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MINIMIZATION OF DOSE
LOAD IN ALGORITHMS OF X-RAY
COMPUTED TOMOGRAPHY

An algorithm has been developed for the reconstruction of an X-ray image obtained at the min-
imum dose load on the researched object and provided a given image accuracy. This algorithm
combines approaches typical of the inverse projection and regularization methods. The image
is formed by overlaying filtered projections, and the filtering parameters are determined from
the minimum condition for the difference between the discrepancy and the experimental error.
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1. Introduction

X-rays are known to be used in computed tomogra-
phy to obtain three-dimensional images of the inter-
nal structure of organism. When choosing the radia-
tion intensity, two mutually contradictory tendencies
are faced with. On the one hand, a desire to improve
the image quality requires that the radiation inten-
sity should be as high as possible. On the other hand,
this intensity has to be reduced in view of the harm-
ful effects of X-rays. Therefore, there arises a problem
to determine the minimum level of dose load on the
organism, which would provide a required image ac-
curacy. This principle is also called ALARA (As Low
As Reasonably Achievable). In this paper, one of pos-
sible ways to solve this problem has been proposed.

2. X-ray Damping and Its Physical
Model Used in Computed Tomography

It is known [1] that any living organism considered as
a physical system can be characterized by the pres-
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ence of different structural levels. The latter are con-
ventionally classified into two groups. The first group
includes macroscopic levels. Among them, the follow-
ing levels are distinguished: the structural level of or-
gan systems, the organ level, the level of morpho-
functional organ units, and the level of tissues, cellu-
lar systems, and non-cellular structures. The second
group includes microscopic levels: cellular, subcellu-
lar, molecular, and atomic ones.

When studying a structure at any of indicated
macroscopic levels, a continuum model is used, in
which an organism is regarded as an inhomogeneous
continuum. This is a model of organism that com-
puted tomography is based on. In this model, the
structure is characterized by the spatial dependence
of the X-ray damping coefficient u(x), where x =
= {z,y, 2z} is the radius vector of a point in the con-
tinuum. The determination of the function u(x) for
a given organism is the ultimate goal of computed
tomography from the physical viewpoint.

The function pu(x) is determined experimen-
tally. An object is scanned in a definite plane at var-
ious angles using X-ray irradiation, and the intensity
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of radiation passed through the object is measured
with the help of a detector. Analogous measurements
are repeated for neighbor planes.

Which is a relationship between the function u(x)
and the experimentally measured data? Let the plane
Z = 0 be one of those planes. In this plane, together
with the laboratory coordinate frame (z,y), a moving
coordinate frame (z/,y’) is introduced, in which the
y’-axis is directed along the X-ray propagation direc-
tion. Denoting the angle between the z- and z’-axes
as ¢, we have the obvious equality

2’ =z cos ¢ + ysin ¢. (1)

The intensity of radiation passed through the ob-
ject is determined by the known formula

Iy(z") = I9(2') exp {— /ﬂ(w, y)dy} (2)

where I g is the radiation intensity in the absence of an
object. In the framework of the problem concerned, a
new quantity is introduced into consideration,

(3)

which is called the object projection. Taking formulas
(1) and (2) into account, the equation for the object
projection looks like

Ap(T) :// w(z,y)d(x cos p+ysin g —a')dzdy, (4)

where d(z) is the delta function. If the function A\, ()
is known from experimental data, the problem con-
sists in determining the function u(x,y) on the basis
of Eq. (4). In other words, the ultimate aim of com-
puted tomography is to solve integral equation (4).

The function p(x,y) is visually represented as a
planar diagram. The z- and y-axes lie in the plane
of this diagram, and the function values p corre-
spond to different color intensities of the diagram
sections. A diagram of this kind is called the tomo-
graphic cross-section of the object. Accordingly, the
procedure of calculation of p(z,y) is called the recon-
struction of the object cross-section on the basis of
its projections.
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3. Reconstruction Algorithm
Based on Inverse Projection

This method for the solution of Eq. (4) forms the ba-
sis of reconstruction algorithms in the vast majority
of modern tomographs [2—4|. Its input data include
the two-dimensional inverse Fourier transform of the
function p(x,y) in polar coordinates,

u(x,y)=i fﬂ"(?ﬁaﬁ)x
0 —oo

x exp [27r(x cos ¢ + ysin@)] |r| drde, (5)

where p*(r, ¢) is the two-dimensional direct Fourier
transform of the function w(z,y) in polar coordi-
nates. Relation (5) can be written down as

p(z,y) = [ Ag(a)dg, (6)
[

where 2’ is determined by formula (1), and the func-
tion A}(z') by the expression
o0
3a) = [ .0) explizar(@)] rldr 7)
—o0
According to the projection-slice theorem, the two-
dimensional Fourier transform of p(z,y) is equal to
the one-dimensional Fourier transform of the projec-

tion A4(2’). Therefore, expression (7) is rewritten in
the form

2@ = [ Nalwple’ - 2)da, ®)
in which the following notation was introduced:

. . 2
pla) = R? {S‘“gfl") - [S‘“}g};m)} } 9)

Formula (8) means that the projection \4(x) is sub-
jected to filtering. Accordingly, the function A;(x) is
called the filtered projection, and the constant R the
filtration coefficient.

However, one can see that formulas (5)-(9) do not
contain quantities that would characterize the er-
rors. At the same time, the latter inevitably arise at
computations. Therefore, it is evident that the prob-
lem about the relation between the dose load and the
image accuracy cannot be solved in the framework of
an algorithm based on the inverse projection method.
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4. Reconstruction Algorithm Based
on the Tikhonov Regularization Method

Let us rewrite Eq. (4) in the operator form:

Ap =X (10)

The functions p and A are considered as elements of
the sets M and A, i.e.

weM, XeA. (11)

By introducing the corresponding distances p(A1, A2)
and p(p1, p2), the sets M and A are transformed into
metric spaces.

As was already mentioned, the image reconstruc-
tion procedure is reduced to the solution of the inte-
gral equation (10) or, equivalently, Eq. (4). The spe-
cific feature of this equation consists in that the ele-
ment A is given with a certain error that is not taken
into account. Such a problem belongs to the class
of inverse problems in mathematical physics [5]. The
procedure of finding an approximate solution for them
is called regularization, and the approximate solution
itself is called regularized.

pA(R)

0.40

0.35

0.30

0.25

0.20

0.15

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Fig. 1. Dependence py(R) at §, = 0.03

Fig. 2. Phantom reconstruction at §y = 0.03 and N = 24 (a),
60 (b), and 120 (c)
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There are a number of methods for the solution
of ill-posed problems. The most wide-spread among
then is the Tikhonov regularization method. Accor-
ding to it, instead of Eq. (10), the equation
A Ap+ ap = A* A (12)
is dealt with. Here, A* is an operator conjugate to
the operator A, and « is the regularization coeffi-
cient. The latter can be determined from the equa-
tion
PP (A1, \) = 3, (13)
where [ is an approximate solution of the equation.

It is evident that, unlike the inverse projection
method, the solution of Eq. (10) or, equivalently,
Eq. (4) depends on the error. Nevertheless, it is un-
clear how this solution can be related to the radiation
intensity.

5. Reconstruction Algorithm
Making Allowance for the Dose Load

A comparison of both methods described above
demonstrates that, mathematically, the regulariza-
tion method is more rigorous than the inverse pro-
jection one. So, why is the latter preferable in prac-
tice? The matter is that its implementation requires
much less amount of the computational time (by
orders of magnitude). Let us try to combine them
and to preserve the positive features of both meth-
ods. Let equality (13) be a basis for such a unifica-
tion. It contains the basic idea of the regularization
theory, namely, the computational and experimen-
tal errors have to be made identical. For this pur-
pose, a regularization parameter « is introduced, and
Eq. (12) is solved instead of Eq. (10), which results
in a smoothed solution fi. In this sense, the terms
“smoothing” and “regularization” can be regarded as
synonyms.

One of the manifestations that the inverse pro-
jection method is insufficiently consistent from the
mathematical viewpoint is the fact that it does not
substantiate the choice of the filtration coefficient
R. The filtering procedure performed by means of
Eq. (8) is nothing else but a smoothing of the pro-
jection Ag(zx). Therefore, the coefficient R actually
plays the same role as the regularization parameter
a does. In the course of computations, there emerges
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Fig. 3. Dependence A, (N) at §, = 0.03

another factor that stimulates the smoothing. Real-
ly, if A} is determined from expression (8), the inte-
gration procedure is substituted by the summation of
discrete function values calculated with a certain step
Az of the argument. So, this is the interval Az, over
which the function Ag(x) is smoothed at the numeri-
cal integration. Therefore, both parameters responsi-
ble for the smoothing, R and Ax, have to be put in
agreement. By its content, the quantity 1/R is also an
interval, over which the smoothing takes place. Hen-
ce, the required agreement is reduced to the simple
equality
1
R = s
The idea of smoothing — one can see that it is in-
herent in both methods concerned — suggests us how
the dose load can be introduced into consideration. In
the calculation, integral (6) is substituted by the sum

(14)

N
pla,y) = N5, A, (15)
i=1
where A¢ = §;. Summation (15) is another smooth-
ing. It can be characterized by the parameter N,
which plays the role of another regularization param-
eter.

Thus, we arrive at a calculation scheme character-
ized by two regularization parameters, R and N. The-
refore, let us assume that the function x depends on
them, i.e.

p=p(w,y; R, N).
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As one can see from formula (15), N projections are
used for the determination of the function u(z,y). It
is evident that larger N values correspond to higher
dose loads. Therefore, the parameter N can be re-
garded as the measure of a dose load.

The function p(z,y; R, N) can be determined as
follows. By selecting arbitrary R- and N-values,
we calculate this function using formulas (6), (8),
and (9), as is required in the inverse projection
method. The calculation is repeated for different
(R, N) pairs. As an approximate solution, we select
the function fi(z,y; R, N), for which the following ex-
pression is minimum:
Q = 0* (A \) — 83 (17)

Hence, the proposed reconstruction method com-
bines the ideas taken from both inverse projection
and regularization methods.

6. Numerical Experiment

The experimental procedure consists of the following
steps.

A mathematical phantom with a known intensity
distribution po(x,y) is chosen.

Making use of expressions (2) and (3), the value
Ag(z) of this phantom is calculated for a given num-
ber N of projections. Let us denote this value as
)\0¢({E).

A definite error §) is added to the exact function

)\0¢($).
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With the help of formulas (6), (8), and (9), a min-
imum of difference (17) regarded as a function of R
is determined.

The error A, of the reconstructed image u(x,y) is
determined as A, = p(po, ).

Steps 2 to 5 are repeated for various values of the
parameter N. Then the dependence of A,, = p(po, 1)
on N is plotted. This dependence is used to choose
the optimal value for N.

In order to verify the proposed approach, an ex-
periment was performed, by using the Shepp—Logan
phantom [6]. The latter approximately simulates a
cross-section of human head. It is used as a standard,
when the efficiency of reconstruction methods is ver-
ified. When calculating the distance p between the
functions, the latter were assumed to be elements of
a Hilbert metric space.

A procedure for the determination of the parameter
R is illustrated in Fig. 1, where the dependence px(R)
is plotted for 5 = 0.03. According to the figure, the
parameter R ~ 0.23 in this case. Figure 2 illustrates
the corresponding reconstruction results obtained at
N =24, 60, and 120. Finally, Fig. 3 demonstrates the
obtained dependence of A, on IN. From this figure, it
is evident that, after a certain number of projections
(in the case concerned, this is 60), the quality of the
reconstructed image does not increase significantly. A
conclusion can be made that the value N = 60 is the
optimal number of projections for the given experi-
mental error §y.

A specific value of the patient dose load depends on
a variety of parameters, such as the current through
an X-ray tube and the voltage across it, the exposure
time per one image, and the number of images [7]. In
our research, we showed a method for the calculation
of an optimal number of images required to obtain a
tomogram with desired quality.

7. Conclusions

An importance of the problem of patient dose load
in the course of treatment and diagnosis has never
been doubted. We may talk about two approaches,
when calculating the dose load value. One of them
is aimed at determining the upper limit of the per-
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missible dose load. This limit is determined by the
biological features of the examined object. For the
other approach to be applied, the lower load limit
has to be determined. This approach is typical of di-
agnostic methods, when the diagnostic accuracy be-
comes lost, if the radiation intensity is not sufficiently
high. The lower limit value obviously depends on the
required accuracy. Unlike the upper limit, this value
is not determined by object’s biology, but by the
physical and mathematical apparatus, which this di-
agnostic method is based on. The indicated depen-
dence for computed tomography was obtained in this
paper. The authors hope for that the application of
the described approach to the choice of the number
of images will substantially reduce the dose load on
the patient, keeping the diagnostic quality of the ob-
tained tomographic images at a high level.
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Translated from Ukrainian by O.I. Voitenko

JI.A. Byaasin, 0. ®. 3abawma, O.B. Momonauza

MIHIMI3AIIIS JJO30BOT'O
HABAHTA>KEHHS B AJITOPUTMAX
PEHTTEHIBCHKOI KOMITPIOTEPHOI TOMOTI'PA®IT

Peszmowme

Po3pobiieHo ajropuT™M peKOHCTPYKILil PEHTIeHIBCHKOTO 300pa-
JKEHHSI, [IjIsl sIKOT'O TIPU 3a/IaHifl TOYHOCTI 300parKeHHsI [1030-
Be HaBaHTaKEHHsI Ha O0’€KT JOCJI>KEeHHsI € MiHIMaJbHUM. B
BPOMY AJITOPUTMI IO€JHAHI MigXOJU, XapaKTepHi JJIg MeTOmLy
0GEpPHEHOr0 MPOEIHIOBAHHS Ta METOAY peryispusalii. 306pa-
KeHHsI (POPMYETHCSI B PE3YJIbTATI HAKJIATAHHS (PLIBTPOBAHUX
[poeKIiii, a napameTpu ijbTpalil BUBHAYAIOTHCH i3 yMOBU Mi-
HIMyMy PIi3HHUI[ Mi>K HEB’SI3KOIO Ta IIOXUOKOIO €KCIIEPUMEHTY.
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