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LONGITUDINAL AND TRANSVERSE
ELECTROCALORIC EFFECTS IN GLYCINIUM
PHOSPHITE FERROELECTRIC

A modified proton ordering model of glycinium phosphite ferroelectric, which involves the
piezoelectric coupling of the proton and lattice subsystems, is used for the investigation of
the electrocaloric effect. The model also accounts for the dependence of the effective dipole mo-
ment on a hydrogen bond on an order parameter, as well as a splitting of parameters of the
interaction between pseudospins in the presence of shear stresses. In the two-particle cluster
approximation, the influence of longitudinal and transverse electric fields on components of the
polarization vector and the dielectric permittivity tensor, as well as on thermal characteristics
of the crystal, is calculated. Longitudinal and transverse electrocaloric effects are studied. The
calculated electrocaloric temperature change is quite small, about 1K; however, it can change
its sign under the influence of a transverse field.
K e yw o r d s: ferroelectrics, phase transition, dielectric permittivity, electric field effect, elec-
trocaloric effect.

1. Introduction
As is known, NH3CH2COOH·H2PO3 crystal (glyci-
nium phosphite – GPI) belongs to the family of fer-
roelectrics with hydrogen bonds [1, 2]. At room tem-
perature, this crystal is in the paraelectric phase and
has a monoclinic structure (space group P21/a) [3–
5]. But, at the temperature about 225 K, the crys-
tal passes to the ferroelectric phase (space group
P21). At that, there appear simultaneously ferroelec-
tric ordering of dipole moments along the crystallo-
graphic b axis and the antiferroelectric ordering in
the (b,c) plane. As a result, the crystal is sensitive
to the influence of both: longitudinal and transverse
electric fields. In particular, in [6, 7] it was exper-
imentally discovered that its transverse permittiv-
ity 𝜀𝑧𝑧 in the ferroelectric phase greatly increases
under the influence of a transverse field 𝐸𝑧. In ad-
dition, dielectric properties of the crystal greatly
depend on hydrostatic [8] and uniaxial [9] pres-
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sures. These peculiarities make GPI crystals of inter-
est for studies.

In [6, 10], a pseudospin proton ordering model was
proposed for the theoretical study of dielectric prop-
erties of GPI crystals, which takes the orientation of
dipole moments in an unit cell into account. Based
on this model, the transverse field effect on the per-
mittivity 𝜀𝑧𝑧 was qualitatively properly explained.

In [11], this model was developed by considering
the lattice strains and piezoelectric coupling of the
proton and lattice subsystems (deformed proton or-
dering model). This made it possible to calculate ex-
pressions for the spontaneous polarization, static di-
electric permittivity tensor, piezoelectric coefficients,
elastic constants, and molar heat capacity of the crys-
tal and to obtain the good explanation of experimen-
tal data for these characteristics. In addition, based
on a modified GPI model, the effects of transverse
fields 𝐸𝑥 and 𝐸𝑧 [12] of hydrostatic [13] and uniaxial
[14] pressures on the phase transition and thermo-
dynamic characteristics of GPI crystals, as well as
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relexational phenomena [15], were quantitatively ex-
plained.

Experimental data [16] show that, in the presence
of longitudinal field 𝐸𝑦, the phase transition smears,
and the temperature dependence of the longitudinal
permittivity 𝜀𝑦𝑦(𝑇 ) has rounded maximum. At the
same time, in the model proposed in [11], the effec-
tive dipole moments with different values of longitudi-
nal components in the para- and ferroelectric phases
are used for the description of 𝜀𝑦𝑦(𝑇 ). This leads to
the appearance of a break on the curve 𝜀𝑦𝑦(𝑇 ) in-
stead of a smoothed maximum in the presence of the
field 𝐸𝑦. Therefore, in [17] for a proper description
of the phase transition smearing, the model [11] was
modified. It was supposed that the effective dipole
moment on a hydrogen bond depends on the order
parameter on this bond, because this parameter con-
tinuously depends on the temperature near the phase
transition point. This made it possible to quantita-
tively describe the effect of the field 𝐸𝑦.

In [18], the model of GPI proposed in [11] was mod-
ified with regard for the splitting of parameters of the
interaction between pseudospins under shear stresses
𝜀4 and 𝜀6. This enabled the study of the effects of
shear stresses 𝜎4 and 𝜎6 on the phase transition and
on dielectric and piezoelectric characteristics of the
crystal.

It is interesting to investigate also the electrocaloric
(EC) effect, which is a change the temperature Δ𝑇
of the crystal at an adiabatic change of the applied
electric field 𝐸𝑦 or 𝐸𝑧, on the basis of the deformed
proton ordering model. In the present paper, we will
simultaneously consider the dependence of the effec-
tive dipole moment on a hydrogen bond on the order
parameter on this bond, as well as a splitting of pa-
rameters of the interaction between pseudospins un-
der shear stresses.

2. The Model of GPI Crystal

The proton ordering model of GPI [11, 18] can be
understood from Fig. 1, where a unit cell in the
ferroelectric phase is presented. For a better under-
standing of the model, the only phosphite groups are
shown in the figure. Protons, which are localized on
O–H ... O bonds between the phosphite groups HPO3,
form zigzag chains along the crystallographic 𝑐-axis
of the crystal. Dipole moments d𝑞𝑓 (𝑓 = 1, ..., 4) are
ascribed to the protons on the bonds. In the ferroelec-
tric phase, the dipole moments compensate one an-

Fig. 1. Orientations of vectors d𝑞𝑓 in a primitive cell in the
ferroelectric phase [11, 18]

other (d𝑞1 with d𝑞3, d𝑞2 with d𝑞4) in the directions Z
and X (𝑋 ⊥ (𝑏, 𝑐), 𝑌 ‖ 𝑏, 𝑍 ‖ 𝑐), and simultaneously
supplement one another in the direction Y, creating
the spontaneous polarization.

The pseudospin variables 𝜎𝑞1

2 , ...,
𝜎𝑞4

2 describe a re-
orientation of the dipole moments of the base units:
d𝑞𝑓 = 𝜇𝑓

𝜎𝑞𝑓

2 . The mean values ⟨𝜎2 ⟩ =
1
2 (𝑛𝑎 − 𝑛𝑏) are

connected with differences in the occupancies of the
two possible molecular positions, 𝑛𝑎 and 𝑛𝑏.

Hereinafter for convenience, we use the notations
1, 2, and 3 instead of 𝑥, 𝑦, and 𝑧, respectively, for
components of vectors and tensors. The Hamiltonian
of the proton subsystem of GPI, which involves the
short-range and long-range interactions and the ap-
plied mechanical stresses and electric fields 𝐸1, 𝐸2,
𝐸3 along positive directions of the Cartesian axes X,
Y, and Z, can be written in such a way:

𝐻̂ = 𝑁𝑈seed + 𝐻̂short + 𝐻̂long + 𝐻̂𝐸 + 𝐻̂ ′
𝐸 , (2.1)

where 𝑁 is the total number of primitive cells. The
term 𝑈seed in (2.1) is the “seed” energy, which relates
to the heavy ion sublattice and does not explicitly de-
pend on the configuration of the proton subsystem. It
includes the elastic, piezolectric, and dielectric parts
expressed in terms of electric fields 𝐸𝑖 (𝑖 = 1, 2, 3)
and strains 𝜀𝑗 (𝑗 = 1, ..., 6):

𝑈seed = 𝑣

(︃
1

2

6∑︁
𝑗,𝑗′=1

𝑐𝐸0
𝑗𝑗′(𝑇 )𝜀𝑗𝜀𝑗′ −

−
3∑︁

𝑖=1

6∑︁
𝑗=1

𝑒0𝑖𝑗𝜀𝑗𝐸𝑖 −
3∑︁

𝑖,𝑖′=1

1

2
𝜒𝜀0
𝑖𝑖′𝐸𝑖𝐸𝑖′

)︃
. (2.2)

The parameters 𝑐𝐸0
𝑗𝑗′(𝑇 ), 𝑒

0
𝑖𝑗 , 𝜒𝜀0

𝑖𝑖′ are so called “seed”
elastic constants, “seed” coefficients of piezoelectric
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stresses, and “seed” dielectric susceptibilities, respec-
tively; 𝑣 is the volume of a primitive cell. Matrices
𝑐𝐸0
𝑗𝑗′ , 𝑒

0
𝑖𝑗 , 𝜒𝜀0

𝑖𝑖′ are given by:

𝑐𝐸0
𝑗𝑗′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐𝐸0
11 𝑐𝐸0

12 𝑐𝐸0
13 0 𝑐𝐸0

15 0

𝑐𝐸0
12 𝑐𝐸0

22 𝑐𝐸0
23 0 𝑐𝐸0

25 0

𝑐𝐸0
13 𝑐𝐸0

23 𝑐𝐸0
12 0 𝑐𝐸0

35 0

0 0 0 𝑐𝐸0
44 0 𝑐𝐸0

46

𝑐𝐸0
15 𝑐𝐸0

25 𝑐𝐸0
35 0 𝑐𝐸0

55 0

0 0 0 𝑐𝐸0
46 0 𝑐𝐸0

66

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

𝑒0𝑖𝑗 =

⎛⎜⎝ 0 0 0 𝑒014 0 𝑒016

𝑒021 𝑒022 𝑒023 0 𝑒025 0

0 0 0 𝑒034 0 𝑒036

⎞⎟⎠, (2.3)

𝜒̂𝜀0
𝑖𝑖′ =

⎛⎜⎝𝜒
𝜀0
11 0 𝜒𝜀0

13

0 𝜒𝜀0
22 0

𝜒𝜀0
13 0 𝜒𝜀0

33

⎞⎟⎠.
In the paraelectric phase, all coefficients 𝑒0𝑖𝑗 ≡ 0.

Another terms in (2.1) describe the pseudospin part
of the Hamiltonian. In particular, the second term in
(2.1) is the Hamiltonian of short-range interactions:

𝐻̂short = −
∑︁
𝑞𝑞′

(︁
𝑤1
𝜎𝑞1
2

𝜎𝑞2
2

+𝑤2
𝜎𝑞3
2

𝜎𝑞4
2

)︁
×

×
(︀
𝛿R𝑞R𝑞′ + 𝛿R𝑞+Rc,R𝑞′

)︀
. (2.4)

In (2.4), 𝜎𝑞𝑓 is the 𝑧-component of the pseudospin
operator that describes a state of the 𝑓 -th bond
(𝑓 = 1, 2, 3, 4) in the 𝑞-th cell. The first Kronecker
delta corresponds to the interaction between protons
in the chains near the tetrahedra HPO3 of type “I”
(see Fig. 1), whereas the second one – near the tetra-
hedra HPO3 of type “II”, Rc is the lattice vector along
the c-axis. Contributions to the energy of interaction
between protons near tetrahedra of different types, as
well as the mean values of the pseudospins 𝜂𝑓 = ⟨𝜎𝑞𝑓 ⟩,
which are related to tetrahedra of different types, are
identical.

Parameters 𝑤1, 𝑤2, which describe the short-range
interactions within the chains, are expanded linearly
in the series in strains 𝜀𝑗 :

𝑤1 = 𝑤0+
∑︁
𝑗

𝛿1𝑙𝜀𝑗 = 𝑤0+
∑︁
𝑙

𝛿𝑙𝜀𝑙+𝛿4𝜀4+𝛿6𝜀6,

𝑤2 = 𝑤0+
∑︁
𝑗

𝛿2𝑙𝜀𝑗 = 𝑤0+
∑︁
𝑙

𝛿𝑙𝜀𝑙−𝛿4𝜀4−𝛿6𝜀6,
(2.5)

where 𝑙 = 1, 2, 3, 5. The third term in (2.1) describes
the long-range dipole-dipole interactions and indirect
(through the lattice vibrations) interactions between
protons, which are taken into account in mean field
approximation:

𝐻̂long =
1

2

∑︁
𝑞𝑞′
𝑓𝑓′

𝐽𝑓𝑓 ′(𝑞𝑞′)
⟨𝜎𝑞𝑓 ⟩
2

⟨𝜎𝑞′𝑓 ′⟩
2

−

−
∑︁
𝑞𝑞′
𝑓𝑓′

𝐽𝑓𝑓 ′(𝑞𝑞′)
⟨𝜎𝑞′𝑓 ′⟩

2

𝜎𝑞𝑓
2
. (2.6)

The Fourier transforms of the interaction constants
𝐽𝑓𝑓 ′ =

∑︀
𝑞′ 𝐽𝑓𝑓 ′(𝑞𝑞′) at k = 0 are linearly expanded

with respect to the strains 𝜀𝑗 :

𝐽𝑓𝑓 ′ = 𝐽0
𝑓𝑓 ′ +

∑︁
𝑗

𝜓𝑓𝑓 ′𝑗𝜀𝑙.

In view of the symmetry of the crystal, the parame-
ters 𝐽𝑓𝑓 ′ are given by:

𝐽 11
33

= 𝐽0
11 +

∑︁
𝑙

𝜓11𝑙𝜀𝑙 ± 𝜓114𝜀4 ± 𝜓116𝜀6,

𝐽13 = 𝐽0
13 +

∑︁
𝑙

𝜓13𝑙𝜀𝑙 + 𝜓134𝜀4 + 𝜓136𝜀6,

𝐽 12
34

= 𝐽0
12 +

∑︁
𝑙

𝜓12𝑙𝜀𝑙 ± 𝜓124𝜀4 ± 𝜓126𝜀6,

𝐽 14
23

= 𝐽0
14 +

∑︁
𝑙

𝜓14𝑙𝜀𝑙 ± 𝜓144𝜀4 ± 𝜓146𝜀6,

𝐽 22
44

= 𝐽0
22 +

∑︁
𝑙

𝜓22𝑙𝜀𝑙 ± 𝜓224𝜀4 ± 𝜓226𝜀6,

𝐽24 = 𝐽0
24 +

∑︁
𝑙

𝜓24𝑙𝜀𝑙 + 𝜓244𝜀4 + 𝜓246𝜀6,

(2.7)

As one can see from (2.5), (2.7), the parameters w
and most of 𝐽𝑓𝑓 ′ split in the presence of shear strains
𝜀4, 𝜀6.

As a result, (2.6) can be written as:

𝐻̂long = 𝑁𝐻0 −
∑︁
𝑞

4∑︁
𝑓=1

ℋ𝑓
𝜎𝑞𝑓
2
, (2.8)

where

𝐻0 =

4∑︁
𝑓,𝑓 ′=1

1

8
𝐽𝑓𝑓 ′𝜂𝑓 𝜂𝑓 ′ , ℋ𝑓 =

4∑︁
𝑓 ′=1

1

2
𝐽𝑓𝑓 ′𝜂𝑓 ′ . (2.9)
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The fourth term in (2.1) describes the interactions
of pseudospins with the external electric field:

𝐻̂𝐸 = −
∑︁
𝑞𝑓

𝜇𝑓 E
𝜎𝑞𝑓
2
. (2.10)

Here, 𝜇1 = (𝜇𝑥
13, 𝜇

𝑦
13, 𝜇

𝑧
13), 𝜇3 = (−𝜇𝑥

13, 𝜇
𝑦
13,−𝜇𝑧

13),
𝜇2 = (−𝜇𝑥

24,−𝜇
𝑦
24, 𝜇

𝑧
24), 𝜇4 = (𝜇𝑥

24,−𝜇
𝑦
24,−𝜇𝑧

24) are
the effective dipole moments per one pseudospin.

The term 𝐻̂ ′
𝐸 in Hamiltonian (2.1) is introduced in

the present model for the first time. It accounts for
the above-mentioned dependence of the longitudinal
components of dipole moments on the mean value of
the pseudospin 𝑠𝑓 :

𝐻̂ ′
𝐸 =−

∑︁
𝑞𝑓

𝑠2𝑓𝜇
′
𝑓𝐸2

𝜎𝑞𝑓
2

=−
∑︁
𝑞𝑓

⎛⎝1

𝑁

∑︁
𝑞′

𝜎𝑞′𝑓

⎞⎠2 𝜇′
𝑓𝐸2

𝜎𝑞𝑓
2
.

(2.11)

Here corrections to the dipole moments 𝑠2𝑓𝜇
′
𝑓 are used

instead of 𝑠𝑓𝜇′
𝑓 because of the symmetry considera-

tions, the energy should not change, when the field
and all pseudospins change their sign.

The term 𝐻̂ ′
𝐸 , as well as long-range interactions, is

taken into account in the mean field approximation:

𝐻̂ ′
𝐸 = −

∑︁
𝑞𝑓

⎛⎝ 1

𝑁

∑︁
𝑞′

𝜎𝑞′𝑓

⎞⎠2 𝜇′
𝑓𝐸2

𝜎𝑞𝑓
2

=

= − 1

𝑁2

∑︁
𝑞𝑓

∑︁
𝑞′

∑︁
𝑞′′

𝜎𝑞𝑓𝜎𝑞′𝑓𝜎𝑞′′𝑓
𝜇′
𝑓𝐸2

2
≈

≈ − 1

𝑁2

∑︁
𝑞𝑓

∑︁
𝑞′

∑︁
𝑞′′

((𝜎𝑞𝑓+𝜎𝑞′𝑓+𝜎𝑞′′𝑓 )𝜂
2
𝑓−2𝜂3𝑓 )

𝜇′
𝑓𝐸2

2
=

= −
∑︁
𝑞

4∑︁
𝑓=1

(3𝜎𝑞𝑓𝜂
2
𝑓 − 2𝜂3𝑓 )

𝜇′
𝑓𝐸2

2
=

= −3
∑︁
𝑞

4∑︁
𝑓=1

𝜎𝑞𝑓
2
𝜂2𝑓𝜇

′
𝑓𝐸2 +𝑁

4∑︁
𝑓=1

𝜂3𝑓𝜇
′
𝑓𝐸2. (2.12)

The two-particle cluster approximation for short-
range interactions is used for the calculation of field
effects in GPI. In this approximation, the thermody-
namic potential under stresses 𝜎𝑗 is given by:

𝐺 = 𝑁𝑈seed+𝑁𝐻
0+𝑁

4∑︁
𝑓=1

𝜂3𝑓𝜇
′
𝑓𝐸2 −𝑁𝑣

6∑︁
𝑗=1

𝜎𝑗𝜀𝑗 −

− 𝑘B𝑇
∑︁
𝑞

{︁
2 ln Sp𝑒−𝛽𝐻̂(2)

𝑞 −
4∑︁

𝑓=1

ln Sp𝑒−𝛽𝐻̂
(1)
𝑞𝑓

}︁
, (2.13)

where the following notations are used:

Sp{...} =
∑︁

𝜎1=±1

∑︁
𝜎2=±1

∑︁
𝜎3=±1

∑︁
𝜎4=±1

{...},

𝛽 = 1
𝑘B𝑇 , 𝑘B is the Boltzmann constant, 𝐻̂(2)

𝑞 and

𝐻̂
(1)
𝑞𝑓 are the effective two-particle and one-particle

Hamiltonians:

𝐻̂(2)
𝑞 = 𝐻𝑠ℎ −

4∑︁
𝑓=1

𝑦𝑓
𝛽

𝜎𝑞𝑓
2
, (2.14)

𝐻̂
(1)
𝑞𝑓 = −𝑦𝑓

𝛽

𝜎𝑞𝑓
2
, (2.15)

𝐻𝑠ℎ = −2
(︁
𝑤1
𝜎𝑞1
2

𝜎𝑞2
2

+ 𝑤2
𝜎𝑞3
2

𝜎𝑞4
2

)︁
, (2.16)

𝑦𝑓 = 𝛽(Δ1 +ℋ𝑓 + 𝜇𝑓E+ 3𝜂2𝑓𝜇
′
𝑓𝐸2),

𝑦𝑓 = 𝛽Δ𝑓 + 𝑦𝑓 .
(2.17)

The symbols Δ𝑓 are the effective fields created by
the neighboring bonds from outside of the cluster. In
the cluster approximation, the fields Δ𝑓 can be de-
termined from the condition of minimum of the ther-
modynamic potential 𝜕𝐺/𝜕Δ𝑓 = 0, which gives the
self-consistency condition that states that the mean
values of the pseudospins ⟨𝜎𝑞𝑓 ⟩ = 𝜂𝑓 calculated with
the two-particle and one-particle Gibbs distributions,
respectively, should coincide:

𝜂𝑓 =
Sp𝜎𝑞𝑓𝑒

−𝛽𝐻̂(2)
𝑞

Sp 𝑒−𝛽𝐻̂
(2)
𝑞

=
Sp𝜎𝑞𝑓𝑒

−𝛽𝐻̂
(1)
𝑞𝑓

Sp 𝑒−𝛽𝐻̂
(1)
𝑞𝑓

. (2.18)

Using (2.18) with the one-particle distribution func-
tion (𝜂𝑓 = th(𝑦𝑓/2)), the effective fields Δ𝑓 are ex-
pressed through the order parameters 𝜂𝑓

Δ𝑓 =
1

2𝛽
ln

1 + 𝜂𝑓
1− 𝜂𝑓

− 1

2
ℋ𝑓 − 1

2
(𝜇𝑓E+ 3𝜂2𝑓𝜇

′
𝑓𝐸2),

Then 𝑦𝑓 are given by:

𝑦𝑓 =
1

2
ln

1 + 𝜂𝑓
1− 𝜂𝑓

+𝛽

4∑︁
𝑓 ′=1

𝐽𝑓𝑓 ′

4
𝜂𝑓 ′+

𝛽

2
(𝜇𝑓E+3𝜂2𝑓𝜇

′
𝑓𝐸2).

The first equality (2.18) yields the system of equa-
tions for the order parameters 𝜂𝑓 :

𝜂𝑓 =
1

𝑍
Sp
{︁
𝜎𝑞𝑓𝑒

−𝛽𝐻𝑠ℎ+
4∑︀

𝑙=1

𝑦𝑙
𝜎𝑞𝑙
2
}︁
, (2.19)
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where Z is the two-particle partition function.

𝑍 = Sp 𝑒
−𝛽𝐻𝑠ℎ+

4∑︀
𝑙=1

𝑦𝑙
𝜎𝑞𝑙
2
. (2.20)

3. Thermodynamic Characteristics of GPI

Let us write the thermodynamic potential per unit
cell in the form

𝑔=
𝐺

𝑁
=𝑈seed +𝐻0 +

4∑︁
𝑓=1

𝜂3𝑓 𝜇
′
𝑓 𝐸2 − 𝜐

6∑︁
𝑗=1

𝜎𝑗𝜀𝑗 +

+4𝑘B𝑇 ln 2− 1

2
𝑘B𝑇

4∑︁
𝑓=1

ln
(︀
1− 𝜂2𝑓 )− 2𝑘B𝑇 ln𝑍. (3.1)

From the condition of minimum of the thermody-
namic potential, we have(︂
𝜕𝑔

𝜕𝜀𝑗

)︂
𝐸𝑖,𝜎𝑗

= 0.

Taking (2.19) into account, we get a system of equa-
tions for the strains 𝜀𝑗 :

𝜎𝑗 =

6∑︁
𝑗′=1

𝑐𝐸0
𝑗𝑗′(𝑇 )𝜀𝑗′ −

3∑︁
𝑖=1

𝑒0𝑖𝑗 𝐸𝑖 −

− 2𝑀𝑙

𝜐𝑍
−

4∑︁
𝑓,𝑓 ′=1

𝜓𝑓𝑓 ′𝑙

8𝑣
𝜂𝑓 𝜂𝑓 ′ . (3.2)

Here, the following notation is used:

𝑀𝑙 = Sp

{︃
2
(︁
𝛿1𝑙
𝜎𝑞1
2

𝜎𝑞2
2

+𝛿2𝑙
𝜎𝑞3
2

𝜎𝑞4
2

)︁
𝑒
−𝛽𝐻𝑠ℎ+

4∑︀
𝑓=1

𝑦𝑓
𝜎𝑞𝑓
2

}︃
.

Differentiating the thermodynamic potential with re-
spect to the fields 𝐸𝑖, one can get the expressions for
components of the polarization 𝑃𝑖:

𝑃1 = 𝑒014𝜀4 + 𝑒016𝜀6 + 𝜒𝜀0
11𝐸1 +

+
1

2𝑣
[𝜇𝑥

13(𝜂1 − 𝜂3)− 𝜇𝑥
24(𝜂2 − 𝜂4)],

𝑃2 = 𝑒021𝜀1 + 𝑒022𝜀2 + 𝑒023𝜀3 + 𝑒025𝜀5 + 𝜒𝜀0
22𝐸2 +

+
1

2𝑣
[𝜇𝑦

13(𝜂1 + 𝜂3)− 𝜇𝑦
24(𝜂2 + 𝜂4)] +

1

2𝑣

4∑︁
𝑓=1

𝜂3𝑓𝜇
′
𝑓 ,

𝑃3 = 𝑒034𝜀4 + 𝑒066𝜀6 + 𝜒𝜀0
33𝐸3 +

+
1

2𝑣
[𝜇𝑧

13(𝜂1 − 𝜂3) + 𝜇𝑧
24(𝜂2 − 𝜂4)].

(3.3)

The components of the isothermic dielectric suscep-
tibility tensor of mechanically clamped or free crystal
GPI can be found by the numerical differentiation of
components of the polarization vector with respect to
components of the field at a constant strain or con-
stant stress, respectively:

𝜒𝜀
𝑖𝑖′ = lim

𝐸𝑖′→0

(︂
𝜕𝑃𝑖

𝜕𝐸𝑖′

)︂
𝜀𝑗

, 𝜒𝜎
𝑖𝑖′ = lim

𝐸𝑖′→0

(︂
𝜕𝑃𝑖

𝜕𝐸𝑖′

)︂
𝜎𝑗

,

The molar entropy of the proton subsystem (here, R
is the gas constant) is given by:

𝑆 = −𝑁𝐴

4

(︂
𝜕𝑔

𝜕𝑇

)︂
𝜂,𝜀𝑖

=
𝑅

4

{︃
−4 ln 2+

1

2

4∑︁
𝑓=1

ln(1−𝜂𝑓 )+

+2 ln𝑍 − 2𝛽

𝑍
Sp

{︃
𝐻2𝛽𝑒

−𝛽𝐻𝑠ℎ+
4∑︀

𝑓=1

𝑦𝑓
𝜎𝑞𝑓
2

}︃}︃
, (3.4)

where such notation is used:

𝐻2𝛽 = −𝐻𝑠ℎ +

4∑︁
𝑓=1

(︃
4∑︁

𝑓 ′=1

𝐽𝑓𝑓 ′

4
𝜂𝑓 ′ +

+
1

2
(𝜇𝑓E+3𝜂2𝑓𝜇

′
𝑓𝐸2)

)︃
𝜎𝑞𝑓
2
.

The molar heat capacity of the proton subsystem
of GPI crystals can be found by the numerical differ-
entiation of entropy (3.4):

Δ𝐶𝜎 = 𝑇

(︂
𝜕𝑆

𝜕𝑇

)︂
𝜎

. (3.5)

The total specific heat is considered to be the sum of
the proton and lattice contributions:

𝐶 = Δ𝐶𝜎 + 𝐶latice. (3.6)

The lattice contribution near 𝑇𝑐 is approximated by
the linear dependence

𝐶lattice = 𝐶0 + 𝐶1(𝑇 − 𝑇𝑐). (3.7)

The corresponding lattice contribution to the entropy
near 𝑇𝑐 is then

𝑆lattice =

∫︁
𝐶lattice

𝑇
𝑑𝑇 = (𝐶0 − 𝐶1𝑇𝑐) ln(𝑇 ) + 𝐶1𝑇.

(3.8)

Hence, the total entropy as a function of the temper-
ature and the field component 𝐸𝑖 reads

𝑆total(𝑇,𝐸𝑖) = 𝑆 + 𝑆lattice. (3.9)
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Solving (3.9) with respect to the temperature at
𝑆total(𝑇,𝐸𝑖) = const and two values of the field, one
can calculate the electrocaloric temperature shift (as
seen in Fig. 10)

Δ𝑇 = 𝑇 (𝑆total, 𝐸𝑖(2))− 𝑇 (𝑆total, 𝐸𝑖(1)). (3.10)

The electrocaloric temperature change can be cal-
culated also, by using the known formula

Δ𝑇 = −
𝐸𝑖∫︁
0

𝑇𝑉

𝐶

(︂
𝜕𝑃𝑖

𝜕𝑇

)︂
𝐸𝑖

𝑑𝐸𝑖, (3.11)

where 𝑉 = 𝑣𝑁𝐴/4 is the molar volume.

4. Results of Numerical
Calculations. Discussion

For the numerical calculation of the dielectric charac-
teristics of GPI, we use the parameters determined in
[18] and earlier in [11] from the condition of agree-
ment of the calculated characteristics with experi-
mental data. At that, experimental data on the tem-
perature dependences of the spontaneous polarization
𝑃𝑠(𝑇 ) [19], molar heat capacity 𝐶𝑝(𝑇 ) [20], compo-
nents of the dielectric permittivity 𝜀𝜎22 [21, 22], 𝜀𝜎11,
𝜀𝜎33 [1], piezoelectric coefficients 𝑑21, 𝑑23[22], as well
as the dependences of the phase transition temper-
ature on the hydrostatic pressure 𝑇𝑐(𝑝) [8, 23], were
used. The results of lattice dynamics simulations [24]
were taken into account as well. The optimal values
of the theory parameters are given below.

The parameter of the short-range interactions
𝑤0/𝑘B = = 800 K.

The parameters of the long-range interactions:

𝐽0
11 = 𝐽0

12 = 𝐽0
22 = 6.23 K,

𝐽0
13 = 𝐽0

14 = 𝐽0
24 = 6.03 K,

where 𝐽0
𝑓𝑓 ′ = 𝐽0

𝑓𝑓 ′/𝑘B.
Strain potentials:

𝛿1 = 500 K, 𝛿2 = 600 K, 𝛿3 = 500 K, 𝛿4 = 150 K,

𝛿5 = 100 K, 𝛿6 = 150 K; 𝛿𝑖 = 𝛿𝑖/𝑘B;

𝜓𝑓𝑓 ′1 = 187.3 K, 𝜓𝑓𝑓 ′2 = 505.1 K, 𝜓𝑓𝑓 ′3 = 221.3 K,

𝜓𝑓𝑓 ′5 = 45.4 K,

𝜓114 = 𝜓124 = 𝜓224 = 𝜓116 = 𝜓126 = 𝜓226 = 317.8 K,

𝜓134 = 𝜓144 = 𝜓244 = 𝜓136 = 𝜓146 = 𝜓246 = 0.0 K.

where 𝜓𝑓𝑓 ′𝑗 = 𝜓𝑓𝑓 ′𝑗/𝑘B.

Components of the effective dipole moments

𝜇𝑥
13 = 0.4×10−18 esu·cm; 𝜇𝑦

13 = 4.05×10−18 esu·cm;

𝜇𝑧
13 = 4.2×10−18 esu·cm; 𝜇𝑥

24 = 2.3×10−18 esu·cm;

𝜇𝑦
24 = 3.0×10−18 esu·cm; 𝜇𝑧

24 = 2.2×10−18 esu·cm.

Corrections to the effective dipole moments 𝜇′
1 =

= 𝜇′
3 = −0.25× 10−18 esu · cm and 𝜇′

2 = 𝜇′
4 =

= 0 esu · cm are found in the present paper from the
condition of agreement of the calculated saturation
polarization with experimental data.

The volume of a unit cell of GPI is 𝜐 = 0.601×
× 10−21 cm3.

The “seed” coefficients of the piezoelectric stress 𝑒0𝑖𝑗 ,
“seed” dielectric susceptibilities 𝜒𝜀0

𝑖𝑗 , and “seed” elastic
constants 𝑐𝐸0

𝑖𝑗 are obtained as follow: 𝑒0𝑖𝑗 = 0.0 esu
cm2 ;

𝜒𝜀0
11 = 0.1, 𝜒𝜀0

22 = 0.403, 𝜒𝜀0
33 = 0.5, 𝜒𝜀0

31 = 0.0;
𝑐0𝐸11 = 269.1 kbar, 𝑐𝐸0

12 = 145 kbar, 𝑐𝐸0
13 = 116.4 kbar,

𝑐𝐸0
15 = 39.1 kbar, 𝑐𝐸0

22 = (649.9 − 0.4(𝑇 − 𝑇𝑐)) kbar,
𝑐𝐸0
23 = 203.8 kbar, 𝑐𝐸0

25 = 56.4 kbar, 𝑐𝐸0
33 = 244.1 kbar,

𝑐𝐸0
35 = −28.4 kbar, 𝑐𝐸0

55 = 85.4 kbar, 𝑐𝐸0
44 = 153.1 kbar,

𝑐𝐸0
46 = −11 kbar, 𝑐𝐸0

66 = 118.8 kbar.
The parameters of lattice contribution to the molar

heat capacity (see (3.7)): 𝐶0 = 147.5 J/(mol ·K),
𝐶1 = 0.45 J/(mol ·K2).

Let us investigate firstly, how the present the-
ory describes the dielectric properties of GPI. In the
absence of a field, the spontaneous polarization 𝑃2

monotonically and continuously decreases with in-
creasing the temperature and goes to zero at the tem-
perature 𝑇𝑐 (Fig. 2, curve 0). For comparison, we also
present the temperature dependences calculated in
[17] 𝑃2(𝑇 ) (curve 0′) with regard for the dependence
of the effective dipole moment 𝜇(𝜂) on the order pa-
rameter, but omitting the splittings of the parameters
𝑤 and 𝐽𝑓𝑓 ′ in the presence of shear strains. Besides,
we present the temperature dependences calculated in
[18] 𝑃2(𝑇 ) (curve 0′′) in view of the splittings of the
parameters 𝑤 and 𝐽𝑓𝑓 ′ , but not accounting for 𝜇(𝜂).

The longitudinal electric field 𝐸2 smears the phase
transition. As a result, the curve 𝑃2(𝑇 ) become
smoothed (Fig. 2, curves 2𝑦, 4𝑦). In this and next fig-
ures in the notations of the curves “𝑎𝑦, 𝑎𝑧,” number a
means a value of an external field in MV/m, indices
y and z mean the directions of the field (𝐸𝑦, 𝐸𝑧).

The transverse field 𝐸3 induces the polarization
component 𝑃3 (Fig. 3) and lowers the temperature
𝑇𝑐, as it is shown in Fig. 4. In a weak transverse field,
the phase transition remains the second order one. At
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Fig. 2. Temperature dependences of the longitudinal polar-
ization 𝑃2 of GPI crystal at different values of the electric fields
𝐸2 and 𝐸3. Curves 0 (the present result), 0’[17], 0”[18], as well
as symbols ∘ [19], M [1], � [22], O [16] correspond to zero field

Fig. 3. Temperature dependences of the transverse polariza-
tion 𝑃3 of GPI crystal at different values of the field 𝐸3

that, the temperature dependence 𝑃2(𝑇 ) is qualita-
tively similar to the case of 𝐸3 = 0 MV/m (Fig. 2,
curves 4𝑧, 5𝑧), the curve 𝑃3(𝑇 ) has a sharp bend at 𝑇𝑐
(Fig. 3, curves 2𝑧, 4𝑧, 5𝑧). In the fields stronger than
some critical 𝐸tr ≈ 5.9 MV/m (tricritical point), the
phase transition becomes the first order one (dashed
curve in Fig. 4). As a result, the components 𝑃2(𝑇 )
and 𝑃3(𝑇 ) have a break at 𝑇𝑐 (curves 6𝑧, 6.5𝑧, 7𝑧 in
Fig. 2 and 3).

In the absence of a field, the longitudinal dielectric
permittivities of mechanically free 𝜀𝜎22 and clamped
𝜀𝜀22 crystals go to infinity at 𝑇𝑐 (Fig. 5, solid 1 and
dashed 1′ curves, respectively; as well as Fig. 6,

Fig. 4. Dependence of the transition temperature 𝑇𝑐 of GPI
crystal on the transverse field 𝐸3

Fig. 5. Temperature dependences of the longitudinal dielec-
tric permittivities of mechanically free 𝜀𝜎22 (solid lines) and
clamped 𝜀𝜀22 (dashed lines) GPI crystals in the absence of
a field; symbols are experimental data of [21] (∘), [22] (�).
Curves 1, 1′ are calculated in the present paper; 2, 2′ – in [17];
3, 3′ – in [18]

curves 0, solid and dashed, respectively). In the para-
electric phase, the permittivities 𝜀𝜎22 and 𝜀𝜀22 coin-
cide. For comparison, we also present the tempera-
ture dependences 𝜀𝜎,𝜀22 (𝑇 ) calculated in [17] (Fig. 5,
curves 2, 2′) with regard for 𝜇(𝜂), but omitting the
splittings of the parameters 𝑤 and 𝐽𝑓𝑓 ′ in the pres-
ence of shear strains. In addition, we give the temper-
ature dependences calculated in [18] 𝜀𝜎,𝜀22 (𝑇 ) (Fig. 5,
curves 3, 3′), by considering the splittings of the pa-
rameters 𝑤 and 𝐽𝑓𝑓 ′ , but not accounting for 𝜇(𝜂).

In the presence of a longitudinal electric field 𝐸2,
the curves 𝜀𝜎,𝜀22 (𝑇 ) are smoothed (Fig. 6, curves 1𝑦,
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2𝑦, 4𝑦, as well as Fig. 7). In Fig. 7, black lines are the
present results, and red lines are calculated in [17]
without regard for the splittings of the parameters
𝑤 and 𝐽𝑓𝑓 ′ . It is necessary to note that the curves
𝜀𝜎22(𝑇 ), which are calculated for the fields 𝐸2 = 20,
30, 40, 70, 120, 170, and 220 kV/m, quite well agree
with the experimental data [16], which were mea-
sured at the fields 𝐸2 = 0, 10, 20, 50, 100, 150, and
200 kV/m. This points to the presence of some inter-
nal longitudinal electric field 𝐸2𝑖𝑛 = 20 kV/m in the
crystal [16]. The experimental data [16] for 𝜀𝜎22(𝑇 ) in
the absence of a field are one and a half times over-
stated in comparison with experimental data of an-
other papers. Therefore, for the theoretical descrip-
tion of data [16], we suppose that, in this sample, the
parameters 𝜇𝑦

13 = 4.32× 10−18 esu · cm, but all other
parameters are such as obtained in [18].

In a weak transverse field 𝐸3 < 𝐸tr, the longi-
tudinal dielectric permittivity of a mechanically free
crystal 𝜀𝜎22 goes to infinity at 𝑇𝑐 (Fig. 6, solid lines
4𝑧, 5𝑧), whereas the permittivity of a clamped crys-
tal 𝜀𝜀22 is finite (Fig. 6, dashed lines 4𝑧, 5𝑧). Curves
𝜀𝜎22(𝑇 ) and 𝜀𝜀22(𝑇 ) do not coincide even in the para-
electric phase. In a strong field 𝐸3 > 𝐸tr, owing to
the first-order phase transition, the permittivities 𝜀𝜎,𝜀22

both become finite and decrease with increasing the
field strength (Fig. 6, curves 6𝑧, 6.5𝑧, 7𝑧).

In the absence of a field, the transverse dielectric
permittivities of mechanically free 𝜀𝜎22 and clamped
𝜀𝜀33 crystals are finite and have sharp bends at 𝑇𝑐
(Fig. 8, solid line 0 and, very close to it, dashed
line 0, respectively). In the paraelectric phase, the
permittivities 𝜀𝜎33 and 𝜀𝜀33 coincide. For comparison,
we present the temperature dependences 𝜀𝜎33(𝑇 ) [17]
(Fig. 8, curve 0′) with taking 𝜇(𝜂) into account, but
not considering the splittings of the parameters 𝑤 and
𝐽𝑓𝑓 ′ in the presence of shear strains.

In the presence of a longitudinal field, the curves
𝜀𝜎33(𝑇 ) and 𝜀𝜀33 also become smoothed (Fig. 8, solid
and dashed curves 4𝑦). In the presence of a trans-
verse field, the transverse dielectric permittivities 𝜀𝜎,𝜀33

greatly increase in the ferroelectric phase in compar-
ison with the case of 𝐸3 = 0, and curve 𝜀𝜎33(𝑇 ) has
a break at 𝑇𝑐 (Fig. 8, curves 4𝑧, 5𝑧). As was shown
in [25], such increase of 𝜀𝜎,𝜀33 is related to the disor-
dering of pseudospins in the chain “B” (see Fig.1) at
the influence of the field 𝐸3. The maximum value of
𝜀𝜎,𝜀33 goes to infinity, when 𝐸3 → 𝐸tr. In a strong field
𝐸3 > 𝐸tr owing to the first-order phase transition,

Fig. 6. Temperature dependences of the longitudinal dielec-
tric permittivities of mechanically free 𝜀𝜎22 (solid lines) and
clamped 𝜀𝜀22 (dashed lines) GPI crystals at different values of
the fields 𝐸2 and 𝐸3. Symbols are experimental data [21] (∘),
[22] (�) without a field

Fig. 7. Temperature dependences of the dielectric permit-
tivity 𝜀𝜎22 of GPI crystal at different values of the field 𝐸2

(MV/m): 0.0 – 1, 1′; 0.02 – 2, 2′ (∘); 0.04 – 3, 3′ (♦); 0.07 –
4, 4′ (▷); 0.12 – 5, 5′ (◁); 0.22 – 6, 6′ (O). Symbols are exper-
imental data [16]

the permittivities 𝜀𝜎,𝜀33 decrease again with increasing
the field strength (Fig. 8, curves 6𝑧, 6.5𝑧, 7𝑧, 8𝑧).

In the presence of the field 𝐸3, experimental curves
𝜀𝜎33(𝑇 ) are smoothed near 𝑇𝑐 and have no any break
(Fig. 9). In order to explain such behavior of the
transverse permittivity, we calculated 𝜀𝜎33(𝑇 ), by sup-
posing that an internal electric field 𝐸2 appears to-
gether with the applied external field 𝐸3. It turned
out that it is possible to achieve the satisfactory
description of the temperature dependence of 𝜀𝜎33,
by supposing that 𝐸2 ∼ 0.07𝐸3 (Fig. 9, solid black
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Fig. 8. Temperature dependences of the transverse dielectric
permittivities of mechanically free 𝜀𝜎33 (solid lines) and clamped
𝜀𝜀33 (dashed lines) GPI crystals at different values of the fields
𝐸2 and 𝐸3; symbols ∘ are experimental data [1] at the zero
field

Fig. 9. Temperature dependences of the dielectric permittiv-
ity 𝜀𝜎33 at different values of the field strength 𝐸3(MV/m): 0.0 –
1 (▷); 1.0 – 2 (�); 2.0 – 3 (♦); 3.0 – 4 (M); 4.0 – 5 (O) [7] and
at the applied simultaneously longitudinal field 𝐸2 = 0.07𝐸3.
Red dashed curves 1 ′–5 ′ [25] of the permittivity 𝜀𝜀33 at the
same values of 𝐸3 and at the field 𝐸2 ∼ 0.05𝐸3 applied simul-
taneously

curves). In this figure, the permittivity calculated in
[25] of a mechanically clamped crystal 𝜀𝜀33 is shown at
different values of the field 𝐸3 and at applied simul-
taneously longitudinal field 𝐸2 ∼ 0.05𝐸3 (dashed red
curves). We note that the y-components of the effec-
tive dipole moment was considered in [25] to be the
same in the paraelectric and ferroelectric phases. It
is necessary to note that the phase transition tem-
perature for the sample in [7] was 222 K. For the ex-

Fig. 10. Temperature dependences of the molar entropy of
GPI at different values of the fields 𝐸2 and 𝐸3

planation of the experimental data [7], we supposed
that the values of all interactions in this sample are
proportional to the values of corresponding interac-
tions in the sample with 𝑇𝑐 = 225 K: 𝑤0(222 K) =
= 𝑘𝑤0(225 K), 𝜈0±𝑓 (222 K) = 𝑘𝜈0±𝑓 (225 K),
𝛿𝑖(222 K) = 𝑘𝛿𝑖(225 K), 𝜓±

𝑓𝑖(222 K) = 𝑘𝜓±
𝑓𝑖(225 K),

𝜇𝑓 (222 K) = 𝑘𝜇𝑓 (225 K), where 𝑘 = 0.987 ≈
≈ 222/225. All another parameters are such as for
the sample with 𝑇𝑐 = 225 K.

The longitudinal field 𝐸2 decreases the entropy of
a crystal in the whole temperature interval (Fig. 10,
curve 50𝑦), inasmuch as it increases the ordering of
pseudospins in both sublattices, “A” and “B” (Fig. 1).
The transverse field 𝐸3 also decreases the entropy,
but only in the paraelectric phase. In the ferroelec-
tric phase in the weak fields 𝐸3 < 𝐸tr, the entropy
increases owing to a disordering of pseudospins in sub-
lattice “B” under the influence of the field 𝐸3 (Fig. 10,
curve 4𝑧). The strong field 𝐸3 > 𝐸tr overturns the
pseudospins in sublattice “B” and orders them in its
direction. As a result, the entropy decreases again
(Fig. 10, curve 50𝑧).

The effect of the fields 𝐸2 and 𝐸3 on the molar heat
capacity is mainly similar to the effect of these fields
on the dielectric properties: the field 𝐸2 smoothes the
curve 𝐶(𝑇 ) near 𝑇𝑐 (Fig. 11, curve 4𝑦), whereas the
field 𝐸3 lowers 𝑇𝑐 (Fig. 11, curves 4𝑧, 5𝑧, 6𝑧, 6.5𝑧, 7𝑧).

As one can see from the previous figures, the
present model, which simultaneously involves 𝜇(𝜂)
and the splittings of the interaction parameters 𝑤 and
𝐽𝑓𝑓 ′ in the presence of shear strains, practically re-
produces the results of previous calculations [17] and
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Fig. 11. Temperature dependences of the heat capacity of
GPI at different values of the fields 𝐸2 and 𝐸3. Symbols ∘ are
experimental data [20]. Solid line presents the result of calcu-
lations, the dashed line corresponds to the lattice contribution

Fig. 12. Temperature dependence of the electrocaloric tem-
perature change Δ𝑇 of GPI crystal at different values of the
field 𝐸2

[18], as well as satisfactorily describes the experimen-
tal data for dielectric characteristics and the effect
of electric fields on the dielectric permittivity. The-
refore, this model can be suitable for the investigation
of the electrocaloroc effect in GPI crystals.

Let us firstly examine the longitudinal EC effect. In
Fig. 12, 13, a change of the temperature Δ𝑇 of the
crystal at the adiabatic change of the applied elec-
tric field 𝐸2 at different values of the initial temper-
ature and the field 𝐸2 are presented. In the weak
fields (𝐸2 < 1MV/m) at the initial temperature
𝑇 = 𝑇𝑐 = 225 K, the temperature change follows
the law Δ𝑇 ∼ 𝐸

2/3
2 (green curve in Fig. 13); at

Fig. 13. Dependence of Δ𝑇 on the field 𝐸2 at different initial
temperatures

Fig. 14. Temperature dependence of a change in the elec-
trocaloric temperature of GPI crystal at different values of the
field 𝐸3

Fig. 15. Dependence of Δ𝑇 on the field 𝐸3 at different initial
temperatures
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𝑇 < 𝑇𝑐, Δ𝑇 ∼ 𝐸2 (blue curves in Fig. 13); at
𝑇 > 𝑇𝑐, Δ𝑇 ∼ 𝐸2

2 (red curves in Fig. 13). At stronger
fields 𝐸2 > 1MV/m, the dependences Δ𝑇 (𝐸2) devi-
ate from the mentioned laws and reach the saturation
at 𝐸2 ≫ 50 MV/m. The longitudinal EC effect is pos-
itive in the whole temperature interval.

In the case of adiabatic application of a transverse
field 𝐸3, the electrocaloric temperature change Δ𝑇
can be positive or negative (Fig. 14, 15). At the ini-
tial temperatures 𝑇 > 𝑇𝑐, the transverse EC effect is
qualitatively similar to the longitudinal EC effect: in
the weak fields Δ𝑇 ∼ 𝐸2

3 (green and red curves in
Fig. 15). At strong fields, the dependences Δ𝑇 (𝐸3)
deviate from the quadratic law and reach the satura-
tion at 𝐸2 ≫ 50 MV/m. At the initial temperatures
𝑇 < 𝑇𝑐 in the weak fields 𝐸3 < 𝐸tr, the temper-
ature of the crystal nonlinearly lowers with increas-
ing the field strength (blue curves in Fig. 15). This
is connected with the above-mentioned disordering
of pseudospins in sublattice ”B” under influence of
the field 𝐸3 that leads to increasing the entropy at
a constant temperature (Fig. 10, curve 4𝑧) and to
the adiabatic (at a constant entropy) lowering of
the temperature. In addition, as one can see from
Fig. 3, in the ferroelectric phase the the polarization
component 𝑃3 increases with the temperature, i.e.,
𝜕𝑃3/𝜕𝐸3 > 0. Then Δ𝑇 < 0, according to (3.11). At
a further strengthening of the field (𝐸3 > 𝐸tr), as
was said above, the pseudospins in sublattice “B” turn
over and order in the direction of field that leads
to decreasing the entropy at a constant temperature
(Fig. 10, curve 50𝑧) and an isoentropic increase of the
temperature.

5. Conclusions

The simultaneous consideration of the dependence of
the effective dipole moment of a hydrogen bond on
the order parameter on this bond 𝜇(𝜂), as well as the
splittings of the interaction parameters 𝑤 and 𝐽𝑓𝑓 ′ in
the presence of shear strains, practically reproduces
the results of previous calculations of the dielectric
characteristics with regard for only 𝜇(𝜂) or only the
splitting of 𝑤 and 𝐽𝑓𝑓 ′ .

At the weak field 𝐸2 in the ferroelectric phase,
an electrocaloric temperature change Δ𝑇 linearly in-
creases with the field, in the paraelectric phase –
quadratically, and at the initial temperature 𝑇 = 𝑇𝑐 –
by the law Δ𝑇 ∼ 𝐸

2/3
2 . At strong fields, the depen-

dence Δ𝑇 (𝐸2) deviates from these laws and reaches
the saturation at 𝐸2 ≫ 50 MV/m.

The transverse EC effect is qualitatively similar to
the longitudinal EC effect, whereas, in the ferroelec-
tric phase, it can be negative. This is connected with
the antiferroelectric ordering in the plane (a, c) be-
low 𝑇𝑐.

It should be noted that the present deformed pro-
ton ordering model is suitable for studies of the
barocaloric, piezocaloric, and multicaloric effects in
GPI crystals.

The author is indebted to Prof. R.R. Levitskii and
I.R. Zachek for useful remarks.
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ПОЗДОВЖНIЙ I ПОПЕРЕЧНИЙ
ЕЛЕКТРОКАЛОРИЧНI ЕФЕКТИ
В СЕГНЕТОЕЛЕКТРИКУ ФОСФIТ ГЛIЦИНУ

Для дослiдження електрокалоричного ефекту використано
модифiковану модель протонного впорядкування сегнето-
електрика фосфiт глiцину, яка враховує п’єзоелектричний
зв’язок протонної i ґраткової пiдсистем. Модель також вра-
ховує залежнiсть ефективного дипольного моменту на во-
дневому зв’язку вiд параметра впорядкування, а також
розщеплення параметрiв взаємодiї мiж псевдоспiнами при
наявностi зсувних деформацiй. В наближеннi двочастинко-
вого кластера розраховано вплив поздовжнього та попе-
речного поля на компоненти вектора поляризацiї та тен-
зора статичної дiелектричної проникностi кристала, а та-
кож на його тепловi характеристики. Дослiджено поздов-
жнiй i поперечний електрокалоричний ефект. Розрахована
електрокалорична змiна температури виявилась досить ма-
лою, близько 1 K, проте вона може мiняти знак пiд дiєю
поперечного поля.

Ключ о в i с л о в а: фероелектрики, фазовий перехiд, дiе-
лектрична проникнiсть, ефект електричного поля, електро-
калоричний ефект.
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