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VARIATIONAL CALCULATION
OF LITHIUM-LIKE IONS FROM B+2 TO N+4 USING
𝛽-TYPE ROOTHAAN–HARTREE–FOCK WAVEFUNCTION

Within the K𝛼K𝛽, K𝛼L𝛼, and K𝛽L𝛼 shells in the position space, the properties of a series
of three-electron systems, for instance, B+2, C+3, and N+4 ions, have been studied. This
required the partitioning of the two-particle space-spin density and was explicit for the Hartree–
Fock description which have been proposed by considering a basis set based on single-zeta
𝛽-type orbitals (𝛽TOs). The one- and two-body radial electronic densities 𝑅(𝑟1), 𝑅(𝑟1, 𝑟2),
moments ⟨𝑟𝑛1 ⟩, X-ray form factor ℱ(𝑠), nucleus density 𝑅(0), nuclear magnetic shielding
constant 𝜎𝑑, and the diamagnetic susceptibility 𝛿𝑠 in the position space are reported. Our
results are realized via the Mathematica program and compared with previous theoretical values
in the literature.
K e yw o r d s: Roothaan–Hartree–Fock, 𝛽-type orbitals, X-ray form factor, nuclear magnetic
shielding constant, diamagnetic susceptibility.

1. Introduction
The non-relativistic ground states of three-particle
systems have been a topic of the wide quantum
computational research using the Roothaan–Hart-
ree–Fock (RHF), configuration-interaction (CI), and
Hylleraas wavefunctions [1–4]. The RHF approxima-
tion is of crucial importance for the accuracy of
results in the estimation of fundamental physical
properties of atoms and molecules. Indeed, several
kinds of exponential-type orbital (ETO), for instance,
Slater-type orbitals (STOs) [5–7] and 𝛽-type orbitals
(𝛽TOs) [8] have already discussed and realized in
the calculations of the electronic structure of atoms
and molecules. However, STOs can be represented
by linear combinations of the 𝛽 function [9–11]. The
major feature of the 𝛽 function is its very sim-
ple Fourier transform [12] which is related to com-
pact general formulas for molecular integrals deriv-
able using the Fourier transform method [13]. Va-
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rious studies of three-electron systems, for instance,
in Refs. [14,15] present the nonrelativistic variational
calculation of Li-isoelectronic series using the Hyller-
aas functions. The radial properties of the electronic
density function in Refs. [16, 17] have been studied
in closed form for the 2S states. The density at nu-
clei expectation values, as well as quadrupole and oc-
tupole polarizabilities, have been considered in Refs.
[18–20], respectively. In Ref. [21], the scattering and
magnetic form factors were calculated, respectively,
for the ground states of Li-like ions obtained via
highly accurate configuration-interaction wave func-
tion. Indeed, the scattering form factors have studied
in Refs. [22, 23] for the ground states of the Li-like
ions with the full core plus correlation wave function.

Motivated by this, we carried out the HF wavefunc-
tion calculations for K𝛼K𝛽, K𝛼L𝛼, and K𝛽L𝛼 shells
of three-electron systems that possess the basis sets
described by single-zeta 𝛽TOs [8]. We mainly focus
on the theoretical technique for one- and two-radial
densities 𝑅(𝑟1) and 𝑅(𝑟1, 𝑟2), respectively, which have
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an important feature in the realization in the atomic
and molecular studies [24, 25] and determine the ra-
dial expectation moments ⟨𝑟𝑛1 ⟩ for 𝑛 = −2, ..., 2, elec-
tron density at a nucleus 𝑅(0), X-ray form factor
ℱ(𝑠), nuclear magnetic shielding constant 𝜎𝑑, and the
diamagnetic susceptibility 𝛿𝑠.

2. Wavefunction

The trial wavefunction of the RHF approximation is
considered to be a Slater determinant of mutually or-
thonormal single-particle states, and it satisfies the
antisymmetry with respect to the interchange of any
two particles[26]. We have

Ψ𝐻𝐹 (x1,x2, ...,x𝑁 ) =

=
1√
𝑁 !

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
𝜒1(x1) 𝜒2(x1) ... 𝜒𝑁 (x1)

𝜒1(x2) 𝜒2(x2) ... 𝜒𝑁 (x2)
...

...
...

𝜒1(x𝑁 ) 𝜒2(x𝑁 ) ... 𝜒𝑁 (x𝑁 )

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒. (1)

Here, 𝜒(x𝑖) denote the spin-orbital components and
is defined as

𝜒 =

𝑗∑︁
𝑖=1

𝐶𝑖
𝑛𝑙𝑚𝜙𝑛𝑙𝑚, (2)

where 𝐶𝑖
𝑛𝑙𝑚 is the constant coefficient that is calcu-

lated by minimizing the total energy, and the basis
function 𝜙𝑛𝑙𝑚 denotes the normalized 𝛽TOs which
take the form

𝜒𝑚
𝑞,𝑙 (𝛼; 𝑟, 𝜃, 𝜙) = 𝑁𝑞,𝑙 𝑟

𝑙𝑌 𝑚
𝑙 (𝜃,Φ)𝑅𝑞−1/2 (𝛼𝑟) (3)

where 𝑁𝑞,𝑙 means the normalization of the radial part
[9, 11, 27, 28]:

𝑁𝑞,𝑙 =
2𝑙+𝑞𝛼𝑙+1

(𝑙 + 𝑞)!

√︃
𝛼Γ (2𝑙 + 2𝑞 + 2) 𝑙!Γ (𝑙 + 2𝑞)

Γ (2𝑙 + 4𝑞) Γ (2𝑙 + 1)
, (4)

where Γ(𝑥) is the gamma function; 𝑌 𝑚
𝑙 (𝜃,Φ) denotes

the complex or real spherical harmonic:

𝑌 𝑚
𝑙 (𝜃,Φ) =

1√
2𝜋

𝑃𝑙|𝑚| (cos 𝜃) 𝑒
𝑖𝑚Φ. (5)

Here, 𝑃𝑙|𝑚| are normalized associated Legendre func-
tions for complex spherical harmonics. For real har-
monics, Φ𝑚 (Φ) has the form

Φ𝑚 (Φ) =
1√︀

𝜋 (1 + 𝛿𝑚0)

{︂
cos |𝑚|Φ, for 𝑚 ≥ 0,

sin |𝑚|Φ, for 𝑚 < 0,
(6)

𝑅𝑞−1/2 (𝛼𝑟) represents the reduced Bessel function
with integer 𝑞 ≥ 1 and is given by

𝑅𝑞−1/2 (𝛼𝑟) = 𝑒−𝛼𝑟

𝑞−1∑︁
𝑖=0

Γ (𝑞 + 𝑖) (𝛼𝑟)
𝑞−𝑖−1

Γ (𝑞 − 𝑖) 𝑖!2𝑖
. (7)

We will show that 𝛽TOs have form of a linear com-
bination of STOs [8, 9] due to the simplicity of their
Fourier transforms. This enables us to approximate
two-center distributions by a sum of one-center dis-
tributions placed at the line connecting the original
two centers [8, 29]. Therefore, we have considered the
single Zeta 𝛽TOs basis sets that were obtained in
Ref. [8].

3. Theoretical Consideration

3.1. Two-Radial Density Function 𝑅(𝑟1, 𝑟2)

The two-electron density function Π(𝑥1, 𝑥2) denotes
the probability density of the electrons, whereas the
position of one electron at 𝑟1, while the other electron
at 𝑟2 simultaneously, Π(𝑥1, 𝑥2) is defined by [30, 31]

Π(x1,x2) = 𝒩
∫︁

𝑑x𝑝 ... 𝑑x𝑞Ψ(x1,x2,x𝑝, ...,x𝑞)×

×Ψ* (x1,x2,x𝑝, ...,x𝑞), (8)

where x𝑖 = (𝑟𝑖,Θ𝑖,Φ𝑖, 𝛾𝑖) represents the combination
of space and spin coordinates of 𝑁 electrons, while
𝑑x𝑝 ... 𝑑x𝑞 correspond to the integration over all 𝑁
electrons except for 1 and 2. In particular, the con-
stant 𝒩 =

∫︀
Π(𝑥1, 𝑥2)𝑑𝑥1𝑑𝑥2 = 𝑁 !/(2!(𝑁 − 2)!) is

the normalization one for electron pairs in the sys-
tem. The three-electron systems have three pairs, and
the total electron density function can be written as
ΠHF(𝑟1, 𝑟2) = Π𝛼𝛽

K (𝑟1, 𝑟2)+Π𝛽𝛼
KL(𝑟1, 𝑟2)+Π𝛼𝛼

KL(𝑟1, 𝑟2).
Let us now illustrate the concept of density functions
through a consideration of the three lowest electronic
states of the three-electron ions after the integration
over all spins and angular functions. This yields

Π𝛼𝛽
K (𝑟1, 𝑟2) = 𝜒2

1𝑠(𝑟1)𝜒
2
1𝑠(𝑟2),

Π𝛽𝛼
KL(𝑟1, 𝑟2) =

1

2
(𝜒2

1𝑠(𝑟1)𝜒
2
2𝑠(𝑟2)+𝜒2

2𝑠(𝑟1)𝜒
2
1𝑠(𝑟2)),

Π𝛼𝛼
KL(𝑟1, 𝑟2) =

1

2
(𝜒2

1𝑠(𝑟1)𝜒
2
2𝑠(𝑟2)+𝜒2

2𝑠(𝑟1)𝜒
2
1𝑠(𝑟2)−

− 2𝜒1𝑠(𝑟1)𝜒2𝑠(𝑟1)𝜒1𝑠(𝑟2)𝜒2𝑠(𝑟2)).

(9)

The two-particle radial density 𝑅(𝑟1, 𝑟2) is the prob-
ability of that two electrons are located on a radius
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a

b

c
Fig. 1. Contour diagram of the radial two-density function
𝑅(𝑟1, 𝑟2). Eq. (10) for B+2 ion in atomic units (a.u.): the
ground state of 𝑅𝛼𝛽

K (𝑟1, 𝑟2) has maxima 𝑅𝛼𝛽
K (𝑟1, 𝑟2) = 6.14435

located at 𝑟1 = 𝑟2 = 0.210976a0 (a); 𝑅𝛽𝛼
KL(𝑟1, 𝑟2) has three

maxima 𝑅𝛽𝛼
K (𝑟1, 𝑟2) = 0.207 located at 𝑟1 = 𝑟2 = 0.18a0,

𝑅𝛽𝛼
K (𝑟1, 𝑟2) = 0.664 located at 𝑟1 = 0.210, 𝑟2 = 1.52a0, and

𝑅1
K(𝑟1, 𝑟2) = 0.664 located at 𝑟1 = 1.523, 𝑟2 = 0.210a0 (b);

and 𝑅𝛼𝛼
KL(𝑟1, 𝑟2) has two maxima 𝑅𝛼𝛼

K (𝑟1, 𝑟2) = 0.677 located
at 𝑟1 = 0.210, 𝑟2 = 1.492a0 and 𝑅𝛼𝛼

K (𝑟1, 𝑟2) = 0.677 located
at 𝑟1 = 1.492, 𝑟2 = 0.210a0 (c)

at 𝑟1 and 𝑟2, respectively:

𝑅𝛼𝛽
K (𝑟1, 𝑟2) = 𝑟21𝑟

2
2𝜒

2
1𝑠(𝑟1)𝜒

2
1𝑠(𝑟2),

𝑅𝛽𝛼
KL(𝑟1, 𝑟2) =

𝑟21𝑟
2
2

2
(𝜒2

1𝑠(𝑟1)𝜒
2
2𝑠(𝑟2)+𝜒2

2𝑠(𝑟1)𝜒
2
1𝑠(𝑟2)),

𝑅𝛼𝛼
KL(𝑟1, 𝑟2) =

𝑟21𝑟
2
2

2
(𝜒2

1𝑠(𝑟1)𝜒
2
2𝑠(𝑟2)+𝜒2

2𝑠(𝑟1)𝜒
2
1𝑠(𝑟2)−

− 2𝜒1𝑠(𝑟1)𝜒2𝑠(𝑟1)𝜒1𝑠(𝑟2)𝜒2𝑠(𝑟2)). (10)

Equations (10) can be evaluated by the analysis of
RHF wavefunction based on single Zeta 𝛽TOs of the
form given in Eqs. (2) and (3).

3.2. One-radial density function
𝑅(𝑟1) and the expectation value ⟨𝑟𝑛1 ⟩
The one-radial density function has paved a typical
issue for our study. It gives us the idea and charac-
terization of the dynamics of atomic and molecular
studies and is the basis of theories of the atomic den-
sity function [21–24, 30–32]. The one-radial quantity
𝑅(𝑟1) is the probability of finding the electrons in the
whole shell in the interval from 𝑟1 to 𝑟1 + 𝑑𝑟1. The
radial density function is obtained via the integration
of Eqs. (10) with respect to 𝑑𝑟2. We get

𝑅(𝑟1) =

∞∫︁
0

𝑅(𝑟1, 𝑟2)𝑑𝑟2. (11)

The expectation value ⟨𝑟𝑛1 ⟩ is defined from Eq. (11)
as

⟨𝑟𝑛1 ⟩ =
∞∫︁
0

𝑅(𝑟1) 𝑟
𝑛
1 𝑑𝑟1. (12)

Equation (12) is used to calculate the electron-nuclear
potential 𝑉en = −𝑍

∑︀3
𝑖=1⟨𝑟

−1
𝑖 ⟩, were 𝑍 denotes the

atomic number, and the nuclear magnetic shielding
constant 𝜎𝑑 = −𝛼2/3

∑︀3
𝑖=1⟨𝑟

−1
𝑖 ⟩, with the fine struc-

ture constant 𝛼 = 7.297353 × 10−3 a.u. [15]. For
𝑛 = 2, we evaluated the diamagnetic susceptibility
𝛿𝑠 = −𝛼2/6

∑︀3
𝑖=1⟨𝑟2𝑖 ⟩ [15]. Some of the expectation

values can be related to several oscillator strength
sums [15].

3.3. Atomic form factor ℱ(𝑠)

Theoretical atomic form factors ℱ(𝑠) are utilized to
characterize the performance of the scattering of a
given atom and the direction, respectively. Indeed, it
is evaluated from the Fourier transform of the one-
radial density function [15, 33–35]:

ℱ(𝑠) =

∞∫︁
0

𝑅(𝑟1) 𝑗0(𝑠𝑟1) 𝑑𝑟1, (13)
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a

b

c
Fig. 2. One-radial density function 𝑅(𝑟1) by Eqs. (11).
𝑅𝛼𝛽

K (𝑟1) (a), 𝑅𝛽𝛼
KL(𝑟1) = 𝑅𝛼𝛼

KL(𝑟1) (b), and total 𝑅(𝑟1) (c).
Dashed, dot-dashed, and solid curves correspond to B+2, C+3,
and N+4, respectively

where 𝑗0 is the first-kind spherical Bessel function
(𝑗0(𝑥) = 𝑥−1 sin𝑥), 𝑠 is the magnitude of the vector
of momentum transfer that depends on the radiation
wavelength 𝜆 and the scattering angle 2𝜃 according
to 𝑠 = 4𝜋 sin 𝜃/𝜆.

4. Results and Discussions

Our results are implemented via the Mathemat-
ica Program version (10.1.01). Furthermore, we have
studied the ground state B+2, C+3, and N+4 ions
by using the RHF wavefunction. The basis sets are
examined and illustrated by single-zeta 𝛽TOs (see
Eqs (2) and (3), respectively). Afterward, we have
computed 𝑅(𝑟1, 𝑟2), 𝑅(𝑟1), ⟨𝑟𝑛1 ⟩, and ℱ(𝑠), as well as
some physical properties.

Figure 1 shows the contour shapes for K𝛼K𝛽,
K𝛼L𝛼, and K𝛽L𝛼 shells and the two-radial density
function for B+2 ion by Eqs. (10). We note that the
probability distribution is statically uncorrelated, but
it remains correlated in the space-spin configuration
space. Due to the antisymmetry condition, the radial

a

b

c
Fig. 3. Scattering form factor ℱ(𝑠) by Eqs. (13) versus 𝑠.
ℱ𝛼𝛽

K (𝑠) (a), ℱ𝛼𝛼
KL(𝑠) = ℱ𝛽𝛼

KL(𝑠) (b), and total ℱ(𝑠) (c). Dashed,
dot-dashed, and solid curves correspond to B+2, C+3, and
N+4, respectively

two-density functions in Figs. 1, b and c show differ-
ent two particle spin-free densities with respect to the
coupling of spin and space coordinates.

Furthermore, due to the Fermi heap, the exchange
term increases the probability for two electrons to be
in the same spatial region (see Fig. 1, b), while the ex-
change term reduces the probability for two electrons
to be close to each other (Fermi hole, Fig. 1, c).

For the K𝛼K𝛽, K𝛼L𝛼, and K𝛽L𝛼 shells, Fig. 2
shows the one-radial density functions for B+2, C+3,
and N+4 ions which are obtained via single-Zeta
𝛽TOs with the RHF wavefunction. The curves in
Fig. 2, a show the probability to find an electron
at the distance 𝑟1 from the center of the atom. The
maxima 𝑅𝛼𝛽

K (𝑟1) for B+2, C+3, and N+4 are 2.47878,
3.01521, and 3.54955, respectively. For different max-
imum points, their distances to the nucleus increase
with 𝑍 due to the attraction force of the nucleus. In
Figs. 1, b, c, the one-radial density functions for in-
dividual shells, as well as the total 𝑅(𝑟1), have two
maximum points, one of them is related to the proba-
bility of finding the electron in the K-shell, while the
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The expectation value ⟨𝑟𝑛
1 ⟩ for different exponent parameters 𝑛,

the nuclear magnetic shielding constant 𝜎𝑑, and the diamagnetic susceptibility 𝛿𝑠 in a.u.

Ions Shells ⟨𝑟−2
1 ⟩ ⟨𝑟−1

1 ⟩ ⟨𝑟11⟩ ⟨𝑟21⟩ 𝜎𝑑 × 10−4 𝛿𝑠 × 10−5 𝑅(0)

B+2 K 44.444 4.668 0.326 0.144 1.657 0.256 34.459
B+2 KL 23.280 2.694 1.147 2.403 0.956 4.266 17.979
C+3 K 65.114 5.660 0.268 0.097 2.009 0.173 60.748
C+3 KL 34.234 3.281 0.926 1.567 1.165 2.781 31.831
N+4 K 89.762 6.651 0.228 0.070 2.361 0.124 97.970
N+4 KL 47.2874 3.866 0.778 1.103 1.372 1.959 51.422

second one determines the probability of finding the
electron in the L-shell. In particular, the K-shell has
one peak higher than in the L-shell according to the
attraction force.

In Fig. 3, we show the scattering form factor given
by Eq. (13) for K𝛼K𝛽, K𝛼L𝛼, and K𝛽L𝛼 shells of
B+2, C+3, and N+4 ions. If the scattering angle is
zero, we note that ℱ(𝑠) depends on the number of
electrons in the ion shell. In particular, the total
scattering occurs according to the constructive in-
terference of X-rays that are scattered on the elec-
trons and then gradually degenerate, by increasing
the scattering angle till to a decline of the minimum
value which is different for different shells of atoms
or ions.

Figure 3, a indicates that, due to the higher attrac-
tion force toward the nucleus with respect to other
electrons, the values of ℱ(𝑠) are greater than those
for other shells, and ℱ(𝑠) values decrease, as the
path difference of the scattered waves increases. Ac-
cording to the charge distribution at the internal
shell, we show in Figs. 3, b and 3, it c that ℱ(𝑠)
values having a maximum point will sharply de-
crease followed by the curvature and then slowly
decline. The total atomic scattering factor was cal-
culated in Ref. [21] for the ground state of Li-like
ions from 𝑍 = 4–10 via the configuration interaction
framework. Our results show a good agreement with
Ref. [21, 35].

Table presents the examination of ⟨𝑟𝑛1 ⟩ for differ-
ent exponent parameters 𝑛 for K𝛼K𝛽, K𝛼L𝛼, and
K𝛽L𝛼 shells for B+2, C+3, and N+4 ions. For several
𝑍, the ⟨𝑟𝑛1 ⟩ increases, when the exponent 𝑛 goes from
𝑛 = −1 to 𝑛 = −2 and decreases, when 𝑛 = 1 to
𝑛 = 2 according to the weak attractive force between
the nucleus and the electrons in outer shells. Our re-
sults have a good agreement with Refs. [5, 6, 8]. The

total values of moments ⟨𝑟𝑛1 ⟩ for ions determine the
average value for different shells in an atom ⟨𝑟𝑛1 ⟩ =
= 1

3 (⟨𝑟
𝑛
1 ⟩𝐾 + 2⟨𝑟𝑛1 ⟩𝐾𝐿). The nuclear magnetic shield-

ing constant 𝜎𝑑 increases as the number of electrons
increases from 3 to 5 due to the magnetic field pro-
portional directly to the number of electrons, while
the diamagnetic susceptibility 𝛿𝑠 decreases, as 𝑍 in-
creases. In particular, the nuclear magnetic shielding
constant for the K-shell is larger, than for the KL-
shell due to the attraction force. The nucleus densi-
ties 𝑅(0) for B+2, C+3, and N+4 ions increase with
the atomic number 𝑍. This happens for all shells in
each atom in the sequence. Indeed, the nucleus den-
sity 𝑅(0) for the K-shell is greater, than that for the
KL- shell due to the increased distance among the
electrons and the nucleus.

5. Conclusions

We have studied the properties of the K𝛼K𝛽, K𝛼L𝛼,
and K𝛽L𝛼 shells of B+2, C+3, and N+4 ions by con-
sidering a basis set based on single-zeta 𝛽TOs and
the RHF wavefunction which characterize the global
properties quite well. The one- and two-body radial
electronic densities 𝑅(𝑟1) and 𝑅(𝑟1, 𝑟2) in the position
space have been discussed, as well as the expectation
values for several moments ⟨𝑟𝑛1 ⟩ studied with the use
of 𝑅(𝑟1). We have studied some physical properties
such as the nucleus density 𝑅(0), X-ray form factor
ℱ(𝑠), nuclear magnetic shielding constant, and the
diamagnetic susceptibility 𝛿𝑠 that increase (decrease),
as 𝑍 increases. This provides a valuable reference for
other researched subjects in future. Inded, we read off
that the full scattering of X-rays occurs at 𝜃 = 0, and
𝜎𝑑 increases with the atomic number 𝑍.

I thank Prof. Dr. Khalil Al-Bayati for insightful
comments.
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Хемiд Ель-Джiббурi

ВАРIАЦIЙНИЙ РОЗРАХУНОК
Li-ПОДIБНИХ ЙОНIВ ВIД B+2 ДО N+4

З ВИКОРИСТАННЯМ ХВИЛЬОВОЇ
ФУНКЦIЇ ХАРТРI–ФОКА–РУТААНА 𝛽-ТИПУ

Вивчено властивостi низки триелектронних систем в ме-
жах просторових оболонок K𝛼K𝛽, K𝛼L𝛼 i K𝛽L𝛼, напри-
клад, B+2, C+3 i N+4 йонiв. Це вимагало проведення розби-

ття двочастинкових функцiй просторової i спiнової густин,
що можливо в рамках моделi Хартрi–Фока з базисами, по-
будованими на 1𝑧 орбiталях 𝛽-типу. Знайдено одно- i дво-
частинковi радiальнi електроннi розподiли густини 𝑅(𝑟1) i
𝑅(𝑟1, 𝑟2), моменти ⟨𝑟𝑛1 ⟩, формфактори рентгенiвського ви-
промiнювання ℱ(𝑠), густину ядра 𝑅(0), константу ядерно-
го магнiтного екранування 𝜎𝑑 i дiамагнiтну сприйнятли-
вiсть 𝛿𝑠. Результати отримано з використанням програми
Mathematica i порiвняно з вiдомими теоретичними даними.

Ключ о в i с л о в а: метод Хартрi–Фока–Рутаана, орбiта-
лi 𝛽-типу, формфактор рентгенiвського випромiнювання,
константа ядерного магнiтного екранування, дiамагнiтна
сприйнятливiсть.
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