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FINE SPIN-DEPENDENT SPLITTING

OF ELECTRONIC EXCITATIONS AND THEIR
DISPERSION IN SINGLE-LAYER

GRAPHENE AND GRAPHITE'

The dispersion dependences of electronic excitations in single-layer graphene and crystalline
graphite have been studied taking the electron spin into consideration. Compatibility conditions
for two-valued irreducible projective representations characterizing the symmetry of spinor
excitations in the above structures and the distributions of spinor quantum states over pro-
jective classes and irreducible projective representations at all high-symmetry points in the
corresponding Brillouin zones are determined for the first time. The principal existence of the
spin-dependent splitting (or merging) of the electronic energy states, in particular, the elec-
tronic w-bands at the Dirac points, is established. The magnitude of spin-dependent splitting
can be significant, e.g., for the transition-metal chalcogenides belonging to the same spatial
symmetry group as crystalline graphite. However, because of the weak spin-orbit interaction
for carbon atoms, it turns out small for all carbon structures including single-layer graphene
and crystalline graphite.
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1. Introduction

In work [1], when describing the dispersion of vibra-
tional excitations in single-layer graphene and crys-
talline graphite without taking the spin of electronic
excitations into account, the projective classes and
standard factor systems, as well as the single-valued
(vector) and projectively equivalent (p-equivalent) ir-
reducible projective representations of spatial sym-
metry groups, according to which those excitations
are classified at the high-symmetry points in the Bril-
louin zones of the above structures, have been deter-
mined for the first time. The compatibility conditions
for irreducible projective representations of various
projective classes corresponding to an ordering of the
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spatial symmetry groups and the wave-vector groups
with k # 0 are determined together with the real-
ization of the projective classes that are possible for
those groups.

The account for the electron spin for the elec-
tronic m-bands in single-layer graphene and crys-
talline graphite, which was performed in work cite2,
doubles the number of electronic energy states and, as
a result, gives rise to their new classification accord-
ing to the double-valued (spinor) irreducible projec-
tive representations in the new system of projective
classes. The unambiguity in the ordering of spatial
symmetry groups at various high-symmetry points

I The paper was presented at the XXIVth Galyna Puchkovska
International School-Seminar “Spectroscopy of Molecules
and Crystals” (August 25-30, 2019, Odesa, Ukraine).
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in the k-space survives at that, but there arises a
possibility of the spin-dependent splitting or princi-
pal merging of excited electronic energy states, which
should manifest itself in the fine structure of elec-
tronic excitations in crystalline systems with a low
spin-orbit interaction energy, e.g., in carbon struc-
tures, where the spin-orbit interaction energy is only
1.0-1.5 meV [3].

The electronic “skeletons”, e.g., in hexagonal boron
nitride (hA-BN or 4-BN) and the hexagonal poly-
types 2H, and 2H,. of the transition-metal dichalco-
genides (MoS3, MoSe;, WSy, WSes, TeSs, and
TeSes) are also based on the sp?-hybridization of elec-
tronic states. The crystal lattice symmetry in those
substances is also described by the spatial group
P63/mmc (Dg,) as in crystalline graphite, and the
energies of spin-orbit interaction for the correspond-
ing m-bands are much higher than for carbon -
bands. Therefore, we decided to consider the quali-
tative character of the electron spin influence on the
structure of electronic m-bands and the dispersion of
m-electronic states in graphite and other compounds,
whose crystal lattices are characterized by this spatial
symmetry, in more details.

2. Symmetry Basics for Determining

the Qualitative Character of the Electron
Spin Influence on the Structure

of the Electronic Excitation Energy Spectra
and Their Dispersion in Crystalline Graphite
v-C and Single-Layer Graphene Cf,

Among the electronic excitations at various high-
symmetry points in the corresponding Brillouin zones
of crystalline graphite v-C' and single-layer graphene
C'r.1, which were analyzed in works [1,2], we will con-
sider only the excitations of electronic m-bands. Their
wave functions are orthogonal to the wave functions
of the sp?-hybridized bands of o-electrons.

When determining the characters of the projec-
tive representations D, which describe the symme-
try of electronic states (without taking the electron
spin into account) at the point D of the correspond-
ing Brillouin zone, we used formulas (1)-(18) from
work [1]. At the same time, in order to find the char-
acters of the projective representations D/, which do
the same but making allowance for the electron spin,
formulas (2)—(8) from work [2] were applied. Whe-
ther the projective representations of the wave-vector
groups of spatial symmetry groups belong to the i-th
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projective class K; or not was determined by con-
structing the factor systems w(rq,r1) and reducing
them to the standard form with the help of the func-
tions on groups, the coefficients wu(r).

In this work, while determining the correspondence
between the projective representations D, and D7,
which characterize the symmetry of electronic states
without taking and taking, respectively, the electron
spin into account, the following relation was addition-
ally used for each wave-vector group of the spatial
symmetry groups of crystalline graphite and single-
layer graphene:

Dl =D, x DIL/Q. (1)
Here, Di"/Q is an even two-dimensional (spinor) pro-

jective representation of the rotation group for the
total electron angular momentum quantum number
j= % For the rotation at the angle ¢, its characters
are determined by the formula [2]

oy — Sl +1/2)0]
sin(¢/2)

In particular, at the points I' in the Brillouin zones
of crystalline graphite [the spatial symmetry group
P63/mme (Dg,)] and single-layer graphene |[the
diperiodic spatial symmetry group P6/mmm (DG80)
[4], the group chart of which coincides with the
group chart of the three-periodic space symmetry
group P6/mmm (D},)], the point symmetry groups
of equivalent directions are identical; these are the
groups 6/mmm (Dgp), which coincide with the
groups of crystalline and macromolecular classes, re-
spectively.

The symmetry of the valence band (w-band) of
single-layer graphene Cp ; at the center of its Bril-
louin zone, i.e., at the point I', for electronic states
without taking the electron spin into account, is de-
termined by the representation I'; (A3 ) of the point
group 6/mmm (Degy) (the highest-energy binding 7-
orbital with 1, (r) = %[qﬁl (r)+¢2(r)]), and the sym-
metry of the conduction bands (7*-band, the anti-
binding 7*-orbital with ¢.(r) = %[fbl (r) — ¢2(r)] by
the representation Iy (AJ)). Here, ¢;1(r) and ¢(r)
are the atomic m-orbitals of the first and second crys-
tallographically non-equivalent C atoms that form a
unit cell in single-layer graphene. Using the method
of linear combination of atomic orbitals (LCAO), it is
easy to find that the highest valence band (not tak-
ing the electron spin into account) at the point I’

(2)

X (
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Table 1. Characters of the single-valued irreducible representations (1’2(0))"" (F;_)

and (péo))—(rg_) (the projective class Kjp), the spinor representation Dj_/z (the projective

class K1), and the products of the projective representations (F2(0))+ ® D

+
1/2

and (Féo))_ ® Dj_/2 (the projective class K1) of the 6/mmm (Dsgp)

Projec- . . ) 6/mmm (Degp,)
tive Notation for irreducible
class projective representation . cs c% 3us | c2 cg c6 3u’2 i ics icg iug | ics icg ics 3iu’2
Ko i+ i /1 U T O I O YO N S [ QU g
-y /A U T T T O T ) [ [ O O e N e N S |
K1 DY, 2 (1 |=1[0 |0 |[=V3 V3|0 |2 |1|-1|0]0|-V3V3]|0
(0)y+ + (D)4
I @DV, = (I
(2)+1/j((+)1)217100\/37\/30217100\/37\/30
(3 ®D1/2:F7)
0\— o D+ NN
. @DV, = (I
(3)_1/f ((_)2) 2 | 1 |-1]0]0|-v3 V3|0 |—=2|-1]1]0]0/+V3|-V3 0
(I ®D1/2:F8)

in crystalline graphite v-C, as well as in single-layer
graphene C7f, 1, has the I's (A3) symmetry, and the
lower-energy m-band has the I, (A7) symmetry. The
lower-energy conduction 7*-band (not taking the
electron spin into account) in crystalline graphite, as
in single-layer graphene, has the I';” (AJ) symmetry,
and the higher-energy conduction 7*-band has the
I's (A3) symmetry.

From Table 1 of this work, as well as Table 4 of
work [1] and Table 1 of work [2], one can see that if
the electron spin is taken into account, the spinless
orbital I’; of the projective class K [in our notation,
this is (I 2(0))+] transforms into the spin (spinor) or-
bital F7+ of the projective class K; [in our notation,
this is ((F’)gl))*‘], and the spinless orbital Iy of the
projective class Ky [in our notation, this is (Féo))‘]
into the spin (spinor) orbital I'y of the projective
class K [in our notation, this is ((F’)gl))_] in both
single-layer graphene and crystalline graphite.

Let us first find the compatibility condition for the
irreducible projective representations of electronic ex-
citations along the line I'— A— A in the Brillouin zone
of crystalline graphite [1] both neglecting the electron
spin and taking it into account.

2.1. Point A

The factor group of the wave-vector group by an infi-
nite invariant subgroup of translations at the point A

ISSN 2071-0194. Ukr. J. Phys. 2020. Vol. 65, No. 7

of the Brillouin zone in crystalline graphite ~-C' is
isomorphic to the point group 6mm (Cs,), which
is a symmetry group of equivalent directions at this
point. The wave-vector star at the point A contains
two rays; these are two vectors directed along the axis
k.: (ka)1 = —k. and (ka)2 = k. (0 < [k:| < % |by|).

It is easy to see that, for the factor system
w1,4(r2,71), which is determined by the symme-
try properties of the crystal spatial group, all val-
ues calculated by formula (8) of work [1] are equal
to +1. This means that wy a(r2,71) = wEO)(rg,rl),
i.e., the factor system wy a(r2,71) is a standard fac-
tor system of the projective class Ky, and all single-
valued representations of the group 6mm (Cg,) co-
incide with the vector ones at the point A. The
transformations of the spinors, the wave functions of
the states with a half-integer spin, are characterized
by double-valued representations, which have to be
projective representations of the ordinary symmetry
group [1]. The structure of double-valued representa-
tions is determined by the factor systems wa(ra, 1)
that reflect the symmetry transformations of spinors
or, more precisely, describe the transformations of
their spin variables.

The procedure of constructing the factor system
wa(re,71) and the method of its reduction to the stan-
dard form w(ra,71) were described in Section 5 of
work [1] in detail. The factor system wy(ra,71) that
was constructed following this method for the point
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Table 2. Factor systems wz(7r2,71) at the point A of crystalline graphite [the spatial
symmetry group P63/mmc (Dg, ), the point symmetry group 6mm (Cev)] (a) and standard
factor system w}(r2,7r1) corresponding to the standard form of the factor system waz(rz2,r1) (b)

(@) (o), (o), (1), (a2), (a0),

AR Lo 2 3 4 5 6 7 8 9 10 11 12

, : e Cy 032 i(uy), i(uy), i(uy); (&) C; Cs i(u;)l l(“; 2 i(”;)s

1 € loy 1o la  lay  ls lo 1o lo  lo  lay lay  lay

2 G loy e ~loy ~“le ~lo -l 1o -lo lo ~—lay ~leag ~Tay

3 032 1(3) _1(]) _1(2) 1(5) 1(6) 1(4) _1(9) _1(7) 1(3) 1(”) 1(12) 1(10)

(0,), 4 )] o o lo ~lo lo -lo -l lo lo lo -l -lo

(O'V)2 5 i), lo “le  le -len -y loy ~lan  lay  lag ~lo 1oy ~—lgs

(0,), 6 i) lo ~lo lo lo -l ~lo -l lo lo ~le ~lo 1o

7 c lyy Iy ~lo  lag  lay  lay ~lo o lo ~leo -ls -le

8 ¢ lyy ~lo ~loy ~lay ~lao ~lan ~loo 1o ~lo Lo leo Ils

9 Cs loy 1o e ~lay ~lay ~lag 1o ~lo lo lo leo 1o

(e0), 10 @)l o “lay loy “loy le 1o o o “lo “lo lo -lo

(O-‘:)Z 11 l(u;)z 1(11) 71(12) 1(10) 1(9) 71(7) 1(3) ](5) 71(6) 71(4) 71(3) 71(1) 1(2)

(o';)3 12 i) lan ~lay  lan lo Lo ~lo  le ~lao ~ls lo -lo ~lo

u,(ry| 1 -1 1 i i i i —i - -1 -1 -1

a
@'y (ry,1) = a b
=y, (1,1) " 1 2 3 4 5 6 7 8 9 10 11 12
7, ¢ G a i(”z)l i(”z)z i(”z)s G c K i), i(w), (1),
1 el ly lo lg 1o Il lo 1+ 1oy 1 loy  lag  lap  lay
4 Glleg lo lo leo lao 1l 1 ls lo oy  lay lag 1y
4 3 Glleg lo 1o 1y  lg  lg {lg g ley  lay  lazy  lao
4 i) | e ey lo o lo 1o |“law “lay ~lay —loy ~ly ~le
D i(w) | 1y e le 1o lo loy |=lay ~lay  ~lag ~lo ~loy L
6 iw)|le lo lo lo lo lo [l ~la ~loy ~le -lo ~lg
7 |l lgy lg  lo lay lay Loy 1 1o Lo lgy 1oy 1y le
bl “lle lo 1o lao luy  lay | lo g Loy lo 1o Ll
b 9 S| Lol lg  lay  lay  lag 1l 1o loy 1l e Ll
0 i) | lay 1oy lay 1o le o [lo “lo “lo -l -lo -lg
Pn i)ty e lo lo 1o e |Fle cle cle -lo -l -le
2 i) | Ly lg oyl 1o 1o |“lo ~lo  -lg ~—lo -lg -l
b
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Table 3. Characters of irreducible representations of the double group (6mm)’ (C§,)

10 €3, Cg, 3tug, c2, Cg, €6, 3iu,27
(6mm)’(Cg,,) e q 2 qes 3qiug qcs %% a3 3qitd,
I't Ay 1 1 1 1 1 1 1 1 1
Ty Ao 1 1 1 1 1 -1 -1 -1 -1
I's As 1 1 1 1 -1 1 1 1 1
T'a Ay 1 1 1 1 -1 -1 -1 -1 1
I's Ey 2 2 -1 -1 0 2 -1 -1 0
T's Es 2 2 -1 -1 0 -2 1 1 0
I'z E| 2 -2 1 -1 0 0 V3 -3 0
s E} 2 -2 1 -1 0 0 V3 —V3 0
Ty E} 2 -2 -2 2 0 0 0 0 0

Table 4. Characters of single- and double-valued irreducible representations at the point A
Projec- Notation for irreducible 6mm (Cey)
tive projective
class representation e c3 cg 3iug c2 cg C6 31’u’2
Ko N Ar 1 1 1 1 Mk " e Mk
Aéo) Ao 1 1 1 -1 Mk Mk Mk —Mk
0
Aé ) Az 1 1 1 -1 —Tk —Tk —"x Mk
0
Afl ) Ay 1 1 1 1 —Mk —Tk —k —Tk
A As 2 -1 | -1 0 2 —e —he 0
AP Ag 2 -1 -1 0 —2me e The 0
K ANt aq(Ey) 2 1 -1 0 0 Vame | —V3me 0
(ANSY Ag(EL) 2 1 -1 —V/3ix V3
(AN Ag(EL) 2 -2 2 0 0

e = e—ka1/2 = g—i(ka)iai/2 — g—i(—k:)a1/2,

group 6mm (Cg,) is given in Table 2, a. While con-
structing this factor system, the generating elements
a = c3g, b =1i(u2)1, and ¢ = ¢y were chosen, which sat-
isfy the following generating relations for the double-
valued group (6mm)’ (C§,): a® = e, b* = e, ¢* = ¢,
ab = ¢ba®, ac = ca, and bc = gcb. This factor sys-
tem, being reduced to the standard form, i.e., the
factor system wj(ra,71), is given in Table 2, b. The
lower part of Table 2, a contains the values of the
coefficients us(r), which are used to reduce the factor
system wa(rq, 1) of the point group 6mm (Cs,) to its
standard form wj(ry,71).

In Table 3, the irreducible representations of
the double-valued group (6mm)" (C§,) are pre-
sented. The representations that are additional to
the irreducible representations of the ordinary group

ISSN 2071-0194. Ukr. J. Phys. 2020. Vol. 65, No. 7

6mm (Cg,) are projective for the latter and be-
long to the projective class K;. This fact proves that
the factor system wj(rq, r1) is really a standard fac-
tor system of the projective class K of the group
6mm (Cey), ie., wy(ra,m1) = w(yy(r2,r1), where the
notation of the standard factor system contains the
subscript, where the parenthesized number designates
its projective class. In Table 2, b, the symmetry el-
ements of the group 6mm (Cs,) are additionally
grouped horizontally into blocks a and b, and verti-
cally into blocks a(ay, az) and b(by1, b2). In Table 2, b,
solid lines are used to distinguish the blocks of the
coefficients with a value of —1.

The characters of irreducible representations of the
projective classes K (ordinary single-valued or vec-
tor) and K; (double-valued projective or spinor) at
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the point A are presented in Table 4. There is no ad-
ditional degeneracy of states, if their invariance at the
point A under the time inversion operation is taken
into account.

The compatibility of irreducible projective repre-
sentations at various points in the Brillouin zone
of crystalline structures belonging to a definite
spatial symmetry group is established by analyz-
ing the atomic equivalence representations at those
points?. Let us find the compatibility relations be-
tween the projective representations that characterize
the symmetry of electronic m-bands not taking and
taking the electron spin into account for crystalline
graphite between the points I" and A in its Brillouin
zone.

In work [1], it was shown that the standard fac-
tor system for the vibrational and electronic states
in crystalline graphite 7-C' [the spatial symmetry
group P63/mmec (D3,), the point symmetry group
of equivalent directions is the crystalline class group
6/mmm. (Dgp)| at the point A of its Brillouin zone
without taking the electron spin into account be-
longs to the projective class K5, whereas the stan-
dard factor system for the electronic states taking
the electron spin into account belongs to the projec-
tive class K. This means that the representations of
the projective class Ky for the electronic states at
the point I' without taking the electron spin into
account transform into the representations of the
projective class K5 at the point A; and the repre-
sentations of the projective class K7 for the elec-
tronic states at the point I' taking the spin into
account [1], into the representations of the projec-
tive class K4 at the point A. According to which
projective representations the vibrational or elec-
tronic states (not taking the spin or taking an in-
teger spin into account) and the electronic states
with the half-integer spin (taking the electron spin
into account) transform at the point A, i.e., the
compatibility conditions for the ordinary and projec-
tive representations at the point I' and the projec-
tive representations at the point A, is determined by
the atomic equivalence representations at the points
I' and A.

Table 5 demonstrates the characters of the equiva-
lent group representations at the points I" and A in
the Brillouin zone of crystalline graphite v-C. The

2 This is true for the orbitals of the same spatial symmetry.
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point symmetry groups of equivalent directions in
them are characterized by the same point group
6/mmm (Degy,) (taken from work [1]). It is easy to see
that only the elements e, c3, 3, and 3iuy have identi-
cal characters of the projective equivalence represen-
tations at the points I and A in the Brillouin zone
of crystalline graphite. The symmetry of the electron
m- and w*-orbitals without taking the electron spin
into account is characterized by one-dimensional rep-
resentations at the point I' and by two-dimensional
projective representations at the point A. This means
that the valence m-bands (these are the bands I';” and
F2+ ), which are non-degenerate at the point I', and
the conduction 7*-bands (these are also the bands Iy
and '), which are non-degenerate at the point A,
combine in pairs to form doubly degenerate electronic
bands, the symmetry of which is characterized by
projective representations with the characters deter-
mined by the sums of representation characters for el-
ements with identical nonzero characters in the equiv-
alence representations for the points I" and A. From
Table 5 and taking Table 9 from work [1] into account,
one can see that, at the point I', the non-degenerate
orbitals of the valence m-bands (without taking the
electron spin into account) I'; and I 2+ of the projec-
tive class Ky, as well as the non-degenerate orbitals
of the conductance 7*-bands I'; and 'y, combine in
pairs into double-degenerate orbitals with the sym-
metry Ags) of the projective class K.

Table 5 also demonstrates the characters of the
projective representations of the doubly degener-
ate spin (spinor) orbitals (taking the electron spin
into account) at the point I'; these are the or-
bitals ((I")\")* = 1 and (1))~ = Iy, the
symmetry of which is characterized by the projec-
tive representations of the projective class K. The
standard factor system for the spinor states at the
point A is a standard factor system of the projec-
tive class Ky, in which all projective representa-
tions are four-dimensional. In other words, the dou-
bly degenerate spinor orbitals indicated above must
also combine into fourfold-degenerate ones at the
point A. Following the procedure described above
for finding the characters of projective representa-
tions of doubly degenerate orbitals using the equiv-
alence representations at the points I' and A, it
is easy to find the characters of those fourfold-
degenerate orbitals. In Table 5, these are the char-
acters of the four-dimensional spinor projective rep-

ISSN 2071-0194. Ukr. J. Phys. 2020. Vol. 65, No. 7
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Table 5. Calculation results for the compatibility relations
between electronic states without taking and taking the electron spin
into account at the points I' and A in the Brillouin zone of crystalline graphite v-C

Notation for irreducible 6/mmm (Dgp)
projective
representation e | 3 | 3 |Bua| c2 | & | c6 |3ub| i |idc3 | icd |Biug| dce | icd ice |3iul,
Teq| 4 4 4 0 0 0 0 4 0 0 0 4 4 4 4 0
Aeq| 4 4 4 0 0 0 0 0 0 0 0 4 0 0
ryFlr| 1|1 |1 |-1|-1|-1]-1|1]1|1]1]-1|-=-1]=-1]-1
ule(T) 1 1 1 1 1 1 1 1 1 1 1 1 —1 —1 —1 —1
VPRV C 7 2l N W R N sy s T T T O O S O I 1 1 1
ry| 1 1 1 —1 1 1 1 -1 -1 —-1] -1 1 —1 —1 —1 1
ulyA(r)Fg_ 1 1 1 -1 1 1 1 -1 -1] —-11] -1 1 1 1 1 —1
ry+ry)l 222 o0ofloflofo|-=2[o0o|o0oflo0]2|-=2-2]|-2]o0
waMIF+r) 22 2]0floflo]o|-2[0]o0|o0]|2]2 2 2 0
AP 2 2 2]o0floflofoflolololo|2]o0]o0 0] o
24 4 |4 afloflo|lo|o|o]o|o]o|4a|o0o] o0 0 | o
@+ ] 2 |1 =1l oo |vB|-v3 o |21 |-1l0]0]|V3|=V3]oO
(@M= gyl 2 |1 =1 oo =B Vv3lo|—2|-1|1]0]|o0|Vv3|-v3|oO
@M+ 4@y a4 |2 =2 o lofoflolo|o]o|o]o]|o|2/3]|-2v3 0
u A ()Y + (@) 4 | 2 =210 o] o] o] o0 0l 0] o0 |-2v32v3]|0
24P 8 | 4 | -4l 00| 0] 0] o0 oo o] o 0o |o
resentation (A’ )g4) of the projective class K, (taken | Table 6. Calculation results
from works [1 2]) for the characters of projective representations
,2]).
In a similar way, we can sequentially calculate the without taking and taking the electron spin
o y’_ . a R Y K ) into account at the point A in the Brillouin
compatlblhty relathns for irreducible plﬁol]ectlve TP~ | Zone of crystalline graphite v — C
resentations: not directly from the point I' to the
point A in the Brillouin zone of crystalline graphite Notation 6mm (Cew)
. . for irreducible
~v-C, but first from the point I' to the interme- projective T ; -
diate point A and then from the point A to the representation | € |¢3| ¢ |3duz | c2| G| co | 3iuh
point A. For the corresponding calculation, the char-
acter values for the atomic equivalence representa- Aeq 4 14| 4| 4 0 0 0 O
tions at the point A — these are the representations Ar o of 1 |-1 21 2| 1
Acqy Ary Aviv, Az, Ar, DYy, AL and AL — are pre- Avib 12 (o] ol 4| ol of of o
sented in Table 6. In addition, a diagram that deter- A, 111! 1] 1 1 1l 1l 1
mines t}.le comfpa;clblhty'olf 1rredu<:;)b61e prOJectgi rep- A, 4 a4l 4l 4 0 ol ol o
resentations o e spatial grou mmc m
o patial group P6s/ (Ds,) D}, 2 [ 1]-1] 0 | o|-v3B|[V3| 0
the direction I' — A in the Brillouin zone correspond- //
ing to this group is exhibited in Fig. 1. Az S I N 0| -v3|v3| 0
A !
Figure 2 schematically illustrates the dispersion of Ar=Req®A;| 8 |4 ) -4 0 0 0p 00

the electronic 7 and 7* energy bands (a) without tak-
ing and (b) taking the electron spin into account in
the Brillouin zone of crystalline graphite v-C' along
the line I'—A—A. As one can see from both Fig. 2 and

ISSN 2071-0194. Ukr. J. Phys. 2020. Vol. 65, No. 7

the results of the detailed group-theoretic considera-
tion carried out above, no spin-dependent splitting of
electronic excitations is expected to take place in this
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Fig. 1. Compatibility diagram for the irreducible projective
representations of the group P63/mmc (Dg,) in the Brillouin
zone of crystalline graphite v-C' along the line I' — A — A

direction, which is the most symmetric along the k-
axis of the Brillouin zone in crystalline graphite. The
account for the electron spin results in that, for ev-
ery point in the I' — A — A direction, only the de-
generacy order of electronic states becomes twice as
large, which is admissible for the representations at
this point.

Figure 3 exhibits, on the qualitative level, the
dispersion of electronic excitations along the line
K — P—H in the Brillouin zone of crystalline graphite
(a) without taking and (b) taking the electron spin
into account (taken from work [2]). The figure demon-
strates that, along the K — P — H line in the Bril-
louin zomne of crystalline graphite v-C, there are a
number of spin-dependent splittings. The origin of
their appearance was comprehensively substantiated
in work [3] using the group-theoretic methods based
on the consideration of the projective representations
of spatial symmetry groups. The projective classes of
those representations were determined according to
their factor systems, which were constructed for the
first time. The energies of the spin-dependent split-
tings are determined by the energy of the spin-orbit
interaction, which is low for carbon atoms, being esti-
mated as only 1.0-1.5 meV [3]|. Therefore, in order to
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show the spin-dependent splittings, which are funda-
mental for the determination of the fine energy struc-
ture of electronic states, their energy in the dispersion
curves in Fig. 3 was increased 10° times.

2.2. Point U

Figure 4 illustrates the dispersion curves for the elec-
tronic excitations along the line M — U — L in the
Brillouin zone of crystalline graphite (a) without tak-
ing and (b) taking the electron spin into account. The
curves were plotted on the basis of the results of quan-
titative calculations performed in works [5, 6].

The compatibility conditions for the irreducible
representations at the points I' and M in the Bril-
louin zones of crystalline graphite and single-layer
graphene are trivial. The representations of the or-
bitals (I () and (1)~ (I;) at the points I’
in the corresponding Brillouin zones of crystalline
graphite and single-layer graphene without taking the
electron spin into account transform into the repre-
sentations (MQ(O))JF(M;') and (Mg(o))*(M;;), respec-
tively, at the points M with the parity conserva-
tion; and the representations of the spin m-orbitals
() Y+ () and (I')5 (I ) at the points I' trans-
form into the representations of the spin m-orbitals
(M)D)* (M) and ((M')D)~ (M), respectively,
at the points M (taken from work [2]).

At the point U in the Brillouin zone of crystalline
graphite ~-C, the factor group of the wave-vector
group for the invariant translation subgroup is iso-
morphic to the point symmetry group mm (Ca, ). For
the point U, the latter is a point symmetry group
of equivalent directions. The wave-vector star at the
point U in the Brillouin zones of crystalline graphite
7-C contains six rays: (ky)1 = —k,—1bs, (ky)2 ==
-k, + %bQ, (kU)S =-k,— %(bQ _bS)v (kU)4 =k, —
— %bg, (kU)5 = kz + %bg, and (kU)(S = kz — %(bg —
—bs), where 0 < k.| < 3 |b1]). As an example, let us
consider the ray (ky)i, i.e., the ray of the point Uy,
for which the symmetry elements transforming this
ray into the equivalent one, thus forming a point
symmetry group mm (Ca,), include the elements e,
i(u2)1, c2, and i(uh)1. As the generating elements of
this group, we select the elements a = i(uz2)1 ((04,)1)
and b = cy. This choice of generating elements takes
the composition principle into account, according to
which the group mm (Cy,) can be represented as the
direct group product mm =m ® 2 (Cy, = Cs ® Cs).
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Fig. 2. Dispersion of electronic energy m- and 7*-bands in the Brillouin zone of crystalline
graphite v-C' along the line I' — A — A: without taking (a) and taking the electron spin

into account (b)
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Fig. 3. Dispersion of electronic energy 7- and 7*-bands in the Brillouin zone of crystalline
graphite v-C' along the line K — P — H: without taking (a) and taking the electron spin

into account (b)

Using the defining relations for the group
mm (Cay), let us calculate all values of the factor
system wa(r2,71). It is clear that, in this case, as the
determining relations, we should take those for the

ISSN 2071-0194. Ukr. J. Phys. 2020. Vol. 65, No. 7

double group (mm) (C%,): a* = e, b* = e, and
ab = gba. The corresponding calculation procedure
was described in work citel in detail. The calculated
factor system ws(r2,71), which describes the transfor-
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Fig. 4. Dispersion of electronic energy 7- and w*-bands in the Brillouin zone of crystalline
graphite 7-C along the line M — U — L: without taking (a) and taking the electron spin

into account (b)

Table 7. Factor systems wz2(r2,71) at the point U in crystalline
graphite [the spatial symmetry group P63/mmc (D§,), the point
symmetry group mm (C2v)] (a) and standard factor system w} (r2,7r1)
corresponding to the standard form of the factor system wz(r2,71) (b)

(o), (o)),
@,(1ry,17) s 3 .
1 ’
K ; . ;(ry,1) = (O-V)l (GV)I
A e i(uy), ¢ i(uy), ,
5 o =) (15,11) 1 2 3 4
b%° 1 e ly 1o 1o le " W) )
) e i(u c, i(u
(O'V)l %" 2 iw,),| o o “le Il £ AN 27
e 1 1 1 1
blao 3 ¢ 1y lyy 1oy =l 1 [0 ) (3) (4)
1 1 1 -1 —1
(o0), bla' 4 i), lw o lo -lo (0,), 2 )] lo lo 0@
3 ¢ lyy  lay 1l lo
. ;i ! .
u,(r) | 1 i i (@), a4 W) 16 1o |-1e -lo
a b

mation of spin variables in the point symmetry group
mm (Ca,), is given in Table 7, a. This factor system
belongs to the projective class K7, because a = —1,
B =1, and v = 1 for it. As was done above for anal-
ogous factor systems, the subscripts near the coeffi-
cient values for the factor system wo (r27 7“1) represent
a multiplication table of elements of the point sym-
metry group mm (Ca,). The numbers in parentheses
indicate the numerical designations of elements cor-
responding to the products rory.
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Making use of the coefficients us(r) presented in the
lower part of Table 7, a, the factor system wo(r2,71)
is reduced to a p-equivalent block-symmetric form,
the factor system wi(rg,71), which corresponds to
the definition of the standard factor system [1]. This
standard factor system of the group mm (Cav) of
the projective class K is presented in Table 7, b. It
is the values of the coefficients us(r) that determine
the projective spinor representations of symmetry
groups. Furthermore, the values of those coefficients
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are identical for the same elements r entering various
point groups [2].

In Table 8, the characters of irreducible representa-
tions of the double group (mm)’ (C4,) are quoted. It
is its additional [additional to the vector single-valued
representations of the group mm (Cy, )] single-valued
representations that are the double-valued (spinor)
representations of the group mm (Ca,). Note that it
is the only representation of the projective class K1,
namely, the representation I's(E’).

The characters of irreducible representations of a
point U of the projective classes Ky (the ordinary
single-valued or vector ones) and K; (the double-va-
lued projective or spinor one) are given in Table 9. In
work [1], it was shown that the standard factor sys-
tem for the vibrational and electronic states with-
out taking the electron spin into account for crys-
talline graphite ~-C [the spatial symmetry group
P63/mmec (Dg;,)] at the point L in its Brillouin zone —
similarly to the point A — belongs to the projective
class K5, and the standard factor system for the elec-
tronic states taking the electron spin into account —
again, similarly to the point A — to the projective
class K4. This means that the representations of the
projective class K for the electronic states without
taking the electron spin into account at the point M
transform into the representations of the projective
class K5 at the point L, and the representations of
the projective class K; for the electronic states taking
the electron spin into account at the point M [1] into
the representations of the projective class K4 at the
point L. According to which representations at the
point L the vibrational or electronic states with an
integer spin or neglecting it and the electronic states
taking the electron spin into account (the states with
a half-integer spin) — in other words, the compatibil-
ity conditions for the ordinary and projective repre-
sentations at the point M and the projective repre-
sentations at the point L — this issue is again deter-
mined by the atomic equivalence representations at
the points M and L.

Table 10 shows the characteristics of equivalence
representations at the points M and L in the Bril-
louin zone of crystalline graphite y-C' (taken from
work [1]). At these points, the point symmetry groups
of equivalent directions are characterized by the
same point groups mmm (Dap). From Table 10, it
is easy to see that only the symmetry elements e
and i(ug); have the same characters of projective
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equivalence representations at the points M and L
in the Brillouin zone of crystalline graphite. The
symmetry of the electronic 7- and 7*-orbitals with-
out taking the electron spin into account is char-
acterized by one-dimensional representations at the
point M and two-dimensional projective representa-
tions at the point L. This means that the electronic
valence m-bands (M?EO))_ (M) and (M2(O))+ (M)
and the electronic conduction 7*-bands (MQ(O))Jr and

(M?EO)_ — all are non-degenerate at the point M —
combine in pairs at the point L to form doubly degen-
erate electronic bands. The symmetry of the latter is
characterized by projective representations with the
characters that are determined, as it was in the case
of the points I' and A, by the sums of the represen-
tation characters for the elements with identical non-
zero characters in the equivalence representations at
the points M and L.

From Table 10 and taking Tables 8 and 9 from
work [1] into account, one can also see that the non-
degenerate orbitals of the valence w-bands without
taking the electron spin into account at the point M

Table 8. Characters of irreducible
representations of the double group (mm)’ (C3%,)

i(u i(uh)1,
©fmmy (o) | e |0 | | | e
I Aq 1 1 1 1 1
Iy As 1 1 1 -1 -1
Iy Bi | 1 1 —1 1 —1
Iy Ba 1 1 —1 -1
I E’ 2 —2 0 0 0

Table 9. Characters of single- and double-valued
irreducible representations at the point U

Projec- Notatior} mm (Cay)
tive for irreducible
1 projective ) o,
class representation € i(u2)1 c2 i(us)1
Ko ul® Uh 1 1 e e
v e | 1| -1 | ome | o
v us |1 | -1 e | o
U Us 1 1| —me | —me
K1 oY Us(EY | 2 0 0 0
e = e—tka1/2 _ o—i(ky)ia1/2 — o—i(—kz)a1/2,
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Table 10. Calculation results for the compatibility relations
between electronic states without taking and taking the electron
spin into account at the points M and L in the Brillouin zone of crystalline graphite v-C

Notation for irreducible mmm (Dzp)

projective representation e (u2)1 2 (uh)1 i i(uz)1 ico i(uh)1

Meq 4 0 0 4 0 4 4 0

Leq 4 0 0 0 4 0 0

M+ (M) 1 1 ~1 ~1 1 1 ~1 —1

M= (My) 1 1 1 1 1 1 ~1 1

L 2 0 0 0 0 2 0 0

Dy, 2 0 0 0 2 0 0 0

(M)+ = (M{")+ @ D, 2 0 0 0 2 0 0 0

()W)~ = (")~ @ D, 2 0 0 0 ) 0 0 0

pY 2 2 0 0 0 0 0 0

pP{Y 2 —2 0 0 0 0 0 0

@) 2 2i 0 0 0 0 0 0

(L) 2 —2 0 0 0 0 0 0

(@) +(@H§) 1 0 0 0 0 0 0 0

(the orbitals (Méo))’ and (MQ(O))+ of the projec-
tive class Kj) and the non-degenerate orbitals of
the conduction 7*-bands (the orbitals (MQ(O))+ and
(MPEO))_) combine in pairs into doubly degenerate or-
bitals with the LgS) symmetry belonging to the pro-
jective class K.

In Table 10, we also present the characters of
the projective representations of doubly degenerate
spinor orbitals taking the electron spin into account
at the point M. These are the orbitals ((A")(M))*
and ((M’)M)~. Their symmetry is characterized by
the projective representations of the projective class
K. The standard factor system for the spinor states
at the point L belongs to the projective class Ky
(taken from works [1, 2]). All projective representa-
tions in this class, with regard for the invariance of
the electronic energy states with respect to time in-
version, are four-dimensional.

Table 10 also includes the characters of the projec-
tive representations of the projective class Ky (these
are the representations Pi(4)7 which correspond to the
standard factor system of the projective class K4) and
the characters of the projective representations at the
point L in the Brillouin zone of crystalline graphite
~v-C (these are the representations LE4)). The rela-
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tion between them is determined by formula (9) from
work [2] and was also presented in Table 17 of the
cited work.

From the data in Table 10, it is easy to see that the
doubly degenerate spinor orbital at the point M [this
is the orbital ((M’)(M))*] transforms into the doubly
degenerate spinor orbital (L’ )54) at the point L, and
the doubly degenerate spinor orbital at the point M
[this is the orbital ((M’)("))~] into the doubly de-
generate spinor orbital (L’ )24) at the point L. In so
doing, two doubly degenerate spinor orbitals at the
point L [these are the orbitals (L’)Yl) and (L’)gl)],
owing to the invariance of the electronic states un-
der the time inversion at the point L [1] for the va-
lence m- and conduction 7*-bands combine in pairs
to form the hybridized fourfold degenerate spinor or-

bitals (L") + (L)),

3. Conclusions

The results obtained in this work allow the following
conclusions to be drawn.

(i) A group-theoretic analysis has been performed
for the first time for the symmetry properties of
the fine structure of the electronic #’-bands in
crystalline graphite [the spatial symmetry group
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P63/mmec (Dg,)] and single-layer graphene [the di-
periodic spatial group P6/mmm (DG80)] taking the
electron spin into account. It is shown that this con-
sideration results in a small spin-dependent splitting
or a principal hybridization of electronic states, inclu-
ding the symmetry of the states at the intermediate
points A and U in the directions I' — A — A and
M — U — L, respectively, of the corresponding Bril-
louin zones.

(ii) The correlation between the electronic excita-
tions in crystalline graphite taking the electron spin
into account and the spinor excitations in single-layer
graphene has been considered.

(iii) The principal existence of the splitting of elec-
tronic states, which arises even at insignificant ener-
gies of the spin-orbit interaction, if the electron spin
is taken into account, and the principal hybridization
of electronic states, at which only their degeneracy
order increases, have been analyzed with the help of
group-theoretic methods in detail.
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TOHKE CIIIH3AJIE2KHE PO3SIIEITJIEHHA
EJIEKTPOHHUX 3BY/IYKEHBb TA IXHS JUCIIEPCIS
B OJHOIIIAPOBOMY I'PA®EHI I 'PADITI

Peszmowme

HocaimzkeHo aucnepciitHi 3a/1e2KHOCTI eJIEKTPOHHUX 30Y?KEHD
onHoIraposoro rpadeny i kpucramnituoro rpadiry i3 Bpaxysa-
HHSIM CIiHY €JIeKTpOHa. Briepiiie BUBHa4eHO yMOBH CYMiCHOCTI
JBO3HAYHUX HE3BIIHUX NMPOEKTUBHUX IIPEJCTABJIEHD, IO Xapa-
KTEPU3YIOTh CUMETPIIO CIIIHOPHUX 30y ?KEHDb y 3a3HAYEHUX BU-
e CTPYKTypax, Ta PO3MOMIIN CIIHOPHUX KBAHTOBUX CTAHIB 3a
MIPOEKTUBHUMHM KJIACAMH Ta HE3BIJHUMH IPOEKTUBHUMU IIPEJI-
CTaBJIEHHAMH JJIsI BCIX TOYOK BHUCOKOI CUMETPIl y BiJIIOBIAHUX
UM CTPYKTypaMm 30Hax Bpiumoena. BecraHoBieno npuHIumo-
Be iCHyBaHHH CIIIH3aJIE2KHUX DO3IIEIJIEHb €HEPreTUYHUX eJie-
KTPOHHUX CTaHIB, 30KpeMa, PO3IIEIIEHb €JIEKTPOHHUX T-30H
B Toukax /Jlipaka, abo ix npuHiunose ob’enHanHs. Bennunna
CIIiH3aJIE2KHUX PO3IIENJIEHb MOXKe OyTH 3HAYHOIO, HAIIPUKJIA/I,
JUTST XaJIbKOTEHIIIB IePEeXiHUX MeTaJiB TaKol caMol IIPOCTOPO-
BOI rpynu cuMeTpil, ik y KpucTajigHoro rpadiry, ajie € HeBe-
JIMKOIO [IJIsT OGHOIIAPOBOro rpadeny i KpucrasidHoro rpadiry,
OCKIJIbKM BOHA 3yMOBJIEHA MaJIOIO €HEPri€lo CIiH-op6iTaabHOT
B3a€MO/IIT Il aTOMIB BYIVIEIIO 1, SIK HACJiJOK, € HEBEJIUKOIO
IIJIsi BCIX BYIVIELIEBUX CTPYKTYD.
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