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SLOW AND FAST LIGHTS
IN METAL/DIELECTRIC COMPOSITE
OF CYLINDRICAL NANOINCLUSIONS
IN PASSIVE AND ACTIVE LINEAR
DIELECTRIC HOST MATRICES

This paper presents theoretical discussions and computational numerical results obtained from
the study of extreme values of the speed of light in metal/dielectric composite, where the cylin-
drical nanoinclusions are uniformly distributed in the linear dielectric host matrix. The results
testify that, within our approach, at the region of anomalous dispersion, light can travel with
a group velocity greater than the speed of light in vacuum. In a composite with passive host
matrix, the light pulse is absorbed within a very small distance. The problem of absorption
can be reduced considerably by using an active host matrix.
K e yw o r d s: slow light, fast light, nanocomposite, group velocity.

1. Introduction
Early investigations of slow and superluminal light
have been conducted in atomic media at a cryogenic
temperature [1]. Hau et al. [2] showed slow light in an
ultracold sodium vapor. This report was followed by
that of Kash et al. [3], who found that the ultraslow
light speed in a hot atomic vapor of rubidium. Aku-
lashin et al. [4] and Kim et al. [5] observed fast light
using the method of electromagnetically induced ab-
sorption, and Wang et al., [6] also demonstrated fast
light using the gain-assisted superluminal light prop-
agation which was first introduced by Steinberg and
Chiao [7].

The investigation of slow and fast light in solid-
state materials recently becomes an active promis-
ing area of studies due to its application to quantum
electronics, high-performance communication, con-
trollable optical delay lines, optical data storage, and
optical memories.
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Recently, the study of slow and superluminal light
focuses on solid-state materials at room temper-
ature (see, e.g., Bigelow et al. [8]). V.N. Mal’nev
and Sisay [9] theoretically investigated slow, su-
perluminal, and backward lights in a composite of
spherical nanoinclusions in active/passive host ma-
trices. Kim and Choe [10] studied slow and stopped
lights in a composite with spherical metallic nanoin-
clusions.

This paper presents the computational results ob-
tained from the study of the speed of light in a
nanocomposite with cylindrical nanoinclusions em-
bedded in a linear dielectric host matrix. We will
show that the shape of nanoinclusions is of signif-
icance for the extreme values of the speed of light
in a composite with spherical nanoinclusions and in
a composite with cylindrical nanoinclusions. To the
author’s knowledge, the study of slow, fast, and
backward lights in a nanocomposite with cylindrical
nanoinclusions is first presented in this work. The ob-
tained results are original.
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2. Electric Potential Distribution

In the cylindrical coordinate system, the Laplace
equation (i.e., ∇2Φ = 0) takes the form [11]
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Since the potential is not a function of the 𝑧 coor-
dinate, Eq. (1) can be reduced to the form
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Consider the composite of a metal covered by di-
electric cylindrical nanoinclusions uniformly embed-
ded in a dielectric host matrix. The electrical poten-
tial distribution at different regions of the composite
can be determined from the solution of the Laplace
equation given by Eq. (2) as [12]

Φ1 = −Eℎ𝐴𝑟 cos 𝜃, 𝑟 ≤ 𝑟1, (3)

Φ2 = −Eℎ

(︂
𝐵𝑟 − 𝐶

𝑟

)︂
cos 𝜃, 𝑟1 ≤ 𝑟 ≤ 𝑟2, (4)

Φ3 = −Eℎ

(︂
𝑟 − 𝐷

𝑟

)︂
cos 𝜃, 𝑟 ≥ 𝑟2, (5)

where Φ1, Φ2, and Φ3 are potentials in the dielectric
core, metallic shell, and the dielectric host matrix,
respectively, Eℎ is the electric field in the host, 𝑟1 and
𝑟2 are the radii of the dielectric core and the metal
shell, respectively, and, 𝐴, 𝐵, 𝐶, and 𝐷 are unknown
coefficients which can be obtained from electrostatics
boundary conditions.

The unknown coefficients 𝐴, 𝐵, 𝐶, and 𝐷 can
be obtained from electrostatic boundary conditions
in the long-wave approximation, the case in which
the wavelength of an incident electromagnetic wave is
greater than the size of a particle (i.e., 𝑟2 ≪ 𝜆). The
expressions for the unknown constants in terms of the
dielectric constant of the host (𝜖ℎ), metal cover (𝜖2),
dielectric core (𝜖1), and metal volume fraction in the
inclusion (𝑝) have the form

𝐴 =
4𝜖2𝜖ℎ
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, (6)

𝐵 =
2𝜖ℎ(𝜖1 + 𝜖2)

𝑝Δ
, (7)

𝐶 =
2𝜖ℎ(𝜖1 − 𝜖2)𝑟

2
1

𝑝Δ
, (8)

𝐷 =

[︂
1− 2𝜖ℎ

[𝜖2(2− 𝑝) + 𝜖1𝑝]

𝑝Δ

]︂
𝑟22, (9)
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3. Effective Polarizability

The effective polarizability of an individual metal-
covered dielectric cylindrical nanoinclusions embed-
ded in a dielectric host matrix can be presented by
referring Eqs. (5) and (9) as [12]

𝐷 = 𝛽𝑟22, (10)

where

𝛽 = 1− 2
𝛿

Δ
,
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The dielectric function of the core 𝜖1 is chosen to be
real and frequency-independent. The dielectric con-
stant of the host medium 𝜖ℎ is a complex value, and
the dielectric function of the metal cover 𝜖2 is chosen
to have the Drude form

𝜖2 = 𝜖∞ − 1

𝑧(𝑧 + 𝑖𝛾)
, (11)

with,

𝜖′2 = 𝜀∞ − 1

𝑧2 + 𝛾2
,

𝜖′′2 =
𝛾

𝑧(𝑧2 + 𝛾2)
,

where 𝜖′2 and 𝜖′′2 are the real and imaginary parts of 𝜖2,
respectively, 𝑧 = 𝜔

𝜔𝑝
is the dimensionless frequency, 𝜔

is the incident radiation frequency, 𝜔𝑝 is the plasma
frequency of the metal part, 𝛾 = 𝜈

𝜔𝑝
, and 𝜈 is the

electron collision frequency.

282 ISSN 2071-0194. Ukr. J. Phys. 2021. Vol. 66, No. 4



Slow and Fast Lights in Metal/Dielectric Composite

Since 𝜖2 and 𝜖ℎ are complex, the terms such as 𝑞,
𝛿, Δ, and 𝛽 are also complex:

Δ = Δ′ + 𝑖Δ′′, (12)

𝛿 = 𝛿′ + 𝑖𝛿′′, (13)

𝛽 = 𝛽′ + 𝑖𝛽′′, (14)

𝑞 = 𝑞′ + 𝑖𝑞′′, (15)

𝜖ℎ = 𝜖′ℎ + 𝑖𝜖′′ℎ, (16)

where
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′
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𝛿′Δ′′ − 𝛿′′Δ′
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𝑞′ =
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2

𝑝
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)︂
𝜖1 +
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2

𝑝
− 1

)︂
𝜖′ℎ,

𝑞′′ =
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2

𝑝
− 1

)︂
𝜖′′ℎ.

For a composite with pure metal cylindrical inclu-
sions, the corresponding quantities for 𝛽′ and 𝛽′′ are
given, respectively, by

𝛽′
𝑚 =

(𝜖′2 − 𝜖′ℎ)Δ
′
𝑚 + (𝜖′′2 − 𝜖′′ℎ)Δ

′′
𝑚

|Δ𝑚|2
, (17)

𝛽′′
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′
𝑚 + (𝜖′2 − 𝜖′ℎ)Δ

′′
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where

|Δ𝑚|2 = Δ′2
𝑚 +Δ′′2

𝑚 ,

Δ′
𝑚 = 𝜖′2 + 𝜖′ℎ,

Δ′′
𝑚 = 𝜖′′2 + 𝜖′′ℎ.

4. Refractive Index

According to the effective medium theory, for the
study of the optical properties of a composite with
an inhomogeneity scale much smaller than the wave-
length of interest, the electrodynamic quantities of
each of the constituent particles are overshadowed by
the average response of the whole system. Therefore,
the optical properties of a microscopically heteroge-
neous composite should be investigated by evaluating
the effective dielectric function in terms of the per-
mittivities of individual components, as well as their
respective volume fractions [13].

The explicit form of the Rayleigh rule for a com-
posite with cylindrical inclusions, which is known as
the Maxwell–Garnet formula, can be written as [14]

𝜖𝑓𝑓 = 𝜖ℎ

(︂
1 +

2𝑓𝛽

1− 𝑓𝛽

)︂
, (19)

where 𝛽 = 𝜖𝑖−𝜖ℎ
𝜖𝑖+𝜖ℎ

, 𝜖𝑓𝑓 is the effective permittivity
of the composite, 𝑓 , the volume fraction of inclu-
sions in the composite, and 𝜖𝑖 is the dielectric con-
stant of the 𝑖th inclusion. For a nonmagnetic medium,
𝜇 = 𝜇0. Hence, the index of refraction 𝑛 can be ex-
pressed in terms of the effective dielectric constant
as 𝑛2 = 𝜖𝑓𝑓 . Therefore, it is possible to determine
the refractive index of the composite from the above
formula as

𝑛2 = 𝜖ℎ

(︂
1 +

2𝑓𝛽

1− 𝑓𝛽

)︂
. (20)

Quantities such as 𝜖ℎ and 𝛽 are complex, so that
it is important to express 𝑛2 in terms of its real and
imaginary parts:

𝑛2 = (𝜖′ℎ + 𝑖𝜖′′ℎ)

[︂
1 + 2𝑓

(𝛽′ + 𝑖𝛽′′)

(1− 𝑓𝛽′)− 𝑖𝑓𝛽′′

]︂
= 𝑏1 + 𝑖𝑏2,

(21)
where

𝑏1 =

(︂
𝜖′ℎ + 2𝑓

[︂
(𝛽′ − 𝑓 |𝛽|2)𝜖′ℎ − 𝛽′′𝜖′′ℎ

Δ𝑓

]︂)︂
,

𝑏2 =

(︂
𝜖′′ℎ + 2𝑓

[︂
(𝛽′ − 𝑓 |𝛽|2)𝜖′′ℎ + 𝛽′′𝜖′ℎ

Δ𝑓

]︂)︂
,

Δ𝑓 = 1− 𝑓𝛽′ + 𝑓2|𝛽|2.

Equating the real and the imaginary parts 𝑛 = 𝑛′ +
+ 𝑖𝑛′′ with Eq. (21) can give us the expressions

𝑛′2 − 𝑛′′2 = 𝑏1, (22)

2𝑛′𝑛′′ = 𝑏2. (23)
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a b
Fig. 1. Passive composite with tuned cylindrical nanoinclusions (𝜖

′′
ℎ = 0). Real part of the refractive index 𝑛′ versus the

dimensionless frequency 𝑧 (a); imaginary part of the refractive index 𝑛′′ versus 𝑧 (b). Numerical values of composite parameters;
metal fraction in the inclusion 𝑝 = 0.4, 0.6, 0.7, 0.85, and 0.9, fraction of inclusions in the composite 𝑓 = 0.001

The real and imaginary parts of the refractive index
can be written in a condensed form by using 𝑏1 and
𝑏2 as

𝑛′2 =
1

2

(︂√︁
𝑏21 + 𝑏22 + 𝑏1

)︂
, (24)

𝑛′′2 =
1

2

(︂√︁
𝑏21 + 𝑏22 − 𝑏1

)︂
. (25)

Figure 1, a shows 𝑛′ versus 𝑧. Figure 1, b gives 𝑛′′

versus 𝑧 near and at resonant frequencies of the com-
posite of a metal covered by dielectric cylindrical in-
clusions in the passive host matrix for different metal
fractions 𝑝. For a composite with coated inclusions,
the obtained results show that there are two peak
values of 𝑛′ and 𝑛′′ at two different resonant frequen-
cies. The left peak is smaller in magnitude than the
one on the right side for both 𝑛′ and 𝑛′′. The large

Constant values used in numerical calculations

Constants Values

𝜖0 4.5
𝜖′ℎ 2.25

𝜖1 = 4𝜖′ℎ 6
𝜔𝑝(silver) 1.45× 1016

𝜈 1.68× 1014

𝛾 1.15× 10−2

positive value of the imaginary part 𝑛′′ of the refrac-
tive index implies that, at the two resonant frequen-
cies, there is the strong absorption of an electromag-
netic wave that propagates through the composite.

Unlike the coated inclusion case, we observe in
Fig. 2, a and Fig. 2, b that, for a composite with
pure metal cylindrical inclusions, there is only one
peak value of 𝑛′ and 𝑛′′. From the plots, we can see,
varying the fraction of inclusions 𝑓 in the composite,
a change in the magnitude of the peak value. Again
in a composite with pure metal cylindrical inclu-
sions in the passive host matrix, there is the strong
absorption of an incident electromagnetic wave at
the region of anomalous dispersion. The wave equa-
tion admits a solution in the form of a plane wave
𝐸 = 𝐸0𝑒

𝑖(𝑘𝑥−𝜔𝑡). The wave number 𝑘 = 𝑛𝜔
𝑐 is a com-

plex quantity and has the form 𝑘 = 𝑘′ + 𝑖𝑘′′. So we
can write the above equation as [15]:

E = E0𝑒
𝑖(𝑘′𝑥−𝜔𝑡)𝑒−𝑘′′𝑥. (26)

The presence of the term 𝑒−𝑘′′𝑥 implies that the wave
decays, as it propagates. The intensity of an electro-
magnetic wave is proportional to the square of the
electric field (i.e., 𝐼 ∼ E2). From Beer’s law, we have
the relation

𝐼 = 𝐼0𝑒
−𝛼abso𝑥, (27)
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a b
Fig. 2. Passive composite with pure metal cylindrical nanoinclusions (𝜖

′′
ℎ = 0). Real part of the refractive index 𝑛′ versus the

dimensionless frequency 𝑧 (a); imaginary part of the refractive index 𝑛′′ versus 𝑧 (b). Numerical values of composite parameters;
fractions of inclusions in the composite 𝑓 = 0.001, 0.002, and 0.003

where 𝛼abso is known as the absorption coefficient.
Therefore, we can write the absorption coefficient as

𝛼abso = 2𝑘′′ = 2𝑛′′𝜔/𝑐, (28)

𝛼abso = 2𝑛′′𝑧𝑟𝜔𝑝/𝑐. (29)

For a composite of tuned inclusions with metal frac-
tion 𝑝 = 0.9 in a passive host matrix, 𝑛′′ = 0.025
at the resonant frequency 𝑧𝑟 = 0.4. Using 𝜔𝑝 =
= 1.6× 1016, we get that 𝛼abso = 1× 104 cm−1. The
typical light propagation length in the media can be
found with the help of 𝑙 ∼ 1/𝛼abso [16]. So, in our
case, 𝑙 ≈ 9.4× 10−5 cm.

For a composite of pure metal inclusions in the pas-
sive host matrix, we got that 𝑛′′ = 0.033 at the res-
onant frequency 𝑧𝑟 = 0.385. Using 𝜔𝑝 = 1.6 × 1016

we obtain 𝛼abso = 1.4 × 104 cm−1. In our case,
𝑙 ≈ 7.4× 10−5 cm.

In order to create the condition for considerably
propagating light waves, it is necessary to decrease
𝑛′′. This can be done by introducing a negative part
into the dielectric function of the host matrix [5]. The
host matrix with negative 𝜖ℎ (i.e., 𝜖

′′

ℎ < 0) amplifies
the incident electromagnetic wave rather than ab-
sorbs it, such medium is known as the active host
matrix.

Figures 3, a and b show, respectively, the real and
imaginary parts of a composite of tuned inclusions

in the active host matrix for different metal frac-
tions 𝑝. In Fig. 3, a, we can see two maximum val-
ues of the real part of the refractive index at two
different resonant frequencies. The first peak of the
real part of the refractive index, on the left side,
is comparatively very small relative to the second
peak on the right. In Fig. 3, b, for 𝑝 = 0.85, the
imaginary part of the refractive index has two mini-
mum values at two different resonant frequencies. For
the metal thicknesses 𝑝 = 0.9 and 𝑝 = 0.95, the
imaginary part of the refractive index has a fork
like the structure at the second resonant frequency
on the right side. For a composite of tuned inclu-
sions with the metal fraction 𝑝 = 0.9 in the active
host matrix (i.e., 𝜖ℎ = −0.13866), 𝑛′′ = 0.0001361
at the resonant frequency 𝑧𝑟 = 0.4 for 𝜔𝑝 = 1.6×
× 1016, we get that 𝛼abso = 48.4736 cm−1. The typ-
ical light propagation length in the media can be
found with the help of 𝑙 ∼ 1/𝛼abso [16]. In our case,
𝑙 ≈ 0.02 cm.

The real and imaginary parts of the refractive in-
dex for a composite with pure metal inclusions in
the active host matrix for different fractions of inclu-
sions (i.e., 𝑓) presented in Fig. 4, a and Fig. 4, b,
respectively. Figure 4, a for different 𝑓 shows that
there is only one maximum of 𝑛′, and its magni-
tude can be increased by increasing 𝑓 . The imagi-
nary part 𝑛′′ for 𝑓 = 0.0001 and 𝑓 = 0.0002 has

ISSN 2071-0194. Ukr. J. Phys. 2021. Vol. 66, No. 4 285
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a b
Fig. 3. Active composite with tuned cylindrical nanoinclusions (𝜖′′ℎ = −0.13866). Real part of the refractive index 𝑛′ versus
the dimensionless frequency 𝑧 (a); imaginary part of the refractive index 𝑛′′ versus 𝑧 (b). Numerical values of the composite
parameters: the metal fractions in inclusions 𝑝 = 0.85, 0.9, and 0.95, fraction of inclusions in the composite 𝑓 = 0.001

a b
Fig. 4. Active composite with pure metal cylindrical nanoinclusions (𝜖′′ℎ = −0.1159113). Real part of the refractive index
𝑛′ versus the dimensionless frequency 𝑧 (a); imaginary part of the refractive index 𝑛′′ versus 𝑧 (b). Numerical values of the
composite parameters: the fractions of inclusions in the composite 𝑓 = 0.0001, 0.0002, 0.0006, and 0.0007

only one minimum. When we increase the fraction
of inclusions to 𝑓 = 0.0006 and 𝑓 = 0.0007, we
get that the minimum value has a fork-like struc-
ture. The minimum value of 𝑛′′ becomes lower, as we
increase 𝑓 .

For pure metal inclusions in active host matrices,
we have found that the value of 𝑛′′ is significantly
reduced, and it becomes 𝑛′′ = 5.9×10−5. The typical

length of light propagating in a composite of pure
metal cylindrical inclusions becomes 𝑙 ≈ 0.04 cm.

5. Slow, Superluminal,
and Backward Lights

The notion of group velocity is related to a wave
packet (pulse), and it can be defined as the veloc-
ity with the overall shape of the wave’s amplitude
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known as the modulation or the envelope of a wave
propagating through space [11].

A narrow wave packet can be represented by

𝑈(𝑥, 𝑡) = 𝑒𝑖(𝑘0𝑥−𝜔0𝑡)

𝑘0+𝛿𝑘∫︁
𝑘0−𝛿𝑘

𝐴(𝑘)𝑒𝑖(𝑘𝑥−
𝑑𝜔
𝑑𝑘 |𝑘0𝑡)(𝑘−𝑘0). (30)

This shows that the traveling pulse is undistorted in
shape and has a velocity called the group velocity
(𝑉𝑔) given by

𝑉𝑔 =
𝑑𝜔

𝑑𝑘
|𝑘0. (31)

The group velocity can be expressed in terms of the
group refractive index as

𝑉𝑔 =
𝑐

𝑛′(𝜔) + 𝜔 𝑑𝑛′(𝜔)
𝑑𝜔

, (32)

where 𝑐 is the speed of light in vacuum. In order to
discuss the concepts of slow, fast, and negative group
velocities of light, we use the expression for the group
velocity in terms of the group refractive index

v𝑔 =
𝑐

𝑛′(𝜔) + 𝜔 𝑑𝑛′(𝜔)
𝑑𝜔

=
𝑐

𝑛𝑔
, (33)

where 𝑛′(𝜔) + 𝜔 𝑑𝑛′(𝜔)
𝑑𝜔 is the group index.

We can see that the second term (i.e., 𝜔 𝑑𝑛
𝑑𝜔 ) plays

a great role in obtaining the extreme values of group
velocity. Slow light refers to the situation in which
v𝑔 ≪ 𝑐. For normal dispersion 𝑑𝑛

𝑑𝜔 > 0, and 𝑛 > 1;
then the group velocity is less than the phase ve-
locity. Fast light refers to the light traveling faster
than the speed of light in vacuum. This circum-
stance can occur either when v𝑔 > 𝑐 or when the
group velocity is negative and large. In a region of
anomalous dispersion, 𝑑𝑛

𝑑𝜔 can become large and neg-
ative. Then the group velocity differs greatly from the
phase velocity, often becoming larger than 𝑐 or even
negative [2].

According to the special theory of relativity, noth-
ing can travel with speed faster than the speed of light
in vacuum. The concept of superluminal group ve-
locity doesn’t violate the special theory of relativity,
because, at the region of anomalous dispersion, the
group velocity doesn’t have physical meaning. Large
𝑑𝑛
𝑑𝜔 implies the existence of a significant absorption
and a rapid variation of 𝜔 with 𝑘. Consequently, the

approximation made on the driving group velocity
are no longer valid. Usually, a pulse with its domi-
nant frequency components in a neighborhood of the
strong absorption line is absorbed and distorted, as
it travels [11].

Garret and McCumber [17] showed that there are
circumstances in which the superluminal group ve-
locity can still have meaning even with anomalous
dispersion. S. Chu and S. Wong subsequently verified
experimentally what Garret and McCumber showed
theoretically: namely, if absorbers are not too thick
and for a narrow band light pulse [18].

A negative group velocity corresponds to the case
where the peak of the pulse transmitted through an
optical material emerges before the peak of the in-
cident light field enters the medium. One might fear
that the existence of a negative group velocity would
lead to a violation of the notion of causality. But
physically, what occurs is the pulse reshaping. Any
physical pulse will have leading and trailing wings,
the leading wing contains the information about the
entire pulse shape, and this information traveling at
normal velocities such as the speed of light in vacuum
will allow the output pulse to be fully reconstructed
long before the peak of the input pulse enters the
medium [14].

The numerical values of the group velocity near and
at the resonant frequency can be determined by using
Eq. (35) with the real part of the refractive index
as a function of the dimensionless frequency 𝑧. All
the values of the parameters used to find the group
velocity are the same as those used in finding the real
and imaginary parts of the refractive index. We have

v𝑔 =
𝑐

𝑛′(𝑧) + 𝑧 𝑑𝑛′(𝑧)
𝑑𝑧

=
𝑐

𝑛𝑔(𝑧)
. (34)

6. Results and Discussion

6.1. Passive host matrix

Figures 5–7 show the group refractive index and the
group velocity for tuned cylindrical inclusions in the
passive host matrix with 𝑝 = 0.9, 𝑝 = 0.7, and 𝑝 =
= 0.4, respectively.

From the obtained numerical results, (Fig. 5, b),
we see that, for 𝑝 = 0.9 at the region of the first
resonant frequency, the group velocity of slow light
v𝑔 = 0.77𝑐. In the region of the second resonant fre-
quency, there are two singularity points. When the
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a b
Fig. 5. Passive composite with tuned cylindrical nanoinclusions (𝜖

′′
ℎ = 0). Its group index 𝑛𝑔 versus the dimensionless frequency

𝑧 (a). The normalized group velocity v𝑔/𝑐 versus 𝑧 (b). Numerical values of composite parameters: metal fraction in an inclusion
𝑝 = 0.9, fraction of inclusions in the composite 𝑓 = 0.001

a b
Fig. 6. Passive composite with tuned cylindrical nanoinclusions (𝜖

′′
ℎ = 0). Its group index 𝑛𝑔 versus the dimensionless frequency

𝑧 (a). The normalized group velocity v𝑔/𝑐 versus 𝑧 (b). Numerical values of composite parameters: metal fraction in the inclusion
𝑝 = 0.7, fraction of inclusions in the composite 𝑓 = 0.001

frequency approaches from the left to the first asymp-
tote line, as well as to the second asymptote line from
the right, v𝑔/𝑐 → +∞. Between the two asymptote
lines on the right side, we get a negative superluminal
light of group velocity v𝑔 = −3.5𝑐.

Reducing the thickness of a metal in the inclusions
shows a significant change in the result, and we found
two maxima of the normalized group velocity.

For 𝑝 = 7 and 𝑝 = 0.4, the plots for v𝑔/𝑐 ver-
sus 𝑧 in Fig. 6, b and Fig. 7, b, respectively, depict
the identical type of curves. For both 𝑝 = 0.7 and
𝑝 = 0.4, the first peak on the left side shows of the
slow-light group velocities v𝑔 = 0.8𝑐 and v𝑔 = 0.75𝑐,
respectively. Unlike the left peak, the right peak gives
the superluminal-light group velocities v𝑔 = 4𝑐 and
v𝑔 = 1.2𝑐 for 𝑝 = 0.7 and 𝑝 = 0.4, respectively.
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a b
Fig. 7. Passive composite with tuned cylindrical nanoinclusions (𝜖

′′
ℎ = 0). Its group index 𝑛𝑔 versus the dimensionless frequency

𝑧 (a). The normalized group velocity v𝑔/𝑐 versus 𝑧 (b). Numerical values of composite parameters: metal fraction in the
inclusion 𝑝 = 0.4, fraction of inclusions in the composite 𝑓 = 0.001

a b
Fig. 8. Passive composite with pure metal inclusions (𝜖

′′
ℎ = 0). Its group index 𝑛𝑔 versus the dimensionless frequency 𝑧 (a). The

normalized group velocity v𝑔/𝑐 versus 𝑧 (b). Numerical values of composite parameters: fraction of inclusions in the composite
𝑓 = 0.001

Numerical results for the group index and group
velocity for a composite of pure metal cylindrical in-
clusions in a passive host matrix are presented in
Figs. 8 and 9 for 𝑓 = 0.001 and 𝑓 = 0.003, re-
spectively. The curves for v𝑔/𝑐 show that, as the di-
mensionless frequency 𝑧 tends to the first asymptote
from the left and to the second asymptote from the
right, v𝑔/𝑐 → +∞. But, between the two singular-

ity points, slow backward light is obtained. The value
V𝑔/𝑐 = −1.5 for 𝑓 = 0.001 goes to v𝑔/𝑐 = −0.25 for
𝑓 = 0.003.

6.2. Active host matrix

The numerical results for the group index and
group velocity of a tuned inclusion in the active
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a b
Fig. 9. Passive composite with pure metal inclusions (𝜖

′′
ℎ = 0). Its group index 𝑛𝑔 versus the dimensionless frequency 𝑧 (a). The

normalized group velocity 𝑣𝑔/𝑐 versus 𝑧 (b). Numerical values of composite parameters: fraction of inclusions in the composite
𝑓 = 0.003

a b
Fig. 10. Active composite with tuned cylindrical nanoinclusions (𝜖

′′
ℎ = −0.13866). Its group index 𝑛𝑔 versus the dimensionless

frequency 𝑧 (a). Yje normalized group velocity v𝑔/𝑐 versus 𝑧 (b). Numerical values of composite parameters: metal fraction in
the inclusion 𝑝 = 0.9, fraction of inclusions in the composite 𝑓 = 0.001

host (i.e., 𝜖′′ℎ = −0.13866) matrix are presented in
Fig. 10, a for 𝑝 = 0.9 with 𝑓 = 0.001. At the re-
gion of first resonant frequency, slow light with v𝑔 =
= 0.8𝑐 is obtained. Near the second resonant fre-
quency (Fig. 10, b), v𝑔/𝑐 has three branches. As 𝑧
goes to the first asymptote line from the left, and
as 𝑧 tends to the second asymptote from the right,
v𝑔/𝑐 → +∞. Between the asymptotes, the negative
slow light with v𝑔 = −0.2𝑐 is found.

Figures 11 and 12 present the group index and
group velocity for the fractions of inclusions 𝑓 =
0.0001 and 𝑓 = 0.0007, respectively. For all frac-
tions of inclusions under study, the group refractive
index 𝑛𝑔 has single minimum. It becomes negative, as
we increase 𝑓 . For 𝑓 = 0.0001, we have got a superlu-
minal group velocity v𝑔 = 4𝑐 (see Fig. 11, b). When
we increase the value of 𝑓 to 0.0007, the obtained
curve demonstrates a completely different behavior,
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a b
Fig. 11. Active composite with cylindrical pure metal inclusions (𝜖

′′
ℎ = −0.115911). Its group index 𝑛𝑔 versus the dimensionless

frequency 𝑧 (a). The normalized group velocity v𝑔/𝑐 versus 𝑧 (b). Numerical values of composite parameters: fraction of
inclusions in the composite 𝑓 = 0.0001

a b
Fig. 12. Active composite with cylindrical pure metal inclusions (𝜖

′′
ℎ = −0.115911). Its group index 𝑛𝑔 versus the dimensionless

frequency 𝑧 (a). The normalized group velocity 𝑣𝑔/𝑐 versus 𝑧 (b). Numerical values of composite parameters: fraction of inclusions
in the composite 𝑓 = 0.0007

and we get three branches of the normalized group
velocity. Far to the left from the first asymptote line
and far from the right asymptotic line, the group ve-
locity is low and is estimated as v𝑔 = 0.4𝑐. As the
frequency approaches the first asymptotic line from
the left and the second asymptotic line from the right,

v𝑔 → ∞. Between the two singularity points, the neg-
ative slow group velocity of a light pulse is obtained.

7. Conclusions

The speed of light can be controlled in a composite
of tuned (metal-covered dielectric) and pure metal
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cylindrical inclusions in passive and active host ma-
trices. We have obtained that a light pulse can prop-
agate with slow, superluminal, and even with nega-
tive group velocities in the stated composites. In both
tuned and pure metal inclusions in a passive host ma-
trix, the main challenge in the propagation distance of
a light pulse is the strong absorption. By introducing
a negative part in to the imaginary part of the per-
mittivity, the problem of the strong attenuation of an
electromagnetic wave by the composite can be con-
siderably reduced. In a composite with coated inclu-
sions, the metal fraction 𝑝 in inclusions plays the main
role in varying the speed of a light/electromagnetic
wave which propagates through it. But, for a com-
posite with pure metal nanoinclusions, the fraction
of inclusions 𝑓 affects the results related to the speed
of waves. Since the speed of light can be controlled
within the investigated model nanocompsoites, we
can conclude these composites are a promising mate-
rial for optical applications and further investigations.
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ПОВIЛЬНЕ I ШВИДКЕ СВIТЛО
У КОМПОЗИТI МЕТАЛ/ДIЕЛЕКТРИК
З ЦИЛIНДРИЧНИМИ НАНОВКЛЮЧЕННЯМИ
В ПАСИВНИХ I АКТИВНИХ ЛIНIЙНИХ
ДIЕЛЕКТРИЧНИХ МАТРИЦЯХ

У роботi представленi теоретичнi дискусiї та числовi ре-
зультати, отриманi в результатi вивчення екстремальних
значень швидкостi свiтла в композитi метал/дiелектрик, де
цилiндричнi нановключення рiвномiрно розподiленi в лiнiй-
нiй дiелектричнiй матрицi. Результати свiдчать про те, що
в областi аномальної дисперсiї, в рамках розглянутого нами
пiдходу, свiтло може рухатися з груповою швидкiстю бiль-
шою, нiж швидкiсть свiтла у вакуумi. У композитi з пасив-
ною дiелектричною матрицею свiтловий iмпульс поглинає-
ться на дуже малiй вiдстанi. Проблему поглинання можна
значно спростити, використовуючи активну матрицю.

Ключ о в i с л о в а: повiльне свiтло, швидке свiтло, нано-
композит, групова швидкiсть.
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