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ACTION-AT-A-DISTANCE
AND RADIATION REACTION OF POINT-LIKE
PARTICLES IN DE SITTER SPACE!

The two-particle system with the time-asymmetric retarded-advanced electromagnetic inter-
action known as the Staruszkiewicz—Rudd—Hill model is considered in the de Sitter space-
time. The manifestly covariant descriptions of the model within the Lagrangian and Hamilto-
nian formalisms with constraints are proposed. It is shown that the model is de Sitter-invariant
and integrable. An explicit solution of the equations of motion is derived. We use the covariant
electromagnetic Green function in the de Sitter space in order to derive the equation of motion
of a point charge in an external electromagnetic field, where the radiation reaction is taken

into account.
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1. The model invented by Staruszkiewicz [1,2], Rudd
and Hill [3] describes the following time-asymmetric
interaction of two relativistic pointlike charged parti-
cles: the advanced field of the first particle acts on the
second particle, the retarded field of the second parti-
cle acts on the first particle, and a radiation reaction
is neglected. This model is built of the time-nonlocal
Tetrode-Fokker action functional [4, 5] via replacing
its integrand, the symmetric Green function of the
d’Alembert equation, by the retarded (or advanced)
one. In this way, the model was reformulated to the
Lagrangian and then the Hamiltonian [2] form which
turned out integrable [6] due to its exact Poincaré-
invariance. The Staruszkiewicz—Rudd-Hill model was
generalized to various interactions (scalar, gravita-
tional, confining, etc.) [7, 8], and the corresponding
quantum versions [9, 10| revealed their physical ad-
equacy, despite the artificiality of time-asymmetric
interactions.

Here, the Staruszkiewicz—Rudd-Hill model is con-
sidered in the de Sitter space-time. Using the rep-
resentation of the de Sitter space-time as a hyper-
boloid in the 5-dimensional Minkowski space M5, we
construct the covariant action principle for the time-
asymmetric particle dynamics with a constraint and
the Hamiltonian description. It is invariant with re-
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spect to the de Sitter group SO(1,4) and integrable. A
formal solution for this dynamics is built.

2. Tetrode-Fokker variational functional [4, 5],
which is a base of the action-at-a-distance Wheeler—
Feynman electrodynamics, was generalized for a
curved space-time by Hoyle and Narlikar [11] and
others [12]. For the system of two charged particles
of masses m, and charges e, (a = 1,2), it has a form

2
I= Ifree + Iinta where Ifree = - Zma/dsa ) (1)

a=1
Lt = —47r6162//dm’f dzf Gz, x2), (2)
where z#(7,) (u =0, ..., 3) are the space-time coordi-
nates of particle world lines parametrized by the evo-
lution parameters 7, (a = 1,2). The measures ds,
in free-motion terms If... of action (1) are the ele-
mentary intervals along particle world lines. The in-
tegrand of the interaction term (2) is a symmetric
Green function G,/ (x,2") of the d’Alembert equa-
tion.

3. The de Sitter space-time can be presented as a
4-dimensional hyperboloid H [13, 14|

2 — M, N 2
Yy =y-y=nuny Yy =-R
I This work is based on the results presented at the XI Bolyai—

Gauss—Lobachevskii (BGL-2019) Conference: Non—Euclide-
an, Noncommutative Geometry and Quantum Physics.
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in the 5-dimensional Minkowski space M5 with coor-
dinates y™ (M = 0,1,...,4) and metrics ||nyn|| =
= diag(+ ,—). The constant R determines the
scalar curvature R of the de Sitter space, and it is re-
lated to the cosmological A-constant: R = —12/R? =
= 4A (the speed of light is put ¢ = 1).

The hyperboloid H is invariant with respect to the
de Sitter group SO(1,4) represented in My by stan-
dard pseudoorthogonal transformations. The metrics
on H is induced by the metrics in Ms: ds? =
= nundy™ dy™ |

Thus, the configuration space of a two-particle sys-
tem is H2. It can be parametrized by either inde-
pendent variables z#(7,) or 5-dimensional variables
yM(7,) (M = 0,1,...,4) constrained on a hyperboloid
(for each particle, a = 1,2).

For the de Sitter space-time, the symmetric Green
function is known from work [15] %:

G (x,2") = Gy (2, 2") + G, (2, 2') (3)
with )

§
Gp,u’('r“r/) 167 gHV ( )5( )

e i foafu & o

Z /Z
G (z,2') = —2R? {a,ﬁ,/Z (O )( y }

Z(z,2') =1+ 1p(:v,a:')/R2,

4

p=(y—1vy)*=2R? (cosh% —

1) >0,
where s is the interval between points y and vy’ along
the time-like geodesics (for the space-like geodesics, s
is imaginary, cosh(s/R) = cos|s/R|, and p < 0).

4. Following Staruszkiewicz [1] and Rudd and Hill
[3], we replace the symmetric Green function in (2) by

=20[n( — 29)]G (1, 22), )

which is the retarded (for n = +1) or advanced (n =
= —1) Green function.

We note that the Green function G, consists
of two parts: the local part wa, (x,2") which con-
tributes on the light cone surface p = 0 and the non-
local part G 2') which contributes in the light

Gfﬁ) (w1, 2)

;u/’(

2 The earlier proposal [16] seems to be wrong, since it does
not meet demands of the de Sitter-invariance.
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cone interior p > 0. The same is true for Gfﬁ,) This
is a common feature of curved space-times, contrary
to the flat Minkowski space, where the Green func-
tions of massless fields have local part only. But in the
present case of the de Sitter space, the contribution of
the Green function G, or G,(f,’j) to integral (1) can be
effectively reduced to a local one via the integration
of Iins by parts:

It = —47‘(’6162/ daf dzf GEZ,’) (z1,T2) =~

~ —6162/ dry drp 20(ny°) 91+ 92 0(y®) Tz, (5)

where gy, = dy, /d7, (a = 1,2) are 5-vector parti-
cle velocities, y = y1 — y2 is a relative position 5-
vector, and the symbols “~” denote the equality up
to off-integral terms which do not contribute to the
variational problem. The integrand on r.-h.s. of (5)
is constrained on TH?, the tangle bundle over the
configuration space H?2.

5. At this point, integral (5) can be integrated
out once, similarly to the flat-space case of the Sta-
ruszkiewicz—Rudd—Hill model [2]. Consequently, ac-
tion (1), (5) reduces to a single-time Lagrangian one
presented here in the following manifestly covariant
5-dimensional form:

2

= / dr {L +0y” + D Aalyl + Rz)} (6)
a=1

Here, the Lagrangian defined on TM2 is:

U1+ Y2
me ya — €1€2 (7)
Z Vol

where Y = 1(y1+y2), and the Lagrangian multipliers
Ao and Ao take holonomic constraints into account:
the hyperboloid constraints:

ya+R?=0, a=1.2, (8)

and the light-cone constraint generated by the o-
function on r.-h.s. of (5):

v’ = (g1 —y2)° =0, P-v)>0. (9
These constraints define a 7D configuration space of
the system K C H? C MZ.

6. The de-Sitter-invariance of Lagrangian (7) and

constraints (8) and (9) provide the existence of ten

ny® =n(y
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Noether integrals of motion collected in the angular
momentum tensor:

2
JuN = (YaMTaN = YaNTarr) =

a=1
=Yully — YNy +yumy — ynmr, (10)
where

Tant = OL/0gg" (a=1,2), (11)
Uy =mm + mom, T = %(WlM — Tanm)-

In addition, Lagrangian (7) is invariant under an
arbitrary change of the evolution parameter: 7 —
— 7" = f(1). Thus, the Legendre mapping (11) onto
the 20-dimensional phase space T*MZ2 endowed with
standard Poisson brackets {yM m.n} = dapd3 ... is
degenerated and leads to the manifestly covariant
Hamiltonian description with constraints [17].

Ten Noether integrals of motion (10) become,
within the Hamiltonian description, the generators of
the canonical realization of the de Sitter group, i.e.,
they satisfy the canonical relations of SO(1,4) alge-
bra:

{IJun,Jix} =nurInk +nvedmr —
—nurJINe —INpIvK.

By virtue of the parametric invariance of Lagran-
gian (7), the canonical Hamiltonian vanishes, while
the dynamics of the system is generated by the dy-
namical constraint ®(y,, mp) = 0 which together with
the holonomic constraints (8), (9) constitutes a set
of primary constraints. A form of the dynamical con-
straint (i.e., of the function ®(y,,mp)) is determined
by Lagrangian (7), but not unique. It is possible to
construct ®(y,, ) of the first class with respect to
the holonomic constraints (8), (9). Then the dynam-
ics is self-consistent, and no secondary constraints
arise. For this purpose, the function ®(y,, ) must
satisfy the condition {®, y2} = {®,4?} = 0. It implies
that @ is a function of the following four 5-scalar argu-
ments: Iy, 7-y, J2 = JynJMN, and V2 = V), VM,
where Viy = teyapepJ*PJYP. The arguments J?
and V? are the Casimir functions of SO(1,4) group,
i.e., conserved quantities, both negative for physically
meaningful systems.
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For Lagrangian (7), the dynamical constraint is

2 2
my o -y +msmy -
P 2 %HZ 172°Y 271 Y

Iy
oot m Y,
nll-y nmy - NIy — o

L ((m-y)(m2 - y)
—_— 7 II-y—4a) =0, (12
where
2 1 /1., 2
o = ejeg, HJ_:—E §J + (m-y)°),
and

1 1
= *m <V2 - 5(7T'y)2<]2 - (W'y)4>-

7. In order to show that the system under consider-
ation is integrable, let us start from the Hamiltonian
equation of motion for the relative position 5-vector y:

y:)‘{yaq)(ny77rya J27V2)}:

0P 0P 0P
=AM g— 45T - == ; 13
(87T~y 227 = g2 )y (13)
here, T = [|TM ]| and K=|KMy|l=
= ||eMyapcVAIEC||  are conserved  matrices,

while the Lagrangian multiplier A(7) is an arbitrary
gauge-fixing function.

IfII-y = ¥(r) is known as a function of 7, then
7-y=y(7)=(¥(1); J?, V?) would be known too from
the dynamical constraint ®(¥(r),(7); J2,V?) =0
(since J2 and V? are conserved).

In turn, the Hamiltonian equation for II-y = ¥(7)
is self-consistent and reduces to quadratures:

OP(W,p(w;s?,v?); J2, V)
oY

where the Lagrangian multiplier A(7) is meant a de-
sirable fixed function of 7.

8. At this point, Eq. (13) becomes linear in the 5-
vector y with known 7-dependent matrix coefficients.
In order to split and to solve this equation, the pro-
jection operator techniques will be applied.

Following the Hamilton—Cayley theorem, the ma-
trix J possesses 5 eigenvalues: +3, £iS, and 0,
where ¥ = /J4/16—-V?2 — 1J? > 0 and S? =

= /J4/16 — V24+1J? > 0. Correspondently, one can
1131
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construct 5 projection operators: P(E2) P(EiS) and
P () [18], whose explicit form is omitted here.

Next, we perform the substitution y(7) = ggg; r(T)

and decompose r onto eigen-subspaces:
) — ('p(+2) + 7)(*2))7,’

P($) — (PUHIS) L p(=i8)),. 10) — pO),.

We arrive at linear equations of motion for the pro-
jections )| #(8) and 7(0);

H(r) = D) T (r), i=%,50,
where
fO(r) =0,
o oo
(=) — 2
J(r) A < EYEl +25 av2>
o0 o
(S) - _ ZE 92
FASICa) A <48J2 2% 8V2>

The formal solution of these equations is:
r@(r) = exp{F D () T3y (0),

where F() (7
ponents yleld

r®(r) = (COSh (EF(E)(T)) +

= [, d7 f (7). Unraveling matrix ex-

+ % sinh (EF(E) (7))) y*(0),
() = <cos (SF(S) (7')) +
+Zsin (579 (0) o 0),

rO(r) =500,

Thus, we arrive at the solution

W) = YOr) - 5(-) () =
_ T —(r) — %(_)a (r) ) (r)

7(0)

where a = 1,2 and i = X, S, 0.

Finally, by means of the Legendre transform (11),
one can express the constants ¥(0) and J (10)
in terms of the initial position 5-vectors y,(0) and

%a(0) (@ = 1,2). If {ya(0),9.(0)} € TK, then
{¥a(7),9a(7)} € TK, in particular, y,(7) € K by con-
struction.
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9. Following works [15,19], the electromagnetic po-
tential of a pointlike charge ¢ in the de Sitter space is

“+oo
A(z) =g / Ar /gl (DG (& (7)) (7), (1)

where G, is one of the Green functions (3), (4);
four functions z*'(7) parametrize the world line of
the charge ¢, and u” (7) = dz¥'(7)/dr. To obtain the
electromagnetic field Fi,53 = 0, Ag(x) — 0gAa(x), we
use the 4-dimensional stereographic coordinates [20]

2
@ = Qz)2®, yt=—RQz) (1+ = 1

=, v =R (14 ) 09
where Q(z) = (1 - RQUQ) and 02 = nupral.

Routine scrupulous calculations yield the retarded
electromagnetic field F 3 (z) =0, A" (2) —0p AL (),

ret q 2 uakﬁ_uﬁka 4
P = {0 S i)
% aakﬂ — algka — ag (uakg — uﬁk;a) _
T
koug — kgu
_795 . atp BYa
O )| B

1
+ S (b = ) . (16)
where all the terms on the right-hand side are referred
to the retarded instant 7°°*(z). Here, k, = [z%—
—z%(7 mt)]/r and the scalar r is a retarded distance
P = g (0% — 22 () u(7); a = (a- k) and
ar = (a- k).

We assume [21] that the radiation reaction part of
the electromagnetic field is given by

1 re adv

m = g (5 = Fag). (17)
where the first term is the retarded field, and the
second one is the advanced field. The advanced field is
handled via the Green function (4) supported on the
future light cone of z. We develop kinematic variables

in the advanced field tensor in series in the parameter
A1(r) = 72 (z) — 77t (2):

1
ﬁQ(z)(z cu)| 2+

+ %m(z) {Q(z) (3a2 + 2ax) + QP(2)a® +

AT = 20%(2)r + 20%(2) [ak +
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(18)

The analog of the Lorentz—Abraham—Dirac equation
in the de Sitter space-time is

1 —2
m {a“ + ﬁQ(z) [2(z - u)u' — Q (z)z“]} =
= Q2 () (FSE + i, (19)
where F S’Et is the external field. To obtain the radia-

tion reaction field (17), we pass to the limit » — 0
2q

7 (o)) = 2205(:(0)) (s — upta) +
43007 2 1) (1o — ) -
O] (=) (a5 — ). (20)

where the kinematic characteristics are evaluated at
instant 7 which specifies point z(7) on the world line.
10. The electromagnetic field in a curved space-
time spreads not only along the light-cone surface, as
it is in the flat space-time, but also over its interior.
Thus, the radiation self-action and the interaction be-
tween charged particles are time-nonlocal generally,
i.e., they depend on a whole particle history [19].
We have shown that, in the case of the maxi-
mally symmetric de Sitter space, the time-nonlocal
term of the radiation reaction force vanishes due to
a specific structure of the covariant electromagnetic
Green function (3), (4). In addition, this peculiarity
admits an integrable de Sitter generalization of the
Staruzskiewicz—Rudd—Hill model.
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A. ysipax, FO. HApemxo

A1 HA BIJCTAHI TA PEAKIIIA
BUITPOMIHIOBAHHSA TOYKOBUX
YACTHMHOK V¥ ITPOCTOPI JE CITTEPA

Peszmowme

JIBoUacTHHKOBA CHCTEMa 3 <aCO-aCHUMETPUTIHOIO CIIi3HEHO-
BHUIIEPEIHOIO B3aEMOJIIEIO, BigoMa K Mozesib CrapynikeBuda—
Pynna—Tinna, posraspaerbest y gaconpocropi ae Cirrepa. 3a-
MPOMOHOBAHO SIBHO KOBApIiaHTHI OMMCH MOJEJi B paMKax Jia-
I'PaH>KEBOr0 Ta raMiJIbTOHOBOIO (popMmalsiiamiB 3 B’sizsimu. [lo-
Ka3aHo, 110 MOJIEJIb € Jie-CiITTep-IHBapiaHTHOIO Ta iHTEI'POBHOIO.
OTrpumaHo ABHUI PO3B’A30K PIBHAHB PyXy. 3a JOIOMOIOK KO-
BapiaHTHOI efleKTpoMartiTHOI (byHKIi I piHa oTpuMano piBHS-
HHSI PyXy TOYKOBOI'O 3apsi/ly B 30BHIIIHBOMY €JIEKTPOMAarHe-
THOMY IIOJIi, Jle BpaxOBaHa PeaKIlisi BUIIPOMIiHIOBAHHS.
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