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THE MAGNETIC DOMAIN
STRUCTURE PROPERTIES IN DILUTED
MAGNETIC SEMICONDUCTORS

We present a comprehensive analysis of the domain structure formation in the ferromagnetic
phase of diluted magnetic semiconductors (DMS) of the 𝑝-type. Our analysis is carried out
on the base of the effective magnetic free energy of DMS calculated by us earlier. This free
energy, substituting DMS (a disordered magnet) by an effective ordered substance, permits us
to apply the standard phenomenological approach to the domain structure calculation. Using
the coupled system of Maxwell equations with those obtained by the minimization of the free
energy functional, we show the existence of the critical ratio 𝜈cr of concentration of charge
carriers and magnetic ions such that the sample critical thickness 𝐿cr (such that the sample
is monodomain at 𝐿 < 𝐿cr) diverges as 𝜈 → 𝜈cr. At 𝜈 > 𝜈cr, the sample is monodomain. This
feature makes DMS different from conventional ordered magnets, as it gives a possibility to
control the sample critical thickness and the emerging domain structure period by a variation
of 𝜈. As the concentration of magnetic impurities grows, 𝜈cr → ∞, restoring a conventional
behavior of ordered magnets. Above facts have been revealed by the examination of the tem-
perature of the transition to an inhomogeneous magnetic state (stripe domain structure) in
the slab of a 𝑝-type DMS with finite thickness 𝐿. Our theory can be easily generalized for an
arbitrary disordered magnet.
K e yw o r d s: magnetic domain structure, diluted magnetic semiconductor.

1. Introduction
In 1976, the giant enhancement of the magnetic
field effect on exciton spectra in a diluted mag-
netic semiconductors (DMS) had been discovered at
the Ukrainian Institute of Physics in the research
team headed by S.M. Ryabchenko. The effect was ex-
plained by the collective influence of spin-polarized
magnetic ions on the electronic states via the carrier-
ion exchange interaction [1]. Very soon, the promo-
tion of this unusual effect became a main stream in
multiple physical labs in Europe and USA. It was
not surprising that such active study of DMS evoked
the idea to explore the inverse effect of band carri-
ers on the spin polarization of magnetic ions that can
ultimately mediate the ferromagnetic phase transi-
tion. The theory of this effect had been put forward
by Pashitskii and Ryabchenko [2]. However, Pashit-
skii and Ryabchenko’s initial approach to this prob-
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lem exploited the relatively weak effect of conduction
band electrons that was too faint to obtain the ferro-
magnetic state of DMS at reasonably high tempera-
tures [2]. That is why the potentially seminal paper
remained unheeded up to the Ohno et al. effort to en-
hance the ferromagnetic correlations in 𝑝-type DMS
(see [3] and references therein). Herewith, the latter
works focused on developing the homogeneous mag-
netic states. On the other hand, engineered magnetic
domains with designed shapes have proven to be use-
ful in many applications and in spintronics, in partic-
ular [3, 4]. Since DMSs are the disordered magnets,
they demonstrate a rich variety of magnetic proper-
ties that have a great potential to manipulate the
domain structure in the magnetically ordered phase
to obtain the magnetic properties useful for applica-
tions [4–8].

The structure of domains and domain walls in con-
ventional ordered magnets has been well studied both
experimentally and theoretically several decades ago
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(see, e.g., [9, 10] and references therein). The first
quantitative theory of domain structure in ordered
ferromagnets had been suggested by Landau and Lif-
shits in their classical paper [11] (see also [9]). The
second step had been done by Shirobokov [12], who
found the periodic distribution of magnetic moments
in a magnetically ordered crystal, neglecting, how-
ever, the inhomogeneous distribution of a demagne-
tization field deep inside a sample. It was shown fur-
ther (see [10, 13] and references therein) that such
approach is valid only at sufficiently low tempera-
tures (𝑇 ≪ 𝑇𝑐, where 𝑇𝑐 is the phase transition tem-
perature), where the demagnetizing field is localized
near the crystal surface, and the domain walls are
sufficiently thin. In that case, the domains are large,
and the magnetization inside them equals to that of a
bulk “domainless” sample. As the temperature grows
approaching 𝑇𝑐, the demagnetizing field penetrates
deeply inside a crystal. In other words, the magneti-
zation inside domains begins to depend on that field
and vice versa – the demagnetization filed depends on
the above magnetization so that the problem becomes
self-consistent. It was shown in [10,13] that the prop-
erties of the domain structure of any magnetically
ordered substance are completely determined by the
joint solution of Maxwell equations for a demagneti-
zation field and those obtained by the minimization of
the corresponding Landau free energy functional of a
magnet. The shape of a sample is determined by cor-
responding boundary conditions. This approach has
already become standard for the calculation of phys-
ical properties of the domain structure of ordered
magnets.

When a magnet is disordered, which is the case
for diluted magnetic semiconductors (DMSs), the ap-
plication of the above formalism is impossible, as
there is no corresponding free energy functional. In
our opinion, this is the cause for why in the pa-
pers, where the ferromagnetism in DMS has been
reported and investigated, the important question
about their domain structure has not been addressed
(see [5,14]). The characteristics of a domain structure
in DMS films of the III–V type have been investigated
in [7, 8]. For instance, in Ref. [8], the conventional
stripe-shaped domain structure has been observed
in Ga0.957Mn0.043As. As we have mentioned above,
the main problem in theoretical descriptions of the
DMS domain structure in the mentioned papers was
the lack of a suitable “continuous” free energy func-

tional. Such free energy functional had been derived
by us previously [15], where our starting point was ei-
ther the Ising or Heisenberg model of DMS. To derive
the free energy functional, we use the procedure of
self-consistent effective averaging over the DMS mag-
netic impurity ensemble. As a result, we obtain the
effective free energy functional, where the coefficients
before the magnetization powers contain not only the
temperature, but the concentration of magnetic ions
as well. In other words, our free energy function gives
a “mapping” of the initial disordered substance onto
some effective ordered magnet, where the effects of
dilution (disorder) are considered as a variable con-
centration of magnetic ions.

In the language of a phenomenological theory of
magnetism, this functional corresponds to the so-cal-
led homogeneous exchange part of the total pheno-
menological free energy of DMS. To describe the do-
main structure properties, these contributions should
be completed by the inhomogeneous exchange and
magnetic anisotropy energies. This can be done in
a standard phenomenological way. Namely, it was
demonstrated experimentally (see [14] and references
therein) that cmagnetic anisotropy exists in DMSs
of the (Ga, Mn)As type. At the same time, it was
demonstrated in Ref. [14] that unstrained samples
(which can be well described by the Heisenberg
model) have easy plane magnetic anisotropy, while
uniaxially strained samples (Ising model) have an
anisotropy of the easy axis type.

It is well known (see [9, 17]) that, at low tempera-
tures, the domain pattern formation is primarily due
to the rotation of the magnetization vector with con-
stant modulus, being the saturation magnetization
𝑀0. On the contrary, for the temperatures close to 𝑇𝑐,
this structure is formed by a variation of the modulus
of M, rather than its rotation. This means that the
homogeneous exchange part of the magnetic energy
of DMS will only contribute to its domain structure
near 𝑇𝑐. At low temperatures, the influence of a dis-
order on the domain structure of DMS is small, so
that it will resemble very much the domain structure
of conventional magnetically ordered substances.

Having the complete free energy functional of DMS,
we can apply the above standard approach to calcu-
late the properties of the domain structure of DMS
in the entire temperature range, where the ferromag-
netism exists. However, far from the phase transition
temperature, the solution of the correspondent non-
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linear partial differential equations can be done only
numerically. That is why in the present paper, we sug-
gest a theory of inhomogeneous magnetic state (stripe
domain structure) in the DMS slab in a vicinity of the
ferromagnetic phase transition temperature. We an-
alyze a sample with finite thickness 𝐿. We show that
the impurity character of ferromagnetism in DMS
results in a substantial narrowing of the region of
temperatures and sample thicknesses, where a do-
main structure exists. For example, in the disordered
magnetic substances under consideration, the domain
structure appears at some threshold value 𝐿tr, de-
pending on the ratio 𝜈 of the concentrations of charge
carriers and magnetic ions (𝑛𝑐 and 𝑛𝑖, respectively,
so that 𝜈 = 𝑛𝑐/𝑛𝑖). This can be approximated by a
simple analytic dependence 𝐿tr ∝ |𝜈 − 𝜈cr|−𝑏, where
𝜈cr and 𝑏 depend on the DMS model (Heisenberg or
Ising one). This is shown in Fig. 1, where the region
of parameters ensuring the existence of the domain
structure in a disordered substance (DMS) is much
smaller than that for an ordered magnet. The area
of that region is determined by the value of 𝜈 – an
additional parameter which is absent in ordered mag-
nets. This effect makes the domain structure of DMSs
qualitatively different from that of conventional or-
dered magnets. The developed formalism can be eas-
ily extended to a wide temperature range and to thin
DMS films. It can also be applied to the virtually any
kind of magnetically disordered materials.

2. Formalism

Consider a slab-shaped sample of DMS with thickness
𝐿 (Fig. 1, lower panel). Let the 𝑧 axis is the magnetic
anisotropy one (and the 𝑥𝑦 plane is the anisotropy
one for the Heisenberg model). The phenomenological
free energy of DMS near 𝑇𝑐 can be written in the form
(see, e.g., [10])

𝐹 =

∫︁ {︂
1

2
𝛼(∇M)2 + 𝑓P

AN + 𝑓P(𝑀)− 1

2
MHD

}︂
𝑑3𝑥,

(1)

where M is the magnetization vector, 𝛼 is the in-
homogeneous exchange constant, HD is a demag-
netization field, 𝑓P

AN and 𝑓P(𝑀) are, respectively,
the (model-dependent with P=H, I, where H and
I stand for the Heisenberg and Ising models, respec-
tively) anisotropy and homogeneous exchange ener-
gies. For the Heisenberg model (easy plane aniso-

Fig. 1. Upper panel – schematic temperature-thickness phase
diagram of the DMS. 𝑇𝑘 is the temperature of a phase transi-
tion into the domain state. Region 1 corresponds to the para-
magnetic phase for both ordered (OM) and disordered (DMS)
magnets, region 2 – paramagnetic phase for DMS and the do-
main state for OM, region 3 – domain state for both cases.
Horizontal asymptotes correspond to 𝜏𝑐(𝜈) = 𝑇𝑐/𝑇cMF, 𝑇𝑐 is
the temperature of a phase transition into the ferromagnetic
homogeneous (i.e. domainless) state. Lower panel shows the
geometry of the sample

tropy), we have

𝑓H
AN =

1

2
𝛽𝑀2

𝑥 , 𝛽 > 0 (2)

𝑓H(𝑚) =
1

2
𝑚2

(︀
1− 2𝐴H

1

)︀
+

1

20
𝑚4𝐴H

3 + ..., (3)

𝐴H
𝑛 =

∞∫︁
0

ℬH
1/2(𝜋𝑡)𝑒

−ℱ0(𝑡/2𝑇 )ℱ𝑛
1

(︂
𝑡

2𝑇

)︂
𝑑𝑡, (4)

where 𝑚 = |m|, m = ⟨S⟩/𝑆, 𝑆 is a magnetic ion
spin. Bar means the averaging over a spatial disorder
in the magnetic ion subsystem of DMS, while angular
brackets mean the thermal averaging, see Ref. [16]
for details. The relation between 𝑚 and 𝑀 in this
case is usual: 𝑚 = 𝑀/𝑀0, where 𝑀0 is saturation
magnetization.

For the Ising model, we have the easy axis aniso-
tropy so that

𝑓 I
AN =

1

2
𝛽
(︀
𝑀2

𝑥 +𝑀2
𝑦

)︀
, 𝛽 > 0, (5)

𝑓 I(𝑚) =
1

2
𝑚2

(︀
1−𝐴I

1

)︀
+

1

24
𝑚4𝐴I

3 + ..., (6)

𝐴I
𝑛 =

∞∫︁
0

ℬI
1/2(𝜋𝑡)𝑒

−ℱ0(𝑡/2𝑇 )ℱ𝑛
1

(︂
𝑡

2𝑇

)︂
𝑑𝑡. (7)
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Here
ℬH
1/2(𝑥) =

1 + 𝑥 coth𝑥

3 sinh𝑥
, ℬI

1/2(𝑥) =
1

sinh𝑥
, (8)

ℱ0(𝑥) + 𝑖ℱ1(𝑥) =

∫︁
𝑉

𝑛(r)
[︁
1− 𝑒−𝑖𝐽(r)𝑥

]︁
𝑑3𝑟, (9)

ℱ0,1 are the real and imaginary parts of the Fourier
transform of the distribution function of a random
magnetic field acting among the magnetic impurities
in DMS, 𝐽(r) is the r-dependent exchange integral
in the microscopic versions of the Ising or Heisenberg
spin Hamiltonian, see [15, 16] for details. In addition,
𝑛(r) is a spatially nonuniform concentration of mag-
netic ions. Index 1/2 in the functions (8) means that
the free energies (3) and (6) have been derived for
spin 1/2 (see [15]). However, our analysis shows that
while these results give the qualitative answer for any
spin, they can be generalized to the latter case.

Note that, in our random field method (see
Refs. [15, 16]) mean field asymptotics formally cor-
responds to the limit 𝑛𝑐/𝑛𝑖 → 0 corresponding to the
case of ordered substance, where all lattice sites are
occupied by magnetic ions. In this approximation, the
expression for the phase transition temperature into
a spatially homogeneous domainless state reads [14]

𝑇cMF =
1

4

∫︁
𝑛(r)𝐽(r)𝑑3𝑟. (10)

The equilibrium distribution of the magnetization
in DMS can be obtained from the equation of state
𝛿𝐹

𝛿m
= 0 (11)

augmented by the Maxwell equations

rot h = 0, div (h+ 4𝜋m) = 0 (12)

along with boundary conditions for the slab geometry

ℎ𝑥|𝑧=±𝐿
2
= ℎ(𝑒)

𝑥

⃒⃒⃒
𝑧=±𝐿

2

,
𝜕m

𝜕𝑧

⃒⃒⃒⃒
𝑧=±𝐿

2

= 0,

[ℎ𝑧 + 4𝜋𝑚𝑧]𝑧=±𝐿
2
= ℎ(𝑒)

𝑧

⃒⃒⃒
𝑧=±𝐿

2

,

(13)

where h = HD/𝑀0, h(𝑒) is a demagnetizing field in
vacuum. It was shown in Ref. [10] that, for sufficiently
thick slabs and 𝛽 < 4𝜋, the following equation for
the distribution of the magnetization in DMS can be
derived from the equation of state (11) with regard
for
𝜇⊥

𝜕2

𝜕𝑥2

(︂
𝛼
𝜕2𝑚𝑧

𝜕𝑥2
− 𝑏P𝑚𝑧 − 𝑐P𝑚

3
𝑧

)︂
− 4𝜋

𝜕2𝑚𝑧

𝜕𝑧2
= 0,(14)

where 𝜇⊥ = 1+4𝜋/𝛽, 𝑏H = 1−2𝐴H
1 , 𝑐H = 𝐴H

3 /5, 𝑏I =
= 1−𝐴I

1, 𝑐I = 𝐴I
3/6. It can be shown that, at 𝑇 < 𝑇𝑐

(ferromagnetic phase), the functions 𝑏I,H(𝑇 ) < 0.
Note that the different forms of anisotropy energies
for the Heisenberg (Eq. (2)) and Ising (Eq. (5)) mod-
els under the above suppositions do not influence the
form of Eq. (14).

It had been shown in [10, 13] that the transition
from the paramagnetic phase to the ferromagnetic
one with a domain structure (domain state) occurs
as a phase transition of the second kind. This means
that the magnetization (order parameter) is infinites-
imal at the phase transition point and its close vicin-
ity. Therefore, to determine the transition tempera-
ture 𝑇𝑘 to the domain state, it is sufficient to con-
sider the linearized version of Eq. (14). We look for
its solution in the form

𝑚𝑧 = 𝐴 cos 𝑞𝑧 cos 𝑘𝑥. (15)

Here, cos 𝑞𝑧 determines the spatial inhomogeneity
along the 𝑧 direction, while cos 𝑘𝑥 defines a “linear”
domain structure (in the 𝑥 direction, so that the
domain walls lie in the 𝑦𝑧 plane) with the period
𝑑 = 2𝜋/𝑘.

The substitution of solution (15) into the linearized
version of Eq. (14) gives the equation relating 𝑞 and 𝑘:

𝑞2 =
𝜇⊥

4𝜋
𝑘2

(︀
𝑏P + 𝛼𝑘2

)︀
. (16)

To obtain the dependence of 𝑇𝑘 on the sample thick-
ness, we need one more equation relating 𝑏 (and 𝐴
and 𝑇𝑘, see Eqs. (4), (7)), 𝑘, and 𝑞. Such equation
can be obtained, by substituting Eq. (15) into the
boundary conditions (13) with regard for the vac-
uum solutions ℎ

(𝑒)
𝑧 = 𝐶 exp (−𝑘|𝑧|) cos 𝑘𝑥, ℎ

(𝑒)
𝑥 =

= 𝐶 exp (−𝑘|𝑧|) sin 𝑘𝑥. It reads

tan
𝑞𝐿

2
=

𝜇⊥𝑘

𝑞
. (17)

Equations (16) and (17) constitute a closed set of
equations for the instability temperature 𝑇𝑘 and equi-
librium domain structure period (width of domain
stripes) as a function of the sample thickness 𝐿 and
the concentration ratio 𝜈. Equations (16) and (17)
can be reduced to a single equation describing the
dependence of 𝑏𝑃 on 𝑦 = 𝑘

√
𝛼:

𝑦

√︂
(−𝜇⊥)

4𝜋
(𝑏P + 𝑦2) = 𝜋𝑛+

2

𝜂
arctan

√︃
(−4𝜋𝜇⊥)

𝑏P + 𝑦2
,

(18)
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where 𝜂2 = 𝐿2/𝛼. Equation (18) is a single equation
for 𝑏P(𝑦) at different 𝜂. This dependence has the form
of a curve with minimum. The real transition to the
domain state in DMS occurs, when 𝑇𝑘 reaches its
maximal value as a function of 𝑦. This, similarly to
[10], can be demonstrated by the substitution of a
solution of the nonlinear equation (14) in the form of
an infinite series in a small parameter proportional
to |𝑇 − 𝑇𝑘| in the free energy (1) with its subsequent
minimization over 𝑦. Since, for both models, 𝑏P is a
decreasing function of the temperature (e.g., for both
models in the mean field approximation, 𝑏 = 1− 1/𝜏 ,
𝜏 = 𝑇/𝑇cMF, see Refs. [15,16]), the coordinates of the
minima 𝑏min

P and 𝑦min of the curve 𝑏(𝑦) determine the
equilibrium temperature of a phase transition to the
domain state 𝑇𝑘 and the equilibrium period for an
emerging domain structure 𝜆 = 2𝜋/𝑦min as functions
of the dimensionless sample thickness 𝜂.

We calculated the minimum of the function 𝑏(𝑦)
(18) numerically to get the dependences 𝜆(𝜂) and
𝑏min
P (𝜂). They are reported on the right panel of

Fig. 2. It is seen that the dependence 𝑏min
P (𝜂) decays

rapidly as 𝜂 → → ∞, at 𝜂 → 0 𝑏min
P → ∞. It can be

shown that, at large 𝜂,

𝜆 ∝ √
𝜂 =

√︁
𝐿/

√
𝛼. (19)

This behavior is typical of a stripe domain structure
in ordered magnets (see Refs. [10, 13]) and is seen in
Fig. 2.

3. Discussion and Experimental Implications

Now, we consider the explicit dependences 𝑏P(𝜈, 𝜏),
𝜈 = 𝑛𝑐/𝑛𝑖 = 𝑥𝑐/𝑥𝑖, 𝑥𝑐,𝑖 = 𝑛𝑐,𝑖Ω, Ω is the DMS
unit cell volume, 𝑛𝑐 and 𝑛𝑖 are the concentrations
of charge carriers (electrons or holes) and magnetic
ions, respectively. Using dimensionless variables, we
have

𝑏P = 1− 𝜏

36𝜋2𝜈2

∞∫︁
0

ℬP
1/2

(︂
𝜉𝜏

12𝜈

)︂
Φ(𝜉)𝑑𝜉, (20)

Φ(𝜉) = exp

[︂
𝜙0(𝜉)

6𝜋𝜈

]︂
𝜙1(𝜉), P = H, I,

where 𝜉 = 𝐽0𝑥
4/3
𝑐 𝑡/2𝑇 . In expressions (20), we used

the RKKY potential in the simplest possible form
corresponding to a one-band carrier structure:

𝐽(r) = −𝐽0𝑥
4/3
𝑐 𝐹 (2𝑘𝑓𝑟), 𝐹 (𝑥) =

𝑥 cos𝑥− sin𝑥

𝑥4
,(21)

Fig. 2. Left panel: dependence of 𝑏H and 𝑏I on the normalized
temperature at different 𝜈. Points, where 𝑏P = 0, correspond
to 𝜏𝑐(𝜈). Dashed line labeled MF corresponds to the case of
ordered magnet 𝑏MF = 1 − 1/𝜏 . Right panel: equilibrium
period of the emerging domain structure and the parameter 𝑏

versus the dimensionless sample thickness at 𝜇⊥ = 10

where 𝐽0 = (3/𝜋)1/3
(︀
3/2~2

)︀
𝐽2
ciΩ

2/3𝑚𝑑, 𝐽ci is a
carrier-ion exchange constant, and 𝑚𝑑 is the effective
mass. Functions 𝜙0(𝜉) and 𝜙1(𝜉) have the form

𝜙0 (𝜉) + 𝑖𝜙1 (𝜉) =

∞∫︁
0

{1− exp [−𝑖𝜉𝐹 (𝑦)]} 𝑦2𝑑𝑦.

For potential (21), the expression for 𝑇cMF assumes
the form, which will be used in subsequent numerical
calculations

𝑇cMF =
1

24𝜋
𝐽0𝑥

4/3
𝑖 𝜈1/3. (22)

The dependences 𝑏H(𝜏) and 𝑏I(𝜏) at different 𝜈 are
reported in the left panel of Fig. 2. In the mean field
(MF) approximation, 𝑏HMF = 𝑏IMF = 𝑏MF = 1− 1/𝜏
is unbounded at 𝑇 = 0, while, beyond this approxi-
mation, these functions are finite at 𝑇 = 0

𝑏H0 =
2

3
𝑏I0 = 1− 2

9𝜋2𝜈

∞∫︁
0

Φ(𝜉)
𝑑𝜉

𝜉
. (23)

These finite values are, indeed, “responsible” for
the emergence of a concentration-dependent thresh-
old sample thickness 𝐿tr for DMS. Having depen-
dences (20), we can solve them numerically for 𝑏min

P
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Fig. 3. Phase diagram of a DMS slab in the coordinates 𝑇, 𝐿.
Horizontal asymptotes – 𝜏𝑐(𝜈) similar to Fig. 1, 𝜇⊥ = 10

Fig. 4. Threshold sample thickness at 𝑇 = 0 and the corre-
sponding domain structure period as functions of the concen-
tration ratio 𝜈 at 𝜇⊥ = 10. Critical ratios 𝜈Hcr for the Heisen-
berg model and 𝜈Icr for the Ising one are shown. In the mean
field approximation (ordered magnet), 𝜈cr → ∞

to obtain the dimensionless phase transition tempera-
ture 𝜏𝑘 = = 𝑇𝑘/𝑇cMF as a function of the critical sam-
ple thickness. In other words, we have the phase dia-
gram of a DMS slab in the coordinates (𝑇, 𝐿), which
is reported in Fig. 3.

The presence of 𝐿cr(𝜈) is clearly seen. The asymp-
totes for large 𝐿cr are due to the dependence of
the equilibrium (corresponding to the ferromagnetic
phase without domain structure) phase transition
temperature 𝜏𝑐 = 𝑇𝑐/𝑇cMF on the concentration ra-
tio 𝜈. The last dependence is given by the conditions
𝑏H = 0 and 𝑏I = 0, Eqs. (3) and (6). It had been

Fig. 5. Temperature dependence of the domain structure
period. Critical divergence of the period at 𝜏 → 𝜏𝑐(𝜈) is
seen. Vertical asymptotes correspond to 𝜏𝑐(0.05) ≈ 0.65 and
𝜏𝑐(0.02) ≈ 0.85 respectively

shown in Ref. [16] that the impurity ferromagnetism
in DMS is possible for 0 < 𝜈 < 𝜈H,I

cr ,

𝜈Hcr = 0.0989, 𝜈Icr = 0.2473, (24)

so that 𝜏𝑐(𝜈cr) = 0. This means that 𝜏𝑐 decays as 𝜈
grows and the region (𝑇, 𝐿), where a ferromagnetic
domain state exists in DMS, diminishes substantially
(compared to the case of ordered ferromagnets) and
vanishes as 𝜈 → 𝜈cr.

Note that, in the MF approximation, it is very easy
to solve (20) analytically to get 𝜏cMF = 1/(1−𝑏P). Re-
solving Eqs. (23) for 𝑏min

P , we obtain the dependence
of the threshold thickness on the concentration ratio
𝜈. This dependence along with the corresponding pe-
riod of the domain structure is portrayed in Fig. 4 for
the Heisenberg and Ising models. Our analysis shows
that the dependence of the sample critical thickness
on the parameter 𝜈 (Fig. 4) has critical character and
can be well approximated by the function

𝐿tr√
𝛼

=
𝑎

|𝜈 − 𝜈Pcr|𝑏P
, (25)

where 𝜈Pcr is defined by Eq. (24) for the Heisenberg and
Ising models, respectively; 𝑏I ≈ 1.4, 𝑏H ≈ 1.15. At the
same time, 𝑎 ≈ 1.2 is the same for both models. It is
seen from Fig. 4 and from Eq. (25) that, as 𝜈 ap-
proaches 𝜈cr, 𝐿tr → ∞ so that the DMS sample loses
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its ferromagnetism (both homogeneous and inhomo-
geneous). The domain structure period also diverges
as 𝜈 → 𝜈cr.

The temperature dependence of the equilibrium do-
main structure period (width of domain stripes) is
shown in Fig. 5. The abrupt increase of the width of
domain stripes as 𝑇 → 𝑇𝑐 is seen. This fact coincides
with experimental results of Ref. [8]. Near 𝜏𝑐, we can
get the following analytic result:

𝜆 =
2𝜋

𝑦
=

𝑎(𝜈)

𝜏 − 𝜏𝑐(𝜈)
, (26)

where, for the Heisenberg model and 𝜈 = 0.05, 𝑎(𝜈) ≈
10.1; for 𝜈 = 0.02, 𝑎(𝜈) ≈ 8.6.

The above divergences make it possible to control
the critical thickness of a DMS sample by changing
𝜈. This, in turn, might give a possibility to design the
domain structure in nanocrystals of DMS, which is
useful for many technical applications, see Refs. [3, 5,
7,14] and references therein. Note that our formalism
permits one to calculate 𝜈cr and other characteristics
of a domain structure for a wide temperature range
(away from 𝑇𝑐) and any sample geometry.

We are now in a position to make some numerical
estimations. The major problem here is the uncer-
tain value of the inhomogeneous exchange constant
𝛼. It can be estimated by the expression (see Ref. [9])
𝛼 ≈ 𝑘B𝑇𝑐𝑎

2/(𝑀𝑠𝜇0), where 𝑎 = 0.4 nm is a typical
value of the lattice constant for DMS, 𝑀𝑠 ≈ 50 mT
(Ref. [14]) is a saturation magnetization (of local-
ized spin moments) of DMS, 𝑇𝑐 = 𝑇cMF ≈ 100 K
(Ref. [14]) is the temperature of a transition to the ho-
mogeneous ferromagnetic state in the mean field ap-
proximation, 𝑘B and 𝜇0 are the Boltzmann constant
and the Bohr magneton, respectively. The evaluation
gives 𝛼1/2 ∼ 20 nm. From Fig. 4 for 𝜈 = 0.075, we
have the threshold sample thickness 𝐿tr ∼ 50𝛼1/2 =
= 1000 nm = 1𝜇m and the corresponding domain
structure period is ∼25𝛼1/2 = 500 nm = 0.5 𝜇m for
the Heisenberg model. The same values for the Ising
model occur at 𝜈 ∼ 0.2. These values are in fair agree-
ment with results of Ref. [7]. Moreover, for different
𝜈, we have quite different values of 𝐿tr and 𝑦tr. This
is the base for the above-discussed domain structure
engineering. For our picture to give the quantitative
description of experiments with real DMS, the precise
experimental determination of the inhomogeneous ex-
change constant 𝛼 and the anisotropy constant 𝛽 is
highly desirable.

4. Conclusions

The main physical message of the present paper is
that the diluted magnetic semiconductors possess a
huge corps of physical properties, which are absent
both in “ordinary” (i.e. without magnetic impurities)
semiconductors and in disordered paramagnets. One
of the main points here is that the disorder in the
subsystem of localized magnetic moments of DMS
yields a phase transition to the ferromagnetic phase
[2, 3, 5, 7, 8], which can be used in many device appli-
cations. Such domain structure engineering is facili-
tated in DMS, since, varying the type and concentra-
tion of localized spins (as well as other defects and
impurities), we can manipulate the characteristics of
a domain structure to tailor them to specific needs.

Here, we have presented a formalism for the cal-
culation of properties of the domain structure in
DMS. The above results on the DMS phase diagram
is the simplest application of the formalism. Gene-
rally, it permits one to calculate all desired proper-
ties of a domain structure (like the temperature and
concentration dependences of the domain structure
period and domain walls thickness) in the entire tem-
perature range, as well as to account for more com-
plex thin slab sample geometries. The latter can be
accomplished by applying different boundary condi-
tions from Eq. (13). The external magnetic field can
also be easily taken into account. However, far from
𝑇𝑘, the solution of the resulting nonlinear differential
equations would require numerical methods.
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ВЛАСТИВОСТI МАГНIТНОЇ
ДОМЕННОЇ СТРУКТУРИ В РОЗРIДЖЕНИХ
МАГНIТНИХ НАПIВПРОВIДНИКАХ

Р е з ю м е

Представлено аналiз утворення доменної структури у фе-
ромагнiтнiй фазi розрiджених магнiтних напiвпровiдникiв
(РМН) 𝑝-типу. Аналiз виконується на пiдставi функцiона-
ла магнiтної вiльної енергiї РМН, обчисленої нами ранiше.
Ця вiльна енергiя, якщо замiстити РМН (невпорядкований
магнетик) ефективною впорядкованою речовиною, дозво-
ляє застосувати стандартний феноменологiчний пiдхiд до
обчислення доменної структури. Використовуючи систему
рiвнянь Максвелла та рiвняння мiнiмуму функцiонала вiль-
ної енергiї, ми показуємо наявнiсть критичного вiдношення
𝜈cr концентрацiї носiїв заряду та магнiтних iонiв, при яко-
му критична товщина 𝐿cr розходиться при 𝜈 → 𝜈cr. При
𝜈 > 𝜈cr кристал є монодоменним. Ця особливiсть вiдрiзняє
РМН вiд звичайних упорядкованих магнетикiв, оскiльки
дає можливiсть змiнювати критичну товщину шляхом змi-
ни 𝜈. Представлену теорiю можна легко узагальнити для
довiльного невпорядкованого магнетика.
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