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WAVE OPTICS IN THE KERR
SPACE-TIME TAKING THE SPIN-HELICITY
INTERACTION INTO ACCOUNT 1

We apply an algebraically special solution of the Maxwell equations in the Kerr space-time,
which we specify as outgoing in the Chandrasekhar meaning, to obtain the wave vectors of
right- and left-polarized waves and prove that the nullity condition of field invariants yield the
non-nullity of wave vectors and that the wave vector is not geodesic. We also show how these
are related to the analysis of radiation in the Kerr space-time, provided by Starobinskii and
Teukolsky.
K e yw o r d s: one-way null field, Maxwell spinor, the Kerr space-time, separation of variables,
wave vector, geodesics.

1. Introduction

The discovery of black holes by observing gravita-
tional radiation from their merger [1], coalescences of
a black hole (BH) and a neutron star [2], and obser-
vations of the shadow of supermassive black holes re-
siding at the center of the elliptical galaxy Messier 87
by the Event Horizon Telescope collaboration [3] not
only confirm the predictions of the theory of general
relativity, but also prove the efficiency of methods
developed to analyze such processes, including ana-
lytical and numerical ones. However, the possibility
of the complete exclusion of the non-Einstein nature
of gravity or imitation of Kerr black hole (KBH) by
a Schwarzschild BH or by horizonless compact ob-
jects from these observations is not complete at this
time [4–6]. Therefore, the need for a further devel-
opment of analytic methods of study of the field be-
havior in a vicinity of KBH as sources of information
about the later does not diminish, which makes it
possible to describe phenomena in a wide range of
changes in coordinates and parameters, and to cir-
cumvent the problems of accuracy and convergence
of approximate methods, especially in the strong
fields.

The basis for such an analytic description of the be-
havior of electromagnetic fields is the Maxwell equa-
tions, whose use in the Riemannian spaces of general
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relativity is of fundamental complexity. The main one
is the coupling of equations – each equation contains
derivatives of all unknown functions. This difficulty
is absent in the case of a scalar field, which allowed
ones ([7] and [8]) to prove the existence of superradi-
ance in the Kerr space-time (KST). Teukolsky [9] par-
tially decoupled the equations for gravitational, elec-
tromagnetic, and neutrino fields in the Petrov-type
𝐷 spacetimes and confirmed the existence of super-
radiance in the KST also in case of an electromag-
netic field. In works [7], [10], and [9], the solutions
were obtained with the use of the expansion in series
in spin-weighted spheroidal harmonics. Those and all
other approaches described in detail in [11] gave ap-
proximate solutions in the form of series in a differ-
ent system of functions with coefficients determined
by three-term recursion relations. Although the so-
lutions can be obtained now with arbitrary accuracy
under the application of numerical methods, their use
in all ranges of source characteristics (mass and angu-
lar momentum), variables, and separation constants
remains complicated. Alternatively, the approximate
analytic solutions can be obtained at two ends of the
frequency range – in the high- or low-frequency range
(see, e.g., [12] and because of complexity references
therein) and often contain errors.

1 This work is based on the results presented at the XI Bolyai–
Gauss–Lobachevskii (BGL-2019) Conference: Non–Euclide-
an, Noncommutative Geometry and Quantum Physics.
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Modeling the gravitational field with a material
medium and confining himself to qualitative remarks,
Mashhoon [13] noted for the first time that incident
right circularly polarized photons must scatter differ-
ently from left-circularly polarized ones due to the
interaction of the photon spin with the gravitational
field (Mashhoon effect).

In the geometric optics approximation, Guadagnini
[18] and Barbieri and Guadagnini [19] have computed
the helicity asymmetry which is associated with the
polarization of light at the gravitational deflection of
light by a rotating body. The polarization dependence
of photon trajectories by using the modified geometric
optics approximation was calculated by Frolov and
Shoom [20]. Mashhoon’s prediction of the interaction
of the photon spin with the gravitational field was
confirmed by Asenjo and Hojman [21] exploiting an
exact solution in the case of electromagnetic waves on
the Gödel space-time and an approximate solution on
the Kerr one.

We will aim to obtain exact results regarding the
behavior in the Kerr space-time of the wave vec-
tor of the null one-way (NOW) Maxwell field, which
is algebraically special and outgoing, according to
the Chandrasekhar terminology. In doing so, we will
use a corresponding analytic solution to the Maxwell
equations [14–16]. Two remarks are needed regarding
this solution. First, of course, it is partial, but this
does not prevent it from describing the most common
patterns of propagation of electromagnetic radiation,
that is inherent in any other solution. Second, the so-
lution is singular on the rotation axis 𝜃 = 0, 𝜃 = 𝜋
(even in a flat space-time). However, it is known that
the singularity on the rotation axis is not invariant,
and this solution in the Boyer–Lindquist coordinates
as a null one-way is physically meaningful on the in-
terval 0 < 𝜃 < 𝜋.

The metric signature is (+,−,−,−). The equations
are considered in geometrized units, where 𝑐 = 𝐺 =
= 1, and the sufficient smoothness of all functions is
supposed, which does not limit physical generality.

2. Wave Vector of NOW
Maxwell Field on the Kerr Space-Time

In [16] in the Kerr space-time, we have considered an
electromagnetic field which is a partial case of the al-
gebraically special field. Its principal spinors are mul-
tiples and, in addition, are aligned with one of the
Weyl repeated principal spinors. If the Weyl repeated

principal spinor is aligned to 𝑜𝐴 spinor, the Maxwell
spinor looks like 𝜙𝐴𝐵 = 𝜙2𝑜𝐴𝑜𝐵 , and the Maxwell
field is a NOW field, outgoing by Chandrasekhar [22].

In the Kinnersly gauge, a solution of the Maxwell
equations in the form of a NOW field with partially
separated variables, which is finite in time and 2𝜋-
periodic in the azimuthal argument, has the form
[15, 16]

𝜙2 = 𝐶
𝑒𝑖𝜔𝜂1+𝑖𝑚𝜂2+𝑎𝜔 cos 𝜃+𝑚 ln( 1−cos 𝜃

sin 𝜃 )

sin 𝜃(𝑟 − 𝑖𝑎 cos 𝜃)
, (1)

where

𝜂1 = 𝑡− 𝑟 −𝑀 lnΔ− 𝑀2

√
𝑀2 − 𝑎2

ln

(︂
𝑟 − 𝑟+
𝑟 − 𝑟−

)︂
, (2)

𝜂2 = 𝜑− 𝑎

2
√
𝑀2 − 𝑎2

ln

(︂
𝑟 − 𝑟+
𝑟 − 𝑟−

)︂
, (3)

𝑡, 𝑟, 𝜃, 𝜑 – the Boyer–Lindquist coordinates, 𝑀 – a
Kerr mass parameter, 𝑎 – an angular momentum per
unit mass, 𝐶 = 𝐶(𝜔) ∈ C – an arbitrary constant,
𝜔 ∈ R, 𝑚 ∈ Z – wave frequency and azimuthal num-
ber, Δ = 𝑟2 − 2𝑀𝑟 + 𝑎2, 𝑟+ = 𝑀 +

√
𝑀2 − 𝑎2, and

𝑟− = 𝑀 −
√
𝑀2 − 𝑎2.

The phase of wave (1)

Φ = 𝜔

(︂
𝑡− 𝑟 −𝑀 lnΔ− 𝑀2

√
𝑀2 − 𝑎2

ln

(︂
𝑟 − 𝑟+
𝑟 − 𝑟−

)︂)︂
+

+𝑚

(︂
𝜑− 𝑎

2
√
𝑀2 − 𝑎2

ln

(︂
𝑟 − 𝑟+
𝑟 − 𝑟−

)︂)︂
(4)

defines the wave four-vector with components

𝑘𝜇 =

[︂
𝜔,−𝜔(𝑟

2 + 𝑎2) + 𝑎𝑚

Δ
, 0,𝑚

]︂
(5)

and

𝑘𝜇 = 𝑘𝜈𝑔
𝜇𝜈 =

[︂
𝜔

(︂
1 +

2𝑀𝑟
(︀
𝑟2 + 𝑎2 + 𝑚𝑎

𝜔

)︀
ΣΔ

)︂
,

𝜔
(︀
𝑟2 + 𝑎2

)︀
+ 𝑎𝑚

Σ
, 0,

− 𝑚

Δsin2 𝜃
+

2𝑀𝑟
(︀
𝑎𝜔 sin2 𝜃 +𝑚

)︀
ΣΔsin2 𝜃

]︂
, (6)

and constitutes the dispersion law. As opposed to
[21], we know the dynamics of the amplitude and can
obtain the scalar square of this vector explicitly:

𝑘𝜇𝑘𝜇 = −
(︀
𝑎𝜔 sin2 𝜃 +𝑚

)︀2
Σsin2 𝜃

. (7)

It follows that the wave vector is not null generally,
and it becomes null only at the spatial infinity, or
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when condition 𝑎𝜔 sin2 𝜃 + 𝑚 = 0 holds, or in the
Schwarzschild space-time for 𝑚 = 0. It is not singu-
lar on the outer horizon and, unlike the conclusion
obtained in [21], cannot be space-like.

The congruence to which the vector field 𝑘𝜇 is tan-
gent is not geodesic:

𝑘𝜇∇𝜇𝑘0 = 𝑘𝜇∇𝜇𝑘1 = 0, (8)

𝑘𝜇∇𝜇𝑘2 = 𝑟

(︀
𝑎𝜔 sin2 𝜃 +𝑚

)︀2
Σ2 sin2 𝜃

, (9)

𝑘𝜇∇𝜇𝑘3 =
cos 𝜃

Σ2 sin3 𝜃
×

×
(︂(︀

𝑚2 − 𝑎2𝜔2 sin4 𝜃
)︀(︀
𝑟2 + 𝑎2

)︀
−

− 2𝑎2𝑚 sin2 𝜃
(︀
𝑎𝜔 sin2 𝜃 +𝑚

)︀)︂
. (10)

As 𝑎 → 0,

𝑘𝜇∇𝜇𝑘0 = 𝑘𝜇∇𝜇𝑘1 = 0, (11)

𝑘𝜇∇𝜇𝑘2 =
𝑚2

𝑟3 sin2 𝜃
, (12)

𝑘𝜇∇𝜇𝑘3 =
𝑚2 cos 𝜃

𝑟2 sin3 𝜃
. (13)

To compare our results with those of Starobinskii
and Teukolsky, let us go to the new radial variable –
“tortoise” coordinate 𝑟*, which eliminates singulari-
ties on the horizon

𝑑𝑟*

𝑑𝑟
=

𝑟2 + 𝑎2

Δ
. (14)

Then the Maxwell tensor and the energy-momen-
tum tensor corresponding to the NOW-solution take
the form

𝐹𝑎𝑏 =
√
2×

×

⎛⎜⎜⎜⎜⎝
0 − 𝑎𝑃

𝑟2+𝑎2 − 1
sin 𝜃𝑄 𝑃

𝑎𝑃
𝑟2+𝑎2 0 Σ𝑄

(𝑟2+𝑎2) sin 𝜃 −𝑃
1

sin 𝜃𝑄 − Σ𝑄
(𝑟2+𝑎2) sin 𝜃 0 −𝑎 sin 𝜃𝑄

−𝑃 𝑃 𝑎 sin 𝜃𝑄 0

⎞⎟⎟⎟⎟⎠,
(15)

𝑇𝑎𝑏 =
|𝜙2|2

2𝜋

⎛⎜⎜⎜⎜⎝
1 − Σ

𝑟2+𝑎2 0 −𝑎 sin2 𝜃

− Σ
𝑟2+𝑎2

Σ2

(𝑟2+𝑎2)2
0 𝑎 sin2 𝜃Σ

𝑟2+𝑎2

0 0 0 0

−𝑎 sin2 𝜃 𝑎 sin2 𝜃Σ
𝑟2+𝑎2 0 𝑎2 sin4 𝜃

⎞⎟⎟⎟⎟⎠, (16)

where

𝑃 = (𝑐1 sin(𝜔𝜂1 +𝑚𝜂2) + 𝑐2 cos(𝜔𝜂1 +𝑚𝜂2))×

× 𝑒−𝑎𝜔 cos 𝜃

(︂
1− cos 𝜃

sin 𝜃

)︂𝑚
, (17)

𝑄 = (𝑐1 cos(𝜔𝜂1 +𝑚𝜂2)− 𝑐2 sin(𝜔𝜂1 +𝑚𝜂2))×

× 𝑒−𝑎𝜔 cos 𝜃

(︂
1− cos 𝜃

sin 𝜃

)︂𝑚
, (18)

and they become regular on the horizon 𝑟+.
The 𝑘𝑟⋆ component of the wave vector (5) becomes

𝑘𝑟* =
𝑑Φ

𝑑𝑟*
= −𝜔 − 𝑑

𝑑𝑟*

(︂
𝑚𝑎

2
√
𝑀2 − 𝑎2

ln
𝑟 − 𝑟+
𝑟 − 𝑟−

)︂
=

= −𝜔 − 𝑚𝑎

𝑟2 + 𝑎2
, (19)

and we obtain the radial components of the group
and phase velocities are as follows: 2

𝑣gr. = − 𝑑𝑘

𝑑𝜔
= −1, (20)

𝑣ph. = − 𝑘

𝜔
= −1 +

𝑎𝑚

𝜔 (𝑟2 + 𝑎2)
= −1 +𝑚

Ω(𝑟)

𝜔
. (21)

Formula (21) exactly defines the critical points
(surfaces) for waves outgoing from KBH – the points,
where the phase velocity 𝑣ph. changes its sign (see also
[15, 17])

𝑟cr. =

√︂
𝑎𝑚

𝜔
− 𝑎2, (22)

as compared with works [7] and [9] [formula (5.11)],
where the results obtained only in a vicinity of the
horizon (𝑟 → 𝑟+)

𝑟cr. = 𝑟+ =

√︂
𝑎𝑚

𝜔
− 𝑎2. (23)

Obviously,
Ω(𝑟+) =

𝑎

𝑟2+ + 𝑎2
(24)

is the angular velocity of KBH, which is defined as
angular velocity of the horizon.

We conclude from whence that the condition for
a change in the wave ingoing-outgoing character at
arbitrary point is of the same form as on the horizon.

2 Hereafter, we change the sign of 𝜔 to compare with the
Starobinskii or Teukolsky results.
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The group velocity of an outgoing NOW wave is
always the speed of light (in vacuum), but the phase
velocity is less than the speed of light for frequencies,
for which the condition

𝜔 <
𝑎𝑚

(𝑟2 + 𝑎2)
(25)

is fulfilled, and has the opposite direction to the group
velocity.

The phase velocity tends to the speed of light, when
𝜔 → ∞ or 𝑟 → ∞, and becomes aligned in the same
way as the group velocity. As can be seen from for-
mula (21) which is correct throughout the full fre-
quency range, the phase velocity depends on the sign
of 𝜔, which defines the waves with different polar-
izations. It is the wave-approach manifestation of a
spin-helicity interaction.

3. Conclusions

It is known that the concepts of group and phase ve-
locities of propagating waves is fully meaningful only
in the cases where the medium or space allows the
existence of plane waves. This requirement does not
meet the Riemannian space-time of general relativ-
ity. The use of a spinor representation of the Maxwell
equations and the use of the algebraically special so-
lution previously obtained by us in the KST implies
that, in particular, in this space-time,

1. the condition that Maxwell field is null,

𝐹𝑎𝑏𝐹
𝑎𝑏 = 0, 𝜀𝑎𝑏𝑐𝑑𝐹

𝑎𝑏𝐹 𝑐𝑑 = 0, (26)
does not imply that the wave vector is null;

2. the influence of the gravitational field of a ro-
tating mass on the Maxwell field determines the fre-
quency dispersion of the wave vector (5);

3. the group and phase velocities of the electromag-
netic wave can be directed in the opposite directions,
as it determines relations (20)–(21) between the char-
acteristics of gravitational and electromagnetic fields.

Although the Mariot–Robinson theorem guaran-
tees that if 𝐹𝑎𝑏 is a null electromagnetic field, then the
repeated principal null direction generates a geodesic
shearfree null congruence, but, on the other hand, it
is known that the motion of particles with spin in
a gravitational field is described by the Mathisson–
Papapetrou equation, the solutions of which are not
geodesics. Moreover, in the ultrarelativistic case of
particle motion, the deviation of the trajectories from
the geodesics becomes very significant [23, 24]. The-
refore, the geodesics, whose existence is predicted by

the Mariot–Robinson theorem, cannot be associated
with wave fronts of electromagnetic waves, and the
description of the motion of an electromagnetic wave
in terms of wave vectors is more consistent to the
physical prediction, even if the wave phase is not a
bilinear function of the components of the wave vec-
tor and coordinates, as is the case in our solution. The
direction and absolute value of the group and phase
velocities is determined by relations (20)–(21), which
generalize the Starobinskii and Teukolsky ones, are
exact, and are valid throughout the space, not just
near the outer horizon.
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ХВИЛЬОВА ОПТИКА У ПРОСТОРI КЕРРА
З ВРАХУВАННЯМ СПIН-СПIРАЛЬНОЇ ВЗАЄМОДIЇ

Р е з ю м е

Ми застосовуємо алгебраїчно-спецiальний вихiдний в сен-
сi Чандрасекара розв’язок рiвнянь Максвелла у просторi
Керра, отримуємо вирази хвильових векторiв право- та лi-
вополяризованих хвиль i доводимо, що з умови iзотропно-
стi як умови рiвностi нулевi iнварiантiв поля не випливає
iзотропнiсть хвильових векторiв, а також, що iнтегральна
конгруенцiя хвильового векторного поля не є геодезiйною.
Ми встановлюємо зв’язок отриманих результатiв iз умовою
Старобiнського та Пресса-Тюкольського iснування супер-
випромiнювання в просторi-часi Керра.
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