) into Eq. (53), we obtain

𝑆 = 1− 𝑒−𝜅𝑡(1+2𝜆/𝜅) − 𝑒−2𝑟

(1 + 2𝜆/𝜅)
×

×
(︁
1− 𝑒−𝜅𝑡(1+2𝜆/𝜅)

)︁
. (54)

As can be seen from Figs. 3 and 4, the two-mode
light shows a considerable two-mode squeezing for all
values of the time. It is expected that the cause for
the two-mode squeezing is the correlation between the
two cavity modes. This correlation arises due to the
coherence of the external radiation (the pump mode)
before the down-conversion processes. We begin by
investigating the dependence of the two-mode squeez-
ing on the amplitude of the pump mode. It is ob-
served from Fig. 3 that a large value of the amplitude
of the pump mode results in a high suppression of
a noise below the standard quantum limit. Next, we
proceed to demonstrate how the two-mode squeezed
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vacuum reservoir affects the degree of squeezing of
the two-mode light. Figure 4 shows the plot of the
two-mode squeezing versus 𝜅𝑡 for different values of
the squeeze parameter, 𝑟. It is easy to see from Fig. 4
that the squeeze parameter has the effect of increas-
ing the degree of squeezing of the two-mode cavity
light. At the threshold and at the steady state, it is
also observed that the maximum quadrature squeez-
ing of the two-mode light is 72.5% below the standard
quantum limit for 𝑟 = 0.3.

4. Entanglement Properties
of the Cavity Modes

Here, we consider the continuous variable entangle-
ment between the two cavity modes. A composite sys-
tem in which its state cannot be factored as a product
of states of its constituents is referred to as an entan-
gled system. That is,

|𝜓⟩ ≠
∑︁
𝑖

|𝜓(1)
𝑖 ⟩

⨂︁
|𝜓(2)

𝑖 ⟩. (55)

Several authors have proposed various entanglement
criteria for continuous-variable states [27–31]. In this
study, we employ the entanglement criteria intro-
duced by Duan–Giedke–Cirac–Zoller (DGCZ) and
Hillery–Zubairy (HZ) to investigate the entanglement
properties of the two cavity modes.

4.1. Hillery–Zubairy criterion

In the Hillery–Zubairy (HZ) criteria, the state of a
two-mode system is said to be entangled, if the con-
dition

𝐸𝐻𝑍 ≡ ⟨𝑛̂1⟩⟨𝑛̂2⟩ − |⟨𝑎̂1𝑎̂2⟩|2 < 0 (56)

is satisfied. In other words, for the cavity modes to be
entangled, the product of the mean photon number of
the cavity modes should be smaller than the squared
modulus of the intermode correlations. Now because
of Eqs. (27), (28) and (29), we see that

𝐸HZ ≡
(︂
𝜅𝑒−2𝑟(1− 𝑒−(𝜅+2𝜆)𝑡)

4(𝜅+ 2𝜆)
+

+
𝜅𝑒2𝑟(1− 𝑒−(𝜅−2𝜆)𝑡)

4(𝜅− 2𝜆)
+

+
1

4
(𝑒−(𝜅+2𝜆)𝑡 + 𝑒−(𝜅−2𝜆)𝑡 − 2)

)︂2
−

−
(︂
𝜅𝑒−2𝑟(1− 𝑒−(𝜅+2𝜆)𝑡)

4(𝜅+ 2𝜆)
−

− 𝜅𝑒2𝑟(1− 𝑒−(𝜅−2𝜆)𝑡)

4(𝜅− 2𝜆)
+

+
1

4
(𝑒−(𝜅+2𝜆)𝑡 − 𝑒−(𝜅−2𝜆)𝑡)

)︂2
< 0. (57)

Figure 5 shows how the amplitude of the pump
mode influences the entanglement of the cavity
modes. We note from this figure that the cavity
modes are entangled at all times for the given pa-
rameters, and the degree of entanglement increases
with the time. We then infer that the entanglement
is robust at a steady state. Moreover, we see from
Fig. 5 that the degree of entanglement increases with
the amplitude of the pump mode. We then anticipate
that increasing the amplitude of the pump mode leads
to an increase in the correlation of the signal and idler
photons. In Fig. 6, we plot 𝐸HZ as a function of 𝜅𝑡
for different values of the squeeze parameter. We note
from this figure that the squeeze parameter has the
effect of increasing the degree of entanglement.

Fig. 4. Plots of the quadrature squeezing [Eq. (54)] versus 𝜅𝑡

for 𝜆/𝜅 = 0.4 and different values of 𝑟

Fig. 5. Plots of Eq. (57) versus 𝜅𝑡 for 𝑟 = 0 and different
values of 𝜆/𝜅
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4.2. DGCZ criterion

According to the DGCZ criteria, the state of a two-
mode system is known to be entangled, if the vari-
ances of two EPR-like operators, 𝑢̂ and 𝑣, of a two
mode system satisfy the inequality

(Δ𝑢)2 + (Δ𝑣)2 < 4, (58)

where

𝑢̂ = 𝑥̂𝑎 + 𝑥̂𝑏, (59)
𝑣 = 𝑝𝑎 − 𝑝𝑏, (60)

and

𝑥̂𝑘 = 𝑘 + 𝑘†, (61)

𝑝𝑘 =
𝑘 − 𝑘†

𝑖
(62)

with (𝑘 = 𝑎, 𝑏) are the quadrature operators for the
two cavity modes. Making use of Eqs. (59)–(62), it
can be easily established that

Δ𝑢2 = Δ𝑣2 = 2[1+⟨𝑎̂†𝑎̂⟩+⟨𝑏̂†𝑏̂⟩+⟨𝑎̂𝑏̂⟩+⟨𝑎̂†𝑏̂†⟩]. (63)

Thus, in view of Eq. (63), the sum of the fluctuations
of the pair of EPR-like operators turns out to be

Δ𝑢2+Δ𝑣2 = 4[1+ ⟨𝑎̂†𝑎̂⟩+ ⟨𝑏̂†𝑏̂⟩+ ⟨𝑎̂𝑏̂⟩+ ⟨𝑎̂†𝑏̂†⟩]. (64)

Fig. 6. Plots of Eq. (57) versus 𝜅𝑡 for 𝜆/𝜅 = 0.4 and different
values of 𝑟

Fig. 7. Plots of Δ𝑢2 +Δ𝑣2 [Eq. (66)] versus 𝜅𝑡 for 𝑟 = 0 and
different values of 𝜆/𝜅

Hence, in view of Eqs. (27)–(29), the fluctuations of
the EPR-like operators can be put in the form

Δ𝑢2 +Δ𝑣2 = 4𝑒−𝜂+𝑡 +

+4
𝜅(4𝑁 + 2− 4𝑀)(1− 𝑒−𝜂+𝑡)

𝜂+
. (65)

With regard for Eqs. (3), (4), and (19), we have

Δ𝑢2 +Δ𝑣2 = 4𝑒−(𝜅+2𝜆)𝑡 +

+
4𝜅𝑒−2𝑟

𝜅+ 2𝜆
(1− 𝑒−(𝜅+2𝜆)𝑡). (66)

Based on the relation described by Eq. (58), it is
easy to see from Figs. 7 and 8 that the two-mode light
produced by a non-degenerate parametric oscillation
shows the entanglement for all values of the time. It
is expected that the coherence of the pump mode
(before the down-conversion process) incident on the
nonlinear crystal is the cause for the correlation of the
signal and idler photons, which leads to the entangle-
ment of the two cavity modes. This means that even
though the pump photon is destroyed in the down-
conversion process, it is unable to eliminate the coher-
ence of the pump mode. It is clearly shown in Figs. 7
and 8 that the degree of entanglement significantly
depends on the amplitude of the pump mode, 𝜆, and
the two-mode squeezed vacuum reservoir, 𝑟. We note
from these two figures that the degree of entangle-
ment increases with the time, as in the case of the
HZ criteria. Moreover, the two-mode squeezed vac-
uum reservoir and the growth of the amplitude of
the pump mode enhance the degree of entanglement
between the signal and idler modes. In addition, by
comparing Figs. 3 and 7, as well as Figs. 4 and 8, we
see that the amounts of squeezing and entanglement
vary in the same fashion. We can then infer that the
degrees of squeezing and entanglement are propor-
tional. In general, on the basis of the two aforemen-
tioned entanglement criteria, the two cavity modes
exhibit the entanglement for all values of the time.

5. Mean Photon
Number Sum and Difference

In this section, we calculate the mean photon number
sum and difference for a two-mode light. The mean
photon number sum and difference of the two-mode
light are expressible as

⟨𝑛̂(𝑡)⟩ = ⟨𝑎̂†(𝑡)𝑎̂(𝑡)⟩ ± ⟨𝑏̂†(𝑡)𝑏̂(𝑡)⟩. (67)
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Now, in view of Eqs. (27) and (28), the mean of the
photon number sum for the two-mode cavity light is
as follows:

⟨𝑛̂+(𝑡)⟩ =
𝜅(2𝑁 + 1− 2𝑀)(1− exp−𝜂+𝑡)

2𝜂+
+

+
𝜅(2𝑁 + 1 + 2𝑀)(1− exp−𝜂−𝑡)

2𝜂−
. (68)

Making use of Eqs. (3) and (4), we find

⟨𝑛̂+(𝑡)⟩ =
𝜅𝑒−2𝑟

2(𝜅+ 2𝜆)
(1− 𝑒−(𝜅+2𝜆)𝑡)+

+
𝜅𝑒2𝑟

2(𝜅− 2𝜆)
(1− 𝑒−(𝜅−2𝜆)𝑡). (69)

In Fig. 9, we plot the mean photon number sum
versus 𝜅𝑡 for different values of the squeeze parame-
ter, 𝑟. It is not difficult to see from this figure that the
mean photon number sum increases with the squeeze
parameter, 𝑟. We have also shown that the degrees of
entanglement and squeezing increase with the squeeze
parameter, 𝑟. We note that a more bright light is gen-
erated by the system under consideration in regions,
where the significant degrees of squeezing and entan-
glement are observed. Moreover, the mean photon
number sum increases with the time.

It can also be verified, by employing Eqs. (27) and
(28), that the mean photon number difference for the
two-mode cavity light takes the form

⟨𝑛̂−(𝑡)⟩ = 0. (70)

This is so, because the signal and idler photons are
produced in pairs in the down-conversion process.

6. The Photon Number Correlation

The photon number correlation for two modes of light
can be expressed as

𝑔(𝑛̂𝑎, 𝑛̂𝑏) =
⟨𝑛̂𝑎𝑛̂𝑏⟩
⟨𝑛̂𝑎⟩⟨𝑛̂𝑏⟩

, (71)

with

⟨𝑛̂𝑎𝑛̂𝑏⟩ = ⟨𝑎̂†(𝑡)𝑎̂(𝑡)𝑏̂†(𝑡)𝑏̂(𝑡)⟩. (72)

Because 𝑎̂(𝑡) and 𝑏̂(𝑡) are Gaussian variables with a
vanishing mean, we have

𝑔(𝑛̂𝑎, 𝑛̂𝑏) = 1 +
⟨𝑎̂(𝑡)𝑏̂(𝑡)⟩2

⟨𝑎̂†(𝑡)𝑎̂(𝑡)⟩⟨𝑏̂†(𝑡)𝑏̂(𝑡).⟩
(73)

Fig. 8. Plots of Δ𝑢2 +Δ𝑣2 [Eq. (66)] versus 𝜅𝑡 for 𝜆/𝜅 = 0.4

and different values of 𝑟

Fig. 9. Plots of the mean photon number sum [Eq. (69)] versus
𝜅𝑡 for 𝜆/𝜅 = 0.4 and different values of 𝑟

Fig. 10. Plot of the photon number correlation at steady state
[Eq. (73)] versus 𝜆/𝜅 for 𝑟 = 0

It is seen from Fig. 10 that the photon number
correlation decreases with increasing the amplitude
of the pump mode, 𝜆. However, we have found that
the degrees of squeezing and entanglement increase
with the amplitude of the pump mode, 𝜆. We see that
the photon number correlation is minimum in regions,
where the degrees of two-mode squeezing and entan-
glement are maximum.

7. Conclusions

We have considered a non-degenerate parametric os-
cillation coupled to a squeezed vacuum reservoir.
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Employing the master equation and applying the so-
lutions of the quantum Langevin equations, we have
studied the quadrature squeezing and the entangle-
ment properties of the two-mode light. Moreover, us-
ing the same solutions, we determine the mean pho-
ton number sum, the mean photon number differ-
ence, and the photon number correlation of the two-
mode light.

It is observed that the two-mode light is in a two-
mode squeezed state with the maximum quadrature
squeezing being 72.5% below the coherent or vac-
uum state level for 𝑟 = 0.3. We have also shown that
the amplitude of the pump mode and the injected
squeezed light have the effect of increasing the mean
photon number sum and decreasing the photon num-
ber correlation of the two-mode light. It is also indi-
cated that the photon number difference happens to
be zero, since the signal and idler photons are gen-
erated in pairs in the down-conversion process of the
parametric oscillation. In addition, our results show
that the amounts of two-mode squeezing and entan-
glement are enhanced by the growth of the amplitude
of the pump mode and the squeezed vacuum reser-
voir. We have also seen that the degrees of squeezing
and entanglement are maximum in regions, where the
mean photon number sum is higher, and the photon
number correlation is lower. Moreover, we have no-
ticed that the degrees of squeezing and entanglement
have a direct relationship.

APPENDIX.
Equation of evolution of the cavity
mode operators

In this appendix, we wish to establish the equation of evolution
of the cavity mode operators using the master equation. To this
end, employing the relation

𝑑

𝑑𝑡
⟨𝑎̂⟩ = 𝑇𝑟

(︂
𝑑𝜌

𝑑𝑡
𝑎̂

)︂
, (A1)

along with Eq. (2), we can write

𝑑

𝑑𝑡
⟨𝑎̂(𝑡)⟩ = 𝜆𝑇𝑟(𝑎̂𝑏̂𝜌𝑎̂− 𝑎̂†𝑏̂†𝜌𝑎̂− 𝜌𝑎̂𝑏̂𝑎̂+ 𝜌𝑎̂†𝑏̂†𝑎̂)+

+
𝜅

2
(𝑁𝑎 + 1)𝑇𝑟(2𝑎̂𝜌𝑎̂†𝑎̂− 𝑎̂†𝑎̂𝜌𝑎̂− 𝜌𝑎̂†𝑎̂𝑎̂)+

+
𝜅

2
𝑁𝑎𝑇𝑟(2𝑎̂†𝜌𝑎̂𝑎̂− 𝑎̂𝑎̂†𝜌𝑎̂− 𝜌𝑎̂𝑎̂†𝑎̂)+

+
𝜅

2
(𝑁𝑏 + 1)𝑇𝑟(2𝑏̂𝜌𝑏̂†𝑎̂− 𝑏̂†𝑏̂𝜌𝑎̂− 𝜌𝑏̂†𝑏̂𝑎̂)+

+
𝜅

2
𝑁𝑏𝑇𝑟(2𝑏̂†𝜌𝑏̂𝑎̂− 𝑏̂𝑏̂†𝜌𝑎̂− 𝜌𝑏̂𝑏̂†𝑎̂)+

+𝜅𝑀𝑇𝑟(𝑎̂†𝜌𝑏̂†𝑎̂+ 𝑏̂†𝜌𝑎̂†𝑎̂+

+ 𝑎̂𝜌𝑏̂𝑎̂+ 𝑏̂𝜌𝑎̂𝑎̂− 𝑎̂†𝑏̂†𝜌𝑎̂− 𝑎̂𝑏̂𝜌𝑎̂− 𝜌𝑎̂†𝑏̂†𝑎̂− 𝜌𝑎̂𝑏̂𝑎̂). (A2)

Applying the cyclic property of the trace operation along with
the commutation relation

[𝑎̂, 𝑎̂†] = [𝑏̂, 𝑏̂†] = 1, (A3)

[𝑎̂, 𝑏̂] = [𝑎̂†, 𝑏̂†] = [𝑎̂, 𝑏̂†] = [𝑎̂†, 𝑏̂] = 0, (A4)

we have
𝑑

𝑑𝑡
⟨𝑎̂(𝑡)⟩ = −𝜆𝑇𝑟(𝜌𝑏̂†)−

𝜅

2
(𝑁𝑎 + 1)𝑇𝑟(𝜌𝑎̂)+

+
𝜅

2
𝑁𝑎𝑇𝑟(𝜌𝑎̂). (A5)

Applying the trace operation to this equation, we see that

𝑑

𝑑𝑡
⟨𝑎̂(𝑡)⟩ = −𝜆⟨𝑏̂†(𝑡)⟩ −

𝜅

2
⟨𝑎̂(𝑡)⟩. (A6)

Following a similar fashion, we can easily show that

𝑑

𝑑𝑡
⟨𝑏̂(𝑡)⟩ = −𝜆⟨𝑎̂†(𝑡)⟩ −

𝜅

2
⟨𝑏̂(𝑡)⟩, (A7)

𝑑

𝑑𝑡
⟨𝑎̂†(𝑡)𝑎̂(𝑡)⟩ = −𝜆⟨𝑎̂(𝑡)𝑏̂(𝑡)⟩ − 𝜆⟨𝑎̂†(𝑡)𝑏̂†(𝑡)⟩−

−𝜅⟨𝑎̂†(𝑡)𝑎̂(𝑡)⟩+ 𝜅𝑁, (A8)
𝑑

𝑑𝑡
⟨𝑏̂†(𝑡)𝑏̂(𝑡)⟩ = −𝜆⟨𝑎̂†(𝑡)𝑏̂†(𝑡)⟩ − 𝜆⟨𝑎̂(𝑡)𝑏̂(𝑡)⟩−

−𝜅⟨𝑏̂†(𝑡)𝑏̂(𝑡) + 𝜅𝑁, (A9)
𝑑

𝑑𝑡
⟨𝑎̂(𝑡)𝑏̂(𝑡)⟩ = −𝜆⟨𝑎̂†(𝑡)𝑎̂(𝑡)⟩ − 𝜆⟨𝑏̂†(𝑡)𝑏̂(𝑡)⟩−

−𝜅⟨𝑎̂(𝑡)𝑏̂(𝑡)⟩ − (𝜆+ 𝜅𝑀), (A10)
𝑑

𝑑𝑡
⟨𝑎̂2(𝑡)⟩ = −2𝜆⟨𝑎̂(𝑡)𝑏̂†(𝑡)⟩ − 𝜅⟨𝑎̂2(𝑡)⟩, (A11)

𝑑

𝑑𝑡
⟨𝑏̂2(𝑡)⟩ = −2𝜆⟨𝑎̂†(𝑡)𝑏̂(𝑡)⟩ − 𝜅⟨𝑏̂2(𝑡)⟩. (A12)
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Д.Аєху

ГЕНЕРАЦIЯ ДВОМОДОВОГО
СТИСНУТОГО I ПЕРЕПЛУТАНОГО СВIТЛА
ПРИ ПАРАМЕТРИЧНИХ КОЛИВАННЯХ

Ґрунтуючись на розв’язках квантових рiвнянь Ланжевена,
ми дослiджували статистичне i квадратурне стиснення ра-
зом iз властивiстю змiшування двомодового свiтла, що ге-
нерується невиродженими параметричними коливаннями,
взаємодiючими з двомодовим стискаючим вакуумним ре-
зервуаром. Знайдено, що двомодове свiтло проявляє вла-
стивостi двомодового стиснення i змiшування в усьому ча-
совому iнтервалi. Показано, що наявнiсть стискаючого ва-
куумного резервуара i зростання амплiтуди накачування
збiльшують ступiнь двомодового стиснення i змiшування.
Ми також показали, що стиснення i переплутування iстотнi
в областi, де середня кiлькiсть фотонiв велика, а кореляцiя
числа фотонiв мала.

Ключ о в i с л о в а: двомодове свiтло, двомодове стиснення,
переплутування, кореляцiя числа фотонiв.
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