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MATHEMATICAL GENERALIZATION
OF EXPERIMENTAL RESULTS ON THE DEVELOPMENT
OF SINGLE TWIN LAYERS IN METAL MATERIALS

A mathematical model has been proposed for the development of single twin layers in metal
crystals under various loading regimes and various conditions. The model parameters depend
on the geometric characteristics of the twin layer, the physical characteristics of the crystal,
the Burgers vector, and the motion velocity of twin dislocations. Methods for the determination
of the phenomenological parameters from experimental data were developed. In some cases, a
comparison of the parameter values calculated in the framework of the proposed mathematical
model with those obtained from experimental data was made, which demonstrated their satis-
factory consistency. The proposed model can be useful for the development of a quantitative
theory of twinning.
K e yw o r d s: mathematical model, model parameters, twin, twin boundary, dislocation struc-
ture, creep mode, active load, pulsating load, alternating load, hardening, Bauschinger effect,
forest dislocations, initial conditions.

1. Introduction

The basics of twinning theory were laid in works [1–
3]. Further, this theory was somewhat developed in
works [4, 5]. As a result, in those works, the disloca-
tion model for the motion of the twin layer boundary
was created, the main parameters of twin dislocations
were determined, the location of twin dislocations at
the twin boundary was described, the relationships
for the calculation of the stress, displacement, and
deformation fields in a vicinity of the twin boundary
were obtained, a physical description was given for a
number of phenomena observed near the twin bound-
aries, the energy of motion of twin dislocations along
the twin boundary was described, and the equilib-
rium condition for the incoherent twin boundary was
obtained.
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At the same time, there is a huge body of experi-
mental works dealing with the twinning, where a large
number of interesting phenomena associated with the
behavior of twin layers under various conditions were
revealed. In particular, these are the Bauschinger ef-
fect, which is observed for zinc, bismuth, and beryl-
lium, as well as alloys on their basis [6–8]; the effect of
hardening loss by the twin boundaries under pulsat-
ing loads [9–14]; and some features in the behavior of
twins at the creeping [15, 16] and under a shock load
[17]. Those phenomena and effects were not described
in the theoretical works mentioned above, because
the principal experimental works dealing with them
were published a little later. At the same time, the-
oretical works [1–5] undoubtedly formed a necessary
platform for constructing, firstly, a phenomenological
theory and, afterward, a physical one for the behav-
ior of twin layers in crystals, including the described
phenomena and effects.
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Fig. 1. Particular arrangement of a twin layer in the parent
crystal

The aim of this work was to create a phenomeno-
logical model for the development of single twin lay-
ers in metal crystals in various load modes and to
compare the relevant conclusions with experimental
creep curves obtained for twin boundaries, in par-
ticular, with the behavior of the latter under alter-
nating and pulsating loads. Given that the results of
such a comparison are satisfactory, it is of interest to
clarify the physical meaning of phenomenological pa-
rameters, which is a necessary condition for the phe-
nomenological model to “move” toward the physical
theory.

2. Phenomenological Model

Figure 1 illustrates a particular case of the twin layer
location in the parent crystal. The particularity con-
sists, first, in the fact that the twin is plane-parallel
(a large number of twins are wedge-shaped, and the
top of the twin wedge can be inside the crystal); and,
second, the twin boundaries can be perpendicular to
the facets of the specimen only at a certain orienta-
tion of the latter. The initial twin thickness is denoted
in Fig. 1 as 𝑏0. After the load 𝑃 has been applied
(as is shown in Fig. 1), the twin thickness increases
by Δ𝑏. Let us denote the relative thickening of the
twin as

𝜀 =
Δ𝑏

𝑏0
. (1)

In view of the properties of twin boundaries both
to accumulate hardening under the loading and to
lose it, i.e. both the deformation irreversibility and
reversibility, which is observed at the development of
twins [18, 19], we express the relative thickening of
the twin in the form

𝜀 = 𝜀e + 𝜀p, (2)

where 𝜀e is the elastic part of the thickening, which
disappears after the stress removal, and 𝜀p is the

plastic (irreversible) part. For 𝜀e, by analogy with
Hooke’s law, we write

𝜀e =
𝜎

𝐺2
, (3)

where 𝐺2 plays the role of the elastic modulus for
a single twin. For 𝜀p, using the idea of “viscous re-
sistance forces” resulting in the irreversibility of the
twin boundary displacement and by analogy with the
well-known Newton’s law (the strain of the resistance
to a plastic shear is proportional to the strain rate),
we may write that

𝑑𝜀p
𝑑𝑡

≡ 𝜀̇p =
𝜎

𝜂
, (4)

where 𝜂 is a parameter with the dimension of the
ordinary viscosity coefficient. As the twin grows, the
value of this parameter changes owing to the variation
of the dislocation structure between the twin bound-
aries and, as a result, the variation of the “viscous
resistance” forces. Therefore,

𝜂 = 𝜂(𝜀p). (5)

Let us expand function (5) in the Maclaurin series
and temporarily confine it to its linear part,

𝜂 (𝜀p) ≈ 𝜂0 +
𝑑𝜂

𝑑𝜀p
𝜀p, (6)

where 𝜂0 is the value of 𝜂 at 𝜀p = 0. From Eqs. (6)
and (4), we find

𝜎 =

(︂
𝜂0 +

𝑑𝜂

𝑑𝜀p
𝜀p

)︂
𝜀̇p = 𝜂0𝜀̇p +

𝑑𝜂

𝑑𝜀p

𝑑𝜀p
𝑑𝑡
𝜀p =

= 𝜂0𝜀̇p + 𝜂̇𝜀𝑝. (7)

The parameter 𝜂 has the dimension of the elastic
modulus; so, let us introduce the notation

𝜂̇ = 𝐺1. (8)

From Eqs. (2), (3), (7), and (8), we obtain the follow-
ing differential equation that couples 𝜎 and 𝜀:

𝜎 + 𝜏𝜀𝜎̇ = 𝐺(𝜀+ 𝜏𝜎 𝜀̇), (9)

where
𝜏𝜀 =

𝜂

𝐺1 +𝐺2
,

𝐺 =
𝐺1𝐺2

𝐺1 +𝐺2
,

𝜏𝜎 =
𝜂0
𝐺1

.

(10)
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Equation (9) has a form similar to the equation for a
“standard linear body”. The quantity 𝐺 in this model
is the “relaxed elastic modulus”; and 𝜏𝜀 and 𝜏𝜎 are the
stress relaxation time at a constant deformation and
the deformation relaxation time at a constant stress,
respectively.

By solving Eq. (9) for a given 𝜎(𝑡)- or 𝜀(𝑡)-
dependence, we obtain the other function. Con-
sider the 𝜎(𝑡)- and 𝜀(𝑡)-curves. Formally substituting
𝑡 → 𝑡(𝜎) or 𝑡 → 𝑡(𝜀) in the equation, we can plot
the 𝜎 − 𝜀 diagrams. Comparing these diagrams with
the experimental 𝜎(𝜀)-curves, we can determine the
parameters 𝐺1, 𝐺2, and 𝜂0 (see below).

Equation (9) is an approximate model of the twin
development process. To improve the accuracy, we
can account for the next (quadratic) term in the ex-
pansion of 𝜂(𝜀p) in the power series of 𝜀p. Then, we
obtain the formula

𝜂 (𝜀p) ≈ 𝜂0 +
𝑑𝜂

𝑑𝜀p
𝜀p +

1

2

𝑑2𝜂

𝑑𝜀2p
𝜀2p (11)

instead of Eq. (6), and the equation

𝜎 = 𝜂0

(︂
𝜀̇− 𝜎̇

𝐺2

)︂
+𝐺1

(︂
𝜀− 𝜎

𝐺2

)︂
+

+
1

2

(︁
𝜀− 𝜎

𝐺2

)︁2
(︁
𝜀̇− 𝜎̇

𝐺2

)︁2 [︂
𝜉

(︂
𝜀̇− 𝜎̇

𝐺2

)︂
−𝐺1

(︂
𝜀− 𝜎̈

𝐺2

)︂]︂
(12)

instead of Eq. (9). Here, 𝜉 is a new parameter. Its
sense, as well as the content of other parameters, can
be established by studying its dependence on various
factors (the temperature, the load rate and mode, the
structure, and so forth).

In what follows, we will solve Eq. (9) – and, in some
cases, Eq. (12) – for those loading modes that took
place in experiments. At the first stage, we will com-
pare the model and experimental results in order to
verify the phenomenological model as a whole. The
elucidation of the physical meaning of phenomeno-
logical parameters will be done in a separate work,
because there is a lot of materials whose analysis will
exceed the reasonable volume of this article.

3. Creep Mode

In the creep mode, 𝜎 = const. Then, Eq. (9) becomes
simpler,

𝜀̇+
1

𝜏𝜎
𝜀 =

𝜎

𝐺𝜏𝜎
. (13)

Fig. 2. Creep curves for twin boundaries in Zn crystals. The
solid curve was obtained experimentally, and the dashed curve
is theoretical (formula (14))

The solution of this inhomogeneous linear differential
equation satisfying the initial condition 𝜀 (𝑡 = 0) = 0
looks like

𝜀 =
𝜎

𝐺

(︁
1− 𝑒−

𝑡
𝜏𝜎

)︁
. (14)

Of course, it is of great interest to compare formula
(14) with experimental creep curves [15, 16]. Such
a comparison for zinc is presented in Fig. 2, where
the experimental curve for the dependence of the
twin thickness 𝑏 on the creep time 𝑡 of twin bound-
aries is shown in the case where the shear stress in
the twinning plane in the twinning direction equals
𝜎 = 0.75 kgf/mm2 [15] together with the theoreti-
cal curve [14] plotted for the parameter values 𝜏𝜎 =

= 49.4 h and 𝐺 = 0.69 kgf/mm
2.

For every experimental curve 𝜀 (𝑡), one can se-
lect such 𝐺- and 𝜏𝜎-values for which the experimen-
tal curve will be very close to that described by
Eq. (14). By changing the conditions – e.g., the den-
sity and type of forest dislocations in the crystal,
the temperature, stress, and so forth – it is possi-
ble to determine the sensitivity of those parameters
to every condition. By performing a complex compar-
ison (considering the results obtained for other load-
ing modes) of conclusions given by the mathemat-
ical model with experimental results (obtained un-
der various conditions), the physical meaning of phe-
nomenological parameters can be established. If the
theoretical conclusions substantially differ from the
experiment even at the optimal choice of parameter
values, the more exact equation (12) can be used. In
particular, in the case of creeping (𝜎 = const), the
corresponding equation has the form

𝜀 =
2𝜀̇2 (𝜂0𝜀̇− 𝜎)

𝐺1

(︁
𝜀− 𝜎

𝐺2

)︁2 +
2𝜀̇2

𝜀− 𝜎
𝐺2

+
𝜉

𝐺1
𝜀̇. (15)
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Fig. 3. Experimental (solid) and theoretical (dashed) curves
of hardening for a single twin in bismuth

This equation does not contain the time 𝑡 explic-
itly. Therefore, its order can be reduced and, if nec-
essary, this equation can be solved without particular
difficulties.

4. Active Loading Mode with 𝜎̇ = const

Let 𝜎̇ = 𝑐 = const, i.e.

𝜎 = 𝑐𝑡. (16)

Then, Eq. (9) takes the form

𝜀̇+
1

𝜏𝜎
𝜀 =

𝑐

𝐺𝜏𝜎
(𝑡+ 𝜏𝜀). (17)

The solution of this equation satisfying the initial con-
dition 𝜀 (𝑡 = 0) = 0 is the function

𝜀 =
𝑐

𝐺
(𝜏𝜀 − 𝜏𝜎)

(︁
1− 𝑒−

𝑡
𝜏𝜎

)︁
+
𝑐

𝐺
𝑡. (18)

The relaxation times 𝜏𝜀 and 𝜏𝜎 in metals are most
often related by the inequality 𝜏𝜀 ≪ 𝜏𝜎 so that 𝐺2 ≫
≫ 𝐺1. If the load duration 𝑡 ≪ 𝜏𝜎, then, from
Eq. (18), we obtain

𝜀 =
𝑐

2𝜂0
𝑡2. (19)

This model result can be compared with available ex-
perimental curves [6, 20] (see Fig. 3). The solid curve
demonstrates the experimental dependence 𝜎 (𝜀) for a
single twin taken from work [6], whereas the dashed
curve shows the same dependence calculated using
Eq. (19) after the substitution of Eq. (16) into it. The
corresponding loading rate was taken from the ex-
perimental data (𝑐 = 0.09 kgf/(mm2 min)), and the

parameter value 𝜂0 = 1220 kgf min was fitted to pro-
vide a satisfactory agreement between the experimen-
tal and theoretical dependences.

Substituting Eq. (16) into the more accurate
Eq. (12), we obtain

𝜀 = 2

(︁
𝜀̇− 𝑐

𝐺2

)︁2
(︁
𝜀− 𝑐

𝐺2
𝑡
)︁2
[︃
𝜂0
𝐺1

(︂
𝜀̇− 𝑐

𝐺2

)︂
+

+

(︂
𝜀− 𝑐

𝐺2
𝑡

)︂
− 𝑐

𝐺1
𝑡

]︃
+

𝜉

𝐺1

(︂
𝜀̇− 𝑐

𝐺2

)︂
. (20)

By introducing the auxiliary function 𝜙 (𝑡) = 𝜀− 𝑐
𝐺2
𝑡,

Eq. (20) can be rewritten in the form

𝜙 = 2

(︂
𝜙̇

𝜙

)︂2(︂
𝜂0
𝐺1

𝜙̇+ 𝜙− 𝑐

𝐺1
𝑡

)︂
+

𝜉

𝐺1
𝜙̇. (21)

Recall that 𝑐
𝐺2
𝑡 = 𝜎

𝐺2
is the elastic part of a defor-

mation. Then, the function 𝜙 (𝑡) has the meaning of
the irreversible deformation part, 𝜀p = 𝜀− 𝜀e.

5. Active Load Mode with 𝜀̇ = const

Let 𝜀 = 𝑘𝑡, i.e. the rate of deformation change is equal
to

𝜀̇ = 𝑘. (22)

In this case, Eq. (9) takes the form

𝜎̇ +
1

𝜏𝜀
𝜎 =

kG
𝜏𝜀

(𝑡+ 𝜏𝜎). (23)

The solution of this equation satisfying the initial con-
dition 𝜎 (𝑡 = 0) = 0 looks like

𝜎 = 𝑘𝐺𝑡+ 𝑘𝐺 (𝜏𝜎 − 𝜏𝜀)
(︁
1− 𝑒−

𝑡
𝜏𝜀

)︁
. (24)

It can be simplified by expanding the exponential
function in the Maclaurin series and keeping 2 to 3
terms in the expansion. But for this purpose, the in-
equality 𝑡 ≪ 𝜏𝜀 is required, which must be provided
by experimental conditions.

Now, substituting Eq. (22) into Eq. (12), we obtain

𝜎̈ = 2
𝐺2

𝐺1

(︁
𝑘 − 𝜎̇

𝐺2

)︁2
(︁
𝑘𝑡− 𝜎

𝐺2

)︁2
[︃
𝜎 − 𝜂0

(︂
𝑘 − 𝜎̇

𝐺2

)︂
−

−𝐺1

(︂
𝑘𝑡− 𝜎

𝐺2

)︂]︃
− 𝐺2

𝐺1

(︂
𝑘 − 𝜎̇

𝐺2

)︂
𝜉. (25)
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Let us introduce the auxiliary function

𝜓 (𝑡) = 𝑘𝑡− 𝜎

𝐺2
. (26)

It has the same meaning as the function 𝜙 (𝑡) intro-
duced above. Namely, this is a difference between the
total deformation and its elastic part. But since the
plastic deformation behaves itself differently in the
modes 𝜎̇ = const and 𝜀̇ = const, the functions 𝜓 (𝑡)
and 𝜙 (𝑡) are substantially different. Taking Eq. (26)
into account, Eq. (25) can be written as follows:

𝜓 = 2
𝜓̇2

𝜓2

(︂
𝜂0
𝐺1

𝜓̇ +
𝐺1 +𝐺2

𝐺1
𝜓 − 𝐺2

𝐺1
𝑘𝑡

)︂
. (27)

If function (24) agrees badly with the experiment,
then Eq. (27) has to be solved with the initial condi-
tion 𝜎 (𝑡 = 0) = 0 or, equivalently, 𝜓 (𝑡 = 0) = 0. The
resulting dependence 𝜎(𝑡) must be compared with the
corresponding experimental curve. This comparison,
firstly, gives information about the effectiveness of the
model and, secondly, makes it possible to determine
the parameters 𝐺1, 𝐺2, 𝜂0, and 𝜉.

6. Pulsating Load Mode

For pulsations, let us choose the mode with 𝜎̇ =
= const = 𝑐 at the loading and 𝜎̇ = const = 𝑐′ at
the unloading. As it was in experiments [9–13], let
the loading rate be much lower than the unloading
one: 𝑐≪ 𝑐′. The amplitude of the stress pulsations is
denoted as 𝜎0. By solving Eq. (9) sequentially – first,
for the loading with the rate 𝜎 = 𝑐; then, for the un-
loading with the rate 𝜎 = 𝑐′; then, for the reloading
with the same rate 𝑐 and the unloading with the same
rate 𝑐′, and so forth – we obtain a diagram similar to
that obtained experimentally in work [20]: in every
cycle, some shift of the twin boundaries is observed,
which decreases as the number of cycles increases. For
every repeated cycle, the relative displacement of the
twin boundaries is equal to

𝛽𝑘 = 𝜀′ exp

(︂
−𝑘𝐺1𝜎0

𝜂0𝑐

)︂
, (28)

where 𝜀′ = 𝜀0− 𝜎0

𝐺2
is the relative shift of twin bound-

aries in the first loading cycle minus the elastic part
𝜎0

𝐺2
. We emphasize that, in essence, this phenomenon

is a result of the hardening loss by the twin bound-
aries at stress pulsations, which was studied experi-
mentally [9–13]. Furthermore, the fact that the pro-
posed phenomenological model contains this effect,

a

b
Fig. 4. Model dependence 𝜎 (𝜀) for single twins (𝑎). Diagram
“stress versus the displacement of twin boundaries” for the pul-
sating loading on a bismuth single crystal (𝑏). The loading rate
is 0.044 kgf/(mm2· min), the time interval between the cycles
is 10 min

speaks in favor of the model. Experiments [9–12] tes-
tify that the most stable characteristic of this effect
(the loss and subsequent recovery of the hardening by
the twin boundaries in the course of stress pulsations)
is the quantity 𝛿 =

∑︀
𝛽𝑘. This series converges, and

the sum can be easily calculated:

𝛿 =

∞∑︁
𝑘=1

𝛽𝑘 = 𝜀′
1

exp
(︁
𝐺1𝜎0

𝜂0𝑐

)︁
− 1

. (29)

The result obtained agrees satisfactorily with the
experiment. Figure 4 illustrates the described effect
as one of the model conclusions (panel 𝑎) and as the
experimental fact (panel 𝑏)[10].

According to Eq. (29), the quantity 𝛿 should in-
crease with the growth of 𝑐, if 𝜎0 is fixed, and with
the decrease of 𝜎0, if 𝑐 is fixed. If the unloading and
the next loading are separated by the time 𝑇 (the
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a b
Fig. 5. Diagrams “stress versus the displacement of twin boun-
daries” for the Zn + 0.6%Cu alloy with various concentrations
of pyramidal dislocations: 103 (𝑎) and 107 cm−2 (𝑏)

rest time), then the value of 𝜀′ – as well as the values
of 𝜀′′, 𝜀′′′, ... after the second, third, and so forth
loading cycles – will be smaller owing to the defor-
mation relaxation after the complete unloading of the
specimen.

7. Alternating Load Mode

Let us apply Eq. (9) to consider the behavior of twin
boundaries under the alternating load of the speci-
men. In contrast to the case analyzed above, let the
second loading be performed with the rate 𝜎̇ = −𝑐,
i.e. the loading with the opposite sign, 𝜎 = −𝑐𝑡, is
applied (the time is reckoned from the reloading be-
ginning). For the initial condition 𝜀 (𝑡 = 0) = 𝜀, we
obtain

𝜀 =
[︁
𝜀′ +

𝑐

𝐺
(𝜏𝜀 − 𝜏𝜎)

]︁
𝑒−

𝑡
𝜏𝜎 +

𝑐

𝐺
(𝜏𝜎−𝜏𝜀 − 𝑡). (30)

At the time 𝑡 = 𝜎0

𝑐 ≡ 𝑡0, the stress −𝜎0 will be at-
tained, as well as the strain 𝜀2, which can be calcu-
lated by substituting 𝑡 = 𝜎0

𝑐 into expression (30).
If plotting the curve 𝜀 (𝜎) at the opposite-sign load-

ing in the positive direction of coordinate axes, as is
done to illustrate the Bauschinger effect [6, 7], then
the deformation value will be

𝜀′2 = 2𝜀′ − 𝜀2 (31)

at 𝜎 = 𝜎0.
As the magnitude of Bauschinger effect, the differ-

ence between the reloading curves in the forward and
reverse directions at |𝜎| = 𝜎0 is usually adopted. De-
noting it as 𝛽𝐵 , we obtain

𝛽𝐵 = 2𝜀′
(︁
1− 𝑒−

𝑡0
𝜏𝜎

)︁
. (32)

Making the substitution 𝑡0 = 𝜎0

𝑐 , we can write

𝛽𝐵 = 2𝜀′
(︁
1− 𝑒−

𝜎0
𝑐𝜏𝜎

)︁
. (33)

Expressions (32) and (33) make it possible to esti-
mate the magnitude of Bauschinger effect at twinning
in the framework of the proposed phenomenological
consideration.

To simplify the calculations, let us consider the lim-
iting case where 𝜏𝜀 ≪ 𝜏𝜎 and 𝑡 ≪ 𝜏𝜎. Then, from
Eq. (32), we find

𝛽𝐵 ≈ 2𝜀
′𝐺1

𝜂0
𝑡0, (34)

and, from Eq. (19), we have

𝑡0 ≈
√︂

2𝜂0𝜀0
𝑐

. (35)

Substituting Eq. (35) into Eq. (34), we obtain

𝛽𝐵 ≈ 2𝜀′𝐺1

√︂
2𝜀0
𝑐𝜂0

. (36)

If 𝜀′ ≈ 𝜀0 (since 𝜀e ≪ 𝜀p and 𝜀e ≪ 𝜀 at 𝐺2 ≫ 𝐺1),
we can write, instead of Eq. (36), that

𝛽𝐵 ≈ 2
√
2
𝐺1√
𝜂0𝑐

𝜀
3/2
0 . (37)

The approximate formula (37) is more convenient
while analyzing the dependences of 𝛽𝐵 on various
factors.

Thus, the proposed phenomenological model also
involves the Bauschinger effect observed for single
twins in various metal crystals [6–8]. This circum-
stance can help one in understanding the meaning
of phenomenological parameters, because the magni-
tude of Bauschinger effect turned out sensitive to the
density of forest dislocations in crystals (see Fig. 5).

8. Determination
of Phenomenological Parameters

Hence, in the framework of the proposed phenomeno-
logical consideration, the mechanical behavior of twin
boundaries at various loading regimes can be de-
scribed with the help of three parameters: 𝐺1, 𝐺2,
and 𝜂0 (the parameter 𝜉 appears, if passing from
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Eq. (9) to Eq. (12)). Those parameters are deter-
mined by the characteristics of twin boundaries them-
selves, as well as by the defect structure of their
boundaries. Therefore, they must depend on the in-
coherence degree of twin boundaries, the type and
density of forest dislocations in crystals, the presence
of point-defect clusters, and so on.

The easiest way to determine the parameter 𝜂0 is
to compare the experimental dependence 𝜀(𝑇 ) mea-
sured during the loading period with the approx-
imate formula (19), which includes this parameter
only. The corresponding procedure showed that the
parameter 𝜂0 is sensitive to the density of forest dis-
locations in crystals. In particular, when the initial
density of a pyramidal forest in Zn crystals increased
from 103 to 107 cm−2, the 𝜂0-value grew from 9×103

to 4.5 × 104 MPa · s. This fact makes it possible to
suggest that the viscous deceleration of twin bound-
aries is associated to a great extent with the presence
of forest dislocations in the crystal.

Knowing the value of the parameter 𝜂0, the pa-
rameter 𝐺1 can be found from the measured values
of the quantity 𝛿 or 𝛽𝐵 making use of formulas (29)
and (36). The order of magnitude of the parameter
𝐺1 is about 10 MPa for twins in Bi and Zn crystals.

Finally, the parameter 𝐺2 can be easily estimated
using the reverse shift of twin boundaries after the
crystal unloading, i.e. on the basis of the value for
the elastic part of the relative deformation, 𝜀e, via
formula (3). The order of magnitude for 𝐺2 is about
102 MPa for Bi and about 103 MPa for Zn, which
confirms the condition 𝐺2 ≫ 𝐺1 used above.

Thus, the proposed model can predict the behav-
ior of twin boundaries at various loading modes. In
particular, it demonstrates the effect of loss and sub-
sequent recovery of the hardening at pulsating loads,
as well as the Bauschinger effect described in the lit-
erature, which manifests itself in the case of alter-
nating loads.

9. Conclusions

The phenomenological model proposed in this work
for the development of single twin layers in metal
crystals can satisfactorily describe the following phe-
nomena:

∙ the creep of twin boundaries;
∙ the motion of twin boundaries in the active load

mode, in particular, at 𝜎̇ = const;

∙ the loss and subsequent recovery of the hardening
by the twin boundaries under pulsating loads;

∙ the Bauschinger effect at the twin boundaries.
As a result, this model can be useful while creating

a quantitative theory of twinning. The next step in
this direction undoubtedly consists in elucidating the
meaning of phenomenological model parameters on
the basis of dislocation concepts created in theoretical
works dealing with the twinning [1–5]. In this work,
the procedure aimed at determining the values of the
phenomenological model parameters on the basis of
experimental data was also described.

The authors express their sincere gratitude to Prof.
I.I. Papirov for useful discussion.
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Translated from Ukrainian by O.I. Voitenko

М.Є.Босiн, Т.Г.Дригач, В.М.Русскiн

МАТЕМАТИЧНЕ УЗАГАЛЬНЕННЯ РЕЗУЛЬТАТIВ
ЕКСПЕРИМЕНТIВ ЗI СПОСТЕРЕЖЕННЯ РОЗВИТКУ
ОДИНИЧНИХ ДВIЙНИКОВИХ ПРОШАРКIВ
У МЕТАЛЕВИХ МАТЕРIАЛАХ

Запропоновано математичну модель розвитку одиничних
двiйникових прошаркiв у металевих кристалах при рiзних
режимах навантаження, за рiзних умов. Параметри моде-
лi залежать вiд геометричних характеристик двiйниково-
го прошарку, фiзичних характеристик кристала, вектора
Бюргерса та швидкостi руху двiйникових дислокацiй. Роз-
роблено методики вiдновлення феноменологiчних параме-
трiв з експериментальних даних. У низцi випадкiв проведе-
но порiвняння значень параметрiв, що обчислено згiдно з
запропонованою математичною моделлю, з тими, якi отри-
мано з даних експерименту. Порiвняння показує задовiльну
узгодженiсть. Запропонована модель може бути корисною
в створеннi кiлькiсної теорiї двiйникування.

Ключ о в i с л о в а: модель, параметри моделi, двiйник,
двiйникова межа, дислокацiйна структура, рiвняння, ре-
жим повзучостi, активне навантаження, пульсуючi наван-
таження, знакозмiннi навантаження, змiцнення, ефект Ба-
ушингера, дислокацiї лiсу, початковi умови.
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