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SYMMETRIES OF RELATIVISTIC HYDROGEN ATOM1

The Dirac equation in the external Coulomb field is proved to possess the symmetry determined
by 31 operators, which form the 31-dimensional algebra. Two different fermionic realizations
of the SO(1,3) algebra of the Lorentz group are found. Two different bosonic realizations of
this algebra are found as well. All generators of the above-mentioned algebras commute with
the operator of the Dirac equation in an external Coulomb field and, therefore, determine
the algebras of invariance of such Dirac equation. Hence, the spin 𝑠 = (1, 0) Bose symme-
try of the Dirac equation for the free spinor field, proved recently in our papers, is extended
here for the Dirac equation interacting with an external Coulomb field. A relativistic hydrogen
atom is modeled by such Dirac equation. We are able to prove for the relativistic hydrogen
atom both the fermionic and bosonic symmetries known from our papers in the case of a non-
interacting spinor field. New symmetry operators are found on the basis of new gamma matrix
representations of the Clifford and SO(8) algebras, which are known from our recent papers
as well. Hidden symmetries were found both in the canonical Foldy–Wouthuysen and covari-
ant Dirac representations. The found symmetry operators, which are pure matrix ones in the
Foldy–Wouthuysen representation, become non-local in the Dirac model.
K e yw o r d s: Dirac equation, Coulomb interaction, hydrogen atom, relativistic quantum me-
chanics, symmetry.

1. Introduction

Symmetry studies of the equations for a hydrogen
atom originate from the non-relativistic case. The
SO(4) symmetry of the non-relativistic Schrödinger
equation for a hydrogen atom was found by V. Fock
[1], see also [2].

A relativistic hydrogen atom is modeled here by
the Dirac equation in an external Coulomb field(︁
𝑖𝜕0 − ̂︀𝐻)︁𝜓(𝑥) = 0; ̂︀𝐻 ≡ 𝛾0𝛾 ·p+ 𝛾0𝑚− 𝑍𝑒2

|x|
, (1)

where 𝑥 ∈ M(1, 3), 𝜕𝜇 ≡ 𝜕/𝜕𝑥𝜇, 𝑍 = 1, 𝜇 = 0, 3, 𝑗 =
= 1, 2, 3, and M(1, 3) = {𝑥 ≡ (𝑥𝜇) = (𝑥0 = 𝑡, x ≡
≡ (𝑥𝑗))} is the Minkowski space-time, the 4-compo-
nent function 𝜓(𝑥) belongs to the rigged Hilbert space

S3,4 ⊂ H3,4 ⊂ S3,4*. (2)

Note that, due to a special role of the time variable
𝑥0 = 𝑡 ∈ (𝑥𝜇) (in obvious analogy with non-relati-
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vistic theory), one can use the quantum-mechanical
rigged Hilbert space (2) in the general consideration.
Here, the Schwartz test function space S3,4 is dense
in the Schwartz generalized function space S3,4*, and
H3,4 is the quantum-mechanical Hilbert space of 4-
component functions over R3 ⊂ M(1, 3).

In order to finish with notations, assumptions, and
definitions, we note that the system of units ~ = 𝑐 = 1
is chosen, the metric tensor in the Minkowski space-
time M(1, 3) is given by

𝑔𝜇𝜈 = 𝑔𝜇𝜈 = 𝑔𝜇𝜈 , (𝑔
𝜇
𝜈 ) = diag (1,−1,−1,−1) ; (3)

𝑥𝜇 = 𝑔𝜇𝜈𝑥
𝜇, and the summation over the twice re-

peated indices is implied. The Dirac 𝛾 matrices are
taken in the standard Dirac–Pauli representation

𝛾0 =

⃒⃒⃒⃒
I 0
0 −I

⃒⃒⃒⃒
, 𝛾ℓ =

⃒⃒⃒⃒
0 𝜎ℓ

−𝜎ℓ 0

⃒⃒⃒⃒
, ℓ = 1, 2, 3, (4)

1 This work is based on the results presented at the XI Bolyai–
Gauss–Lobachevskii (BGL-2019) Conference: Non–Euclide-
an, Noncommutative Geometry and Quantum Physics.
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where the Pauli matrices are given by

𝜎1 =

⃒⃒⃒⃒
0 1
1 0

⃒⃒⃒⃒
, 𝜎2 =

⃒⃒⃒⃒
0 −𝑖
𝑖 0

⃒⃒⃒⃒
, 𝜎3 =

⃒⃒⃒⃒
1 0
0 −1

⃒⃒⃒⃒
. (5)

Below, we will prove that the Dirac equation in
the external Coulomb field (1) possesses the sym-
metry determined by 31 operators, which form the
31-dimensional algebra SO(6)⊕𝑖𝛾0×SO(6)⊕𝑖𝛾0. Two
different fermionic D(1/2,0)⊕(0,1/2) representa-
tions of the SO(1,3) algebra of the Lorentz
group are found. Two different bosonic tensor-scalar
D(1,0)⊕(0,0) and vector D(1/2, 1/2) representations
of this algebra are found as well. The corresponding
generators of the above-mentioned algebras commute
with the operator of the Dirac equation in the ex-
ternal Coulomb field (1) and, therefore, determine
the hidden symmetries (algebras of invariance) of the
Dirac equation.

At first, we consider the known symmetries of the
Dirac equation (1). Then we present the mathemati-
cal tools, which are necessary for our investigations,
and, finally, the list of different hidden symmetries of
a relativistic hydrogen atom.

2. Known Symmetries of the Dirac
Equation in an External Coulomb Field

The first four constants of motion (symmetry opera-
tors, which commute with the operator of the Dirac
equation) for Eq. (1) were found in [3], where Eq. (1)
was derived. They are three components of the vector
J = (𝐽1, 𝐽2, 𝐽3) of the total angular momentum

J = L+ s, L ≡ x× p, s ≡ 1

2

⃒⃒⃒⃒
𝜎 0
0 𝜎

⃒⃒⃒⃒
, (6)

where L is the orbital angular momentum, s is the
spin-1/2 angular momentum, and 𝐾 is the additional
constant of motion:

𝐾 = 𝛾0 (2s · L+ 1), 𝐾2 = J2 +
1

4
. (7)

Next symmetry operator is the Johnson–Lippman
constant of motion [4]

𝐷 = 2s · x

|x|
+

1

𝑚𝑍𝑒2
𝐾𝛾4

(︁̂︀𝐻 − 𝛾0𝑚
)︁
, (8)

𝐷2 = 1+
(︁̂︀𝐻2

𝑚2 − 1
)︁

𝐾2

𝑍2𝑒4 . It commutes with the opera-

tor
(︀
𝑖𝜕0− ̂︀𝐻)︀ of the Dirac equation and anticommutes

with the Dirac symmetry operator (7). Here, the anti-
Hermitian 𝛾4 = 𝛾0𝛾1𝛾2𝛾3 instead of the Hermitian 𝛾5
of other authors is used. Note that work [4] on the ex-
cellent result (8) was published as a brief remark 1/10
of a page in size containing only the single formula for
𝐷 from (8).

After that, the way to the SO(4) symmetry of a
relativistic hydrogen atom was direct. This symmetry
was found in [5] and [6] (as for the consideration in [7],
see the comments in [8]). Thus, the SO(4) symmetry
of the Dirac equation (1) for a hydrogen atom is given
by the six operators

I = J+T, R = J−T, (9)

where J is known from (6), and components of T =
= (𝑇 1, 𝑇 2, 𝑇 3) have the form

𝑇 1 =
𝐷

2
√
𝐷2

, 𝑇 2 =
𝑖𝐷𝐾

2
√
𝐷2𝐾2

, 𝑇 3 =
𝐾

2
√
𝐾2

. (10)

In work [5], the object T = (𝑇 1, 𝑇 2, 𝑇 3) (10) was
called the Lenz spin-1/2 vector operator. The nota-
tions used in (10) are explained in (7) and (8) above.

The Pauli–Gürsey operators [9] and [10]

𝑠01 =
𝑖

2
𝛾2𝐶, 𝑠02 =

1

2
𝛾2𝐶, 𝑠12 = − 𝑖

2
, (11)

where 𝐶 is the operator of complex conjugation,
𝐶𝜓 = 𝜓* (the operator of involution in the space
H3,4), determine according to [11], the SO(1,2)⊂
⊂ SO(1,3) algebra of invariance of the Dirac equation
in the form

(︀
𝑖𝛾𝜇𝜕𝜇 −𝑚+ 𝑒2

|x|
)︀
𝜓(𝑥) = 0.

In [12], the symmetry of a relativistic hydrogen
atom in the form of 𝑔𝑙(8,R) algebra has been found.
The stationary case of the Dirac equation (1) was con-
sidered, and the discrete transformation were used.

The author of [13] considered another problem.
The quasipotential two-particle model was presented
for the description of a spinless relativistic hydrogen
atom. The O(4) symmetry and its breaking were in-
vestigated.

3. Briefly on the Gamma Matrix
Representations of the Real Clifford
and SO(8) Algebras

In our long-term investigations of the mapping of the
Maxwell theory on the Dirac theory, we also studied
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the different exotic representations of the Clifford–
Dirac algebra, which were useful in the description
of the Maxwell theory in the notations taking from
the formalism of the Dirac spinor field (see, e.g., [14]
and [15]). Step-by-step, we came to the idea of a gen-
eralization of the Clifford–Dirac algebra in order to
describe the bosonic features of the Dirac theory and
the fermionic features of the Maxwell theory as well.

Recently (see, e.g., [16]), we put the gamma matrix
representations of the Clifford algebra CℓR(0,6) and
the Lie algebra SO(8) into consideration, which are
defined over the field of real numbers. The compar-
ison with the well-known gamma matrix representa-
tions of the algebras CℓC(1,3) (in the physical litera-
ture, the Clifford–Dirac algebra) and SO(1,5) defined
over the field of complex numbers demonstrates that
the new representations contain much more useful
elements and perspectives for applications. The ap-
pealing to the gamma matrix representations of the
Clifford algebra CℓR(0,6) and the Lie algebra SO(8)
made it possible (see, e.g., [17] and [18]) to find the
hidden symmetries of the free (non-interacting) Dirac
equation. The Bose symmetries were found as well
[19]. Below, we will use these new algebraic objects
[16] for the problem of finding the hidden symmetries
of a relativistic hydrogen atom. The necessary part of
the consideration from [16] is presented in a compact
version.

Consider the fact that seven 𝛾 matrices 𝛾1, 𝛾2, 𝛾3,

𝛾4 = 𝛾0𝛾1𝛾2𝛾3, 𝛾5 = 𝛾1𝛾3𝐶, 𝛾6 = 𝑖𝛾1𝛾3𝐶, 𝛾7 = 𝑖𝛾0,

(12)

where 𝛾𝜇 matrices are given in (4), and the operator
𝐶 is defined in text after formulas (11), satisfy the
anticommutation relations

𝛾A𝛾B + 𝛾B𝛾A = −2𝛿AB, A,B = 1, 7, (13)

of the Clifford algebra generators over the field of
real numbers. Due to the evident fact that only six
operators of (12) are linearly independent, 𝛾4 =
= −𝑖𝛾7𝛾1𝛾2𝛾3, it is the representation of the Clifford
algebra CℓR(0,6) of the dimension equal to 26 = 64.

The first 16 operators are given in Table 1 of [16],
the next 16 ones can be found from them with the
help of the multiplication by imaginary unit 𝑖 =

√
−1.

Last 32 operators follow from first 32 ones with the
help of the multiplication by the operator 𝐶 of com-

plex conjugation. Thus, if we introduce the nota-
tion “stCD” (“st” and “CD” are taken from “stan-
dard Clifford–Dirac”) for the set of 16 matrices from
Table 1 in [16], then the set of 64 elements of the
CℓR(0,6) algebra representation is given by{︁
(stCD) ∪ 𝑖× (stCD) ∪ 𝐶 × (stCD) ∪ 𝑖𝐶 × (stCD)

}︁
.

(14)

The equalities 𝛾4 ≡
∏︀3

𝜇=0 𝛾
𝜇 →

∏︀4
𝜇̄=0 𝛾

𝜇̄ = −I
known from the standard Clifford–Dirac algebra
CℓC(1,3) and the anticommutation relations (13) of
the CℓR(0,6) algebra for the matrices 𝛾A (12) lead to
the validity of the following extended equalities:

𝛾7 ≡ −
6∏︁

A=1

𝛾A →
7∏︁

A=1

𝛾A = I, 𝛾5𝛾6 = 𝑖.

Operators (12) generate also 28 matrices

𝑠
̃︀Ã︀B =

{︂
𝑠AB =

1

4
[𝛾A, 𝛾B], 𝑠A8 = −𝑠8A =

1

2
𝛾A

}︂
, (15)

̃︀A, ̃︀B = 1, 8, which satisfy the commutation relations
of the Lie algebra SO(8)

[𝑠
̃︀Ã︀B, 𝑠̃︀C̃︀D] = 𝛿

̃︀Ã︀C𝑠̃︀B̃︀D + 𝛿
̃︀C̃︀B𝑠̃︀D̃︀A + 𝛿

̃︀B̃︀D𝑠̃︀Ã︀C + 𝛿
̃︀D̃︀A𝑠̃︀C̃︀B.

(16)

It is evident that we have the algebra over the field of
real numbers as well. Furthermore, it is evident that
28 elements (15) of SO(8) do not form any Clifford
algebra and do not form any subalgebra of the Clif-
ford algebra. It is a mathematical object independent
of the Clifford algebra. Note that the anti-Hermitian
realization of the SO(8) operators is chosen here (as
in (12) for the gamma matrices) (for the reasons, see,
e.g., [20] and [21] or [22]).

The explicit form of 28 elements of the 𝛾 ma-
trix representation of the SO(8) algebra is given
in Table 3 of [16]. The wonderful feature of this
gamma matrix representation of the algebra SO(8)
is as follows. Here, (i) two subsets (𝑠23, 𝑠31, 𝑠12) and
(𝑠45, 𝑠64, 𝑠56) of the operators 𝑠̃︀Ã︀B from (15) deter-
mine two different sets of SU(2) spin 1/2 generators,
(ii) commute with each other and (iii) commute with
the operator of the Dirac equation in the Foldy–Wou-
thuysen representation [23].
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4. New Symmetries
of a Relativistic Hydrogen Atom

Below, we present both the symmetries of the Foldy–
Wouthuysen equation [23] in the external Coulomb
field(︂
𝑖𝜕0 − 𝛾0𝜔 +

𝑒2

|x|

)︂
𝜑(𝑥) = 0; 𝜔 ≡

√︀
−Δ+𝑚2, (17)

𝑥 ∈ M(1, 3), 𝜑 ∈
{︀
S3,4 ⊂ H3,4 ⊂ S3,4*

}︀
, and, of course,

the symmetries of the Dirac equation (1) in such ex-
ternal field as well.

The first application of the matrix representations
of the algebras CℓR(0,6) and SO(8) is the symmetry
analysis (the search for groups and algebras, with re-
spect to which the equation is invariant). It is easy
to understand that the Foldy–Wouthuysen represen-
tation [23] is preferable for such analysis. Indeed, in
this representation, one must calculate the commuta-
tion relations of possible pure matrix symmetry op-
erators from (15) only with two elements of the oper-
ator of the Foldy–Wouthuysen equation (17): 𝛾0 and
𝑖. After the determination of the symmetries of the
Foldy–Wouthuysen equation, one can find the sym-
metries of the Dirac equation on the basis of the
inverse Foldy–Wouthuysen transformation [23]. Note
that, after such transformation, only a small part of
the symmetry operators will be purely matrix ones,
the main part of operators will contain the nonlocal
operator 𝜔 ≡

√
−Δ+𝑚2 and the functions of it.

Now, we can start the consideration of the new
symmetries of a relativistic hydrogen atom. The be-
ginning was suggested in [24]. The fundamental as-
sertions are as follows.

(i) The gamma matrix representation of the subal-
gebra SO(6) of the algebra SO(8), which is formed by
the operators

{𝑠ĂB̆} =

{︂
𝑠ĂB̆ ≡ 1

4
[𝛾Ă, 𝛾B̆]

}︂
, Ă, B̆ = 1, 6, (18)

determines the algebra of invariance of the Dirac
equation in the Foldy–Wouthuysen representation
(𝜕0 + 𝑖𝛾0𝜔 − 𝑒2

|x| )𝜑(𝑥) = 0 (in (18) six matrices

{𝛾Ă} = {𝛾1, 𝛾2, 𝛾3, 𝛾4, 𝛾5, 𝛾6} are known from (12)).
(ii) On the basis of SO(6) (18), the 31-dimensional

gamma matrix representation of the Lie algebra
SO(6)⊕𝑖𝛾0SO(6)⊕𝑖𝛾0 is constructed, which is formed
by the elements from CℓR(0,6) and is the maximal

pure matrix algebra of invariance of the Dirac equa-
tion in the Foldy–Wouthuysen representation (𝜕0 +

+ 𝑖𝛾0𝜔 − 𝑒2

|x| )𝜑(𝑥) = 0.
(iii) The Dirac equation in an external Coulomb

field (1) is invariant with respect to the 31-dimen-
sional gamma matrix representation of the algebrã︁SO(6)⊕ 𝑖̃︀𝛾0 ̃︁SO(6)⊕ 𝑖̃︀𝛾0, where the representation of
the algebra ̃︁SO(6) is given in the form of (18) with
gamma operators found from matrices (12) by the
inverse Foldy–Wouthuysen transformation [23]. The
resulting operators are given by

̃︀𝛾 = 𝛾
−𝛾 · ∇+𝑚

𝜔
+ p

−𝛾 · ∇+ 𝜔 +𝑚

𝜔(𝜔 +𝑚)
,

̃︀𝛾4 = 𝛾4
−𝛾 · ∇+𝑚

𝜔
, ̃︀𝛾5 = ̃︀𝛾1̃︀𝛾3 ̃︀𝐶, (19)

̃︀𝛾6 = 𝑖̃︀𝛾1̃︀𝛾3 ̃︀𝐶, ̃︀𝛾7 = 𝑖̃︀𝛾0, ̃︀𝛾0 = 𝛾0
−𝛾 · ∇+𝑚

𝜔
,

where ̃︀𝐶 = (I+2 𝑖𝛾1𝜕1+𝑖𝛾2𝜕2√
2𝜔(𝜔+𝑚)

)𝐶, and 𝜔 ≡
√︀
−△+𝑚2.

These formulas give the images of the gamma matri-
ces (12) in the Dirac representation after fulfilling the
inverse Foldy–Wouthuysen transformation.

Thus, the ̃︁SO(6)⊕ 𝑖̃︀𝛾0 ̃︁SO(6)⊕ 𝑖̃︀𝛾0 algebra is found
from SO(6)⊕𝑖𝛾0SO(6)⊕𝑖𝛾0 on the basis of the in-
verse Foldy–Wouthuysen transformation [23]. For the
Dirac equation, only a part of this algebra is a purely
matrix one, other elements contain the operator 𝜔 ≡
≡

√
−Δ+𝑚2.

Consider the symmetries of a relativistic hydrogen
atom with respect to the Lorentz group. On the basis
of CℓR(0,6) and SO(8), we can determine two dif-
ferent realizations of the D(0, 12 ) ⊕ ( 12 , 0) represen-
tation of the Lie algebra of universal covering ℒ =
= SL(2,C) of the proper ortochronous Lorentz group
L↑
+ = SO(1,3)={Λ = (Λ𝜇

𝜈 )}, with respect to which the
equation

(︀
𝜕0 + 𝑖𝛾0𝜔 − 𝑒2

|x|
)︀
𝜑(𝑥) = 0 is invariant:

𝑠𝜇𝜈I = {𝑠0𝑘I =
𝑖

2
𝛾𝑘𝛾4, 𝑠𝑘𝑚I =

1

4
[𝛾𝑘, 𝛾𝑚]},

𝛾4 ≡ 𝛾0𝛾1𝛾2𝛾3, (𝑘,𝑚 = 1, 3),

(20)

𝑠01II = − 𝑖

2
𝛾2𝐶, 𝑠02II = −1

2
𝛾2𝐶, 𝑠03II =

1

2
𝛾0,

𝑠23II = −1

2
𝛾0𝛾2𝐶, 𝑠31II =

𝑖

2
𝛾0𝛾2𝐶, 𝑠12II = − 𝑖

2
.

(21)

Taking the combinations of operators (20) and (21),
we construct the generators of bosonic representa-
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tions:

𝑠𝜇𝜈TS = {𝑠0𝑘TS = 𝑠0𝑘I + 𝑠0𝑘II , 𝑠𝑚𝑛
TS = 𝑠𝑚𝑛

I + 𝑠𝑚𝑛
II },

𝑠𝜇𝜈V = {𝑠0𝑘V = −𝑠0𝑘I + 𝑠0𝑘II , 𝑠𝑚𝑛
V = 𝑠𝑚𝑛

TS },
(22)

where 𝑠𝜇𝜈TS and 𝑠𝜇𝜈V are the generators of the ten-
sor-scalar D(1, 0) ⊕ (0, 0) and irreducible vector
D( 12 ,

1
2 ) representations of the Lie algebra SO(1,3)

of the Lorentz group ℒ, respectively, with respect to
which the Foldy–Wouthuysen equation

(︀
𝜕0 + 𝑖𝛾0𝜔−

− 𝑒2

|x|
)︀
𝜑(𝑥) = 0 is invariant.

The anti-Hermitian operators of every of the sets
(20), (21), or (22) satisfy the commutation relations
of the Lie algebra SO(1,3) of the Lorentz group ℒ:

[𝑠𝜇𝜈 , 𝑠𝜌𝜎] = −𝑔𝜇𝜌𝑠𝜈𝜎−𝑔𝜌𝜈𝑠𝜎𝜇−𝑔𝜈𝜎𝑠𝜇𝜌−𝑔𝜎𝜇𝑠𝜌𝜈 . (23)

For the Dirac equation in the space of Dirac spinors
{𝜓} (i.e., in the Pauli–Dirac representation), the form
of the generators of the tensor-scalar D(1,0)⊕(0,0)
and irreducible vector D( 12 ,

1
2 ) representations of the

Lie algebra SO(1,3) of the Lorentz group ℒ is simi-
lar to (22) (with (20), (21)), but the gamma opera-
tors are too complicated in this case and are given
by (19). The images of operators (20), (21), or (22)
in the Dirac representation satisfy the commutation
relations (23) as well.

In [15] and [18] for the free Dirac and Foldy–Wou-
thuysen equations, we used also the evident bosonic
representation of (22), in which the Casimir operators
are diagonal, and the proof of Bose properties is most
convenient.

5. Discussion and Summary

A generalization of our results on the Bose symme-
tries of the free interactionless Dirac equation (see,
e.g., [15] and the references therein) in the case of the
presence of an external Coulomb field has been sug-
gested. The hidden Fermi and Bose symmetries of a
relativistic hydrogen atom are found.

Note that the physical picture of a hydrogen atom
(the electron in the external Coulomb field) is related
to the spin-1/2 Fermi symmetries. On the other hand,
the physical picture of a hydrogen atom as the com-
pound system of a proton and an electron is related
to the total spin-1 (or zero) Bose symmetries.

The main result of this paper is putting two dif-
ferent bosonic tensor-scalar D(1,0)⊕(0,0) and vector
D(1/2,1/2) representations of the Lie algebra SO(1,3)

of the Lorentz group ℒ into consideration. With re-
spect to them, the Dirac equation in an external
Coulomb field is invariant. Two fermionic symmetries
of this equation, given by different D(1/2,0)⊕(0,1/2)
representations of the SO(1,3) algebra of the Lorentz
group, are found as well. The maximal pure matrix
symmetry of the Foldy–Wouthuysen equation for a
hydrogen atom is found, and the explicit forms of op-
erators of the corresponding symmetry of the Dirac
model are calculated.
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В.М.Симулик, I.О. Гордiєвич

СИМЕТРIЇ РЕЛЯТИВIСТСЬКОГО АТОМА ВОДНЮ

Р е з ю м е

Доведено, що рiвняння Дiрака у зовнiшньому кулонiвсько-
му полi має симетрiю, що визначається 31 операторами, якi
утворюють 31-вимiрну алгебру. Знайдено двi рiзнi фермiон-
нi реалiзацiї алгебри SO(1,3) групи Лоренца. Отримано та-
кож двi бозоннi реалiзацiї цiєї алгебри. Усi генератори цих
алгебр комутують з оператором рiвняння Дiрака у зовнi-
шньому кулонiвському полi, а отже, визначають алгебри
iнварiантностi такого рiвняння Дiрака. На цiй основi Бозе
симетрiя спiна 𝑠 = (1, 0) рiвняння Дiрака для вiльного спi-
норного поля, доведена нещодавно в наших роботах, розши-
рена на випадок рiвняння Дiрака, в якому врахована вза-
ємодiя iз зовнiшнiм кулонiвським полем. Релятивiстський
атом водню моделюється таким рiвнянням Дiрака. Отже,
для релятивiстського атома водню доведено як фермiонну,
так i бозонну симетрiю, що були вiдомi з наших робiт про
iнший випадок невзаємодiючого спiнорного поля. Новi опе-
ратори симетрiї знайдено на основi нових гамма-матричних
зображень алгебр Клiффорда та SO(8), якi також вiдомi
з наших недавнiх робiт. Прихованi симетрiї доведено як у
канонiчному представленнi Фолдi–Ваутхасена, так i у кова-
рiантнiй моделi Дiрака. Знайденi оператори симетрiї, якi є
чисто матричними у представленнi Фолдi–Ваутхасена, ста-
ють нелокальними у моделi Дiрака.
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