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ON THE ACCURACY OF ERROR PROPAGATION
CALCULATIONS BY ANALYTIC FORMULAS OBTAINED
FOR THE INVERSE TRANSFORMATION

The accuracy of error propagation calculations is estimated for the transformation 𝑥 → 𝑦 =
𝑓(𝑥) of the normally distributed random variable 𝑥. The estimation is based on the formulas
for the error propagation obtained for the inverse transformation 𝑦 → 𝑥 of the normally
distributed random variable 𝑦. In the general case, the calculation accuracy for the mean value
and the variance of the random variable 𝑦 is shown to be of the first order of magnitude in the
variance of the random variable 𝑥.
K e yw o r d s: error propagation, variance, mean value, normal distribution.

1. Introduction

When analyzing the results of a physical experiment,
it is often necessary to calculate their accuracy by
proceeding from the known accuracy of measured
quantities. For example, in the X-ray diffraction anal-
ysis, the measured diffraction angles of X-rays are
used to determine the crystal lattice constants. The
formulas used for the calculation of the accuracy of
determined values are known well. They provide an
excellent result, if the error (mean-square deviation
𝜎𝑥) of the measured quantity 𝑥 is so small that the de-
pendence of the calculated result on 𝑥, i.e. 𝑦 = 𝑓(𝑥),
can be considered to be a linear function within the
limits of this error [1]. However, it is quite possible
that the dispersion of the measured quantity is rather
large. As a result, the estimate of the error for the 𝑦-
value calculated on the basis of experimental data can
significantly change.

If the quantity 𝑥 is characterized by a distribution
function 𝐹 (𝑥), for which the integrals

∫︀∞
−∞ 𝑥𝑛𝐹 (𝑥)𝑑𝑥

and
∫︀∞
−∞ 𝑓(𝑥)𝑛𝐹 (𝑥)𝑑𝑥 (𝑛 = 1, 2) can be calculated

analytically, the mean value (mathematical expecta-
tion) and the variance of the quantity 𝑦 can be ex-
pressed in terms of the parameters of the distribution
𝐹 (𝑥). In this case, we can express, in principle, the
mathematical expectation 𝑦 and the variance 𝜎2

𝑦 of
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the quantity 𝑦 via the mathematical expectation 𝑥̄
and the variance 𝜎2

𝑥 of the quantity 𝑥. Such calcula-
tions were made, e.g., for the dependences 𝑦 = cos 𝑥
[2] and 𝑦 = 𝑥2 [3] in the case of normal distribution
for 𝑥, and for the dependence 𝑦 =

√
𝑥 [4] in the case

of standard (with the zero mathematical expectation)
normal distribution for 𝑥. However, if the indicated
integrals cannot be calculated analytically, but the
integrals

∫︀∞
−∞ 𝑦𝑛𝐺(𝑦)𝑑𝑦 and

∫︀∞
−∞ 𝑔(𝑦)𝑛𝐺(𝑦)𝑑𝑦 (𝑛 =

1, 2) can be, where 𝑔(𝑦) = 𝑥 is a function inverse to
𝑦 = 𝑓(𝑥), and 𝐺(𝑦) is the distribution function for 𝑦,
we again obtain relations that connect the pair 𝑥̄ and
𝜎2
𝑥 with the pair 𝑦 and 𝜎2

𝑦 [2, 3]. This procedure was
done in work [2] for 𝑦 = arccos(𝑥) and work [3] for
𝑦 =

√
𝑥 (inverse transformations look like 𝑥 = cos 𝑦

and 𝑥 = 𝑦2, respectively).
It should be noted that if the function 𝑓(𝑥) – and,

accordingly, 𝑔(𝑦) – is nonlinear, the expression for the
distribution function of the random variable 𝑦 differs
from that for the distribution of the random variable
𝑥. For instance, if the random variable 𝑥 is distributed
according to the normal law, then the distribution of
the random variable 𝑦 = 𝑓(𝑥) is not normal. However,
the author of works [2, 3] proposed the formulas ob-
tained for the inverse transformation 𝑦 → 𝑥 under the
assumption about the normal distribution of 𝑦 to be
also used for the calculation of 𝑦 and 𝜎2

𝑦 at the trans-
formation 𝑥 → 𝑦 = 𝑓(𝑥) of the normally distributed
quantity 𝑥, i.e. ignoring the fact that the distribution
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of 𝑥 is not normal for the 𝑦 → 𝑥 transformation. Un-
fortunately, the error arising due to the substitution
of a non-normal 𝑥-distribution by the normal 𝑦-one
was not discussed in the cited works. Nevertheless,
since the general idea of the calculation method pro-
posed in works [2, 3] seems interesting to us, it is
worth estimating its error.

The paper structure is as follows. In Section 2, the
stages of the general procedure used to calculate the
accuracy of statistical parameters characterizing the
distribution of the quantity 𝑦 = 𝑓(𝑥) are listed. The
calculation procedure itself is expounded in Section 3
in detail. In Section 4, an example of calculations for
the transformation 𝑓(𝑥) =

√
𝑥 is given, and its com-

parison with the results of numerical calculations is
made. A brief conclusion is formulated at the end of
the paper.

2. Calculation Scheme

The accuracy of statistical characteristics 𝑦 = 𝑓(𝑥)
calculated by analytical formulas obtained for the in-
verse transformation 𝑥 = 𝑔(𝑦) will be estimated using
the following scheme.

1. A random variable 𝑥 is assumed to be charac-
terized by the normal distribution with mean value
𝑥̄ and variance 𝜎2

𝑥. A quantity 𝑦 is related to 𝑥 by
means of the relation 𝑦 = 𝑓(𝑥). The latter can be
expanded in a Taylor series.

2. The mean value 𝑦 and variance 𝜎2
𝑦 of the quan-

tity 𝑦 are calculated.
3. Now, the random variable 𝑦 is assumed to be

characterized by the normal distribution with mean
value 𝑦𝑎 and variance 𝜎2

𝑦𝑎
. The quantity 𝑥 is related

to the quantity 𝑦 by the relation 𝑥 = 𝑔(𝑦), which can
also be expanded in a Taylor series.

4. The corresponding mean value 𝑥𝑎 and variance
𝜎2
𝑥𝑎

of the quantity 𝑥 are calculated. The obtained
distribition of 𝑥 is obviously non-normal.

5. The values of 𝑥𝑎 and 𝜎2
𝑥𝑎

, which characterize
the non-normal distribution of the quantity 𝑥 for the
transformation 𝑦 → 𝑥 = 𝑔(𝑦) of the normally dis-
tributed quantity 𝑦, are identified with the values of
𝑥̄ and 𝜎2

𝑥. It is this identification that forms the basis
of works [2, 3] and gives rise to the accuracy restric-
tion of the formulas quoted in those works.

6. Finally, the 𝑦- and 𝜎2
𝑦-values are compared with

the 𝑦𝑎- and 𝜎2
𝑦𝑎

-ones, respectively. The difference be-
tween them characterizes the error of the method pro-
posed in works [2, 3] for the calculation of the mathe-

matical expectation and the variance obtained at the
transformation 𝑥 → 𝑦 = 𝑓(𝑥) with the help of ana-
lytical formulas obtained for those quantities at the
inverse transformation 𝑦 → 𝑥 = 𝑔(𝑦) of the normally
distributed quantity 𝑦.

3. The Accuracy of Error
Propagation at the Transformation 𝑥 → 𝑦
on the Basis of the Results Obtained
for the Transformation 𝑦 → 𝑥

Let a random variable 𝑥 be characterized by a nor-
mal distribution function 𝐹 (𝑥) with mean value 𝑥̄
and variance 𝜎2

𝑥 (i.e. 𝜎𝑥 is the root-mean-square
deviation):

𝐹 (𝑥) =
1

𝜎𝑥

√
2𝜋

exp

[︂
− (𝑥− 𝑥̄)2

2𝜎2
𝑥

]︂
. (1)

This distribution function satisfies the following for-
mulas, in which 𝑛 is an integer:
∞∫︁

−∞

(𝑥− 𝑥̄)2𝑛+1𝐹 (𝑥) 𝑑𝑥 = 0, (2)

∞∫︁
−∞

(𝑥− 𝑥̄)2𝑛𝐹 (𝑥) 𝑑𝑥 = (2𝑛− 1)!!𝜎2𝑛
𝑥 (𝑛 ≥ 1), (3)

∞∫︁
−∞

𝐹 (𝑥) 𝑑𝑥 = 1. (4)

The variables 𝑦 and 𝑥 are related to each other by
the relation 𝑦 = 𝑓(𝑥), which can be rewritten in the
form of the Taylor series

𝑓(𝑥) =

∞∑︁
𝑛=0

𝑎𝑛(𝑥− 𝑥̄)𝑛, (5)

where

𝑎𝑛 =
1

𝑛!

𝑑𝑛

𝑑𝑥𝑛
𝑓(𝑥)

⃒⃒⃒
𝑥=𝑥̄

. (6)

3.1. Mean value and variance
at the transformation 𝑦 = 𝑓(𝑥)

Taking formulas (2) and (3) into account, we can de-
termine the mean value 𝑦 for the function 𝑦 = 𝑓(𝑥),
if the random variable 𝑥 is distributed according to
law (1):

𝑦 =

∞∫︁
−∞

𝑓(𝑥)𝐹 (𝑥) 𝑑𝑥 =

∞∑︁
𝑛=0

𝑎𝑛

∞∫︁
−∞

(𝑥− 𝑥̄)𝑛𝐹 (𝑥) 𝑑𝑥 =
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= 𝑎0 +

∞∑︁
𝑛=1

𝑎2𝑛(2𝑛− 1)!!𝜎2𝑛
𝑥 . (7)

With the fourth-order accuracy in 𝜎𝑥, we obtain

𝑦 = 𝑎0 + 𝑎2𝜎
2
𝑥 + 3𝑎4𝜎

4
𝑥. (8)

The variance of 𝑦 (mean square deviation from the
mean value) equals

𝜎2
𝑦 =

∞∫︁
−∞

(𝑦 − 𝑦)2𝐹 (𝑥) 𝑑𝑥 =

∞∫︁
−∞

𝑦2𝐹 (𝑥) 𝑑𝑥− 𝑦2. (9)

The mean value of 𝑦2,

𝑦2 =

∞∫︁
−∞

𝑦2𝐹 (𝑥) 𝑑𝑥, (10)

can be written in the form

𝑦2 =

∞∑︁
𝑛=0

∞∑︁
𝑚=0

𝑎𝑛𝑎𝑚

∞∫︁
−∞

(𝑥− 𝑥̄)𝑛+𝑚𝐹 (𝑥) 𝑑𝑥 (11)

or, equivalenly,

𝑦2 =

∞∑︁
𝑛=0

∞∑︁
𝑚=𝑛

𝑎𝑛𝑎𝑚−𝑛

∞∫︁
−∞

(𝑥− 𝑥̄)𝑚𝐹 (𝑥) 𝑑𝑥. (12)

In view of formulas (2) and (3), equality (12) can also
be expressed as

𝑦2 =

∞∑︁
𝑛=0

∞∑︁
𝑚=[𝑛+1

2 ]

𝑎𝑛𝑎2𝑚−𝑛

∞∫︁
−∞

(𝑥− 𝑥̄)2𝑚𝐹 (𝑥) 𝑑𝑥. (13)

Here, the square brackets mean the integer part of
a number. The last expression can be written in the
form

𝑦2 = 𝑎0𝑎0 +

∞∑︁
𝑚=1

𝑎0𝑎2𝑚

∞∫︁
−∞

(𝑥− 𝑥̄)2𝑚𝐹 (𝑥) 𝑑𝑥+

+

∞∑︁
𝑛=1

∞∑︁
𝑚=[𝑛+1

2 ]

𝑎𝑛𝑎2𝑚−𝑛

∞∫︁
−∞

(𝑥− 𝑥̄)2𝑚𝐹 (𝑥) 𝑑𝑥. (14)

From whence, as well as from Eqs. (2) and (3), it
follows that

𝑦2 = 𝑎0𝑎0 +

∞∑︁
𝑚=1

𝑎0𝑎2𝑚(2𝑚− 1)!!𝜎2𝑚
𝑥 +

+

∞∑︁
𝑛=1

∞∑︁
𝑚=[𝑛+1

2 ]

𝑎𝑛𝑎2𝑚−𝑛(2𝑚− 1)!!𝜎2𝑚
𝑥 . (15)

Within an accuracy of 𝜎4
𝑥, the latter expression looks

like

𝑦2 = 𝑎0𝑎0+(2𝑎0𝑎2+𝑎21)𝜎
2
𝑥+3(2𝑎0𝑎4+2𝑎1𝑎3+𝑎22)𝜎

4
𝑥

(16)

With regard for Eqs. (8), (9), and (16), we obtain

𝜎2
𝑦 = 𝑎21𝜎

2
𝑥 + 2(𝑎22 + 3𝑎1𝑎3)𝜎

4
𝑥. (17)

The obtained expressions – formula (8) for 𝑦 and for-
mula (17) for 𝜎2

𝑦 – are completely identical to those
obtained for 𝑓(𝑥) = 𝑥2 in work [3] (𝑎0 = 𝑥̄2, 𝑎1 = 2𝑥̄,
𝑎2 = 1, 𝑎3 = 𝑎4 = 0) and identical with an accu-
racy of 𝜎4

𝑥 to the results obtained for 𝑓(𝑥) = cos𝑥
in work [2] (𝑎0 = cos 𝑥̄, 𝑎1 = − sin 𝑥̄, 𝑎2 = − 1

2 cos 𝑥̄,
𝑎3 = 1

6 sin 𝑥̄, 𝑎4 = 1
24 cos 𝑥̄).

3.2. Mean value and variance
at the transformation 𝑥 = 𝑔(𝑦)

Now, let us consider the function 𝑥 = 𝑔(𝑦), which
is inverse to 𝑦 = 𝑓(𝑥). The random variable 𝑦 is as-
sumed to be distributed according to the normal law

𝐺(𝑦) =
1

𝜎𝑦𝑎

√
2𝜋

exp

[︂
− (𝑦 − 𝑦𝑎)

2

2𝜎2
𝑦𝑎

]︂
(18)

with the mean value 𝑦𝑎 and the variance 𝜎2
𝑦𝑎

(𝜎𝑦𝑎
is

the root-mean-square deviation). Let the Taylor se-
ries expansion of the function 𝑔(𝑦) look like

𝑔(𝑦) =

∞∑︁
𝑛=0

𝑏𝑛(𝑦 − 𝑦0)
𝑛, (19)

where

𝑏𝑛 =
1

𝑛!

𝑑𝑛

𝑑𝑦𝑛
𝑔(𝑦)

⃒⃒⃒
𝑦=𝑦0

, 𝑦0 = 𝑓(𝑥̄) = 𝑎0. (20)

We should calculate the mean value 𝑥𝑎 and the vari-
ance 𝜎2

𝑥𝑎
of the values given by the function 𝑥 = 𝑔(𝑦).

Note that the point 𝑦0, at which the function 𝑔(𝑦) was
expanded in the Taylor series (19), does not coincide
in the general case with the maximum of the distri-
bution 𝐺(𝑦), which is achieved at 𝑦 = 𝑦𝑎. Therefore,
it is convenient to write the function 𝑔(𝑦) in the form

𝑔(𝑦) =

∞∑︁
𝑛=0

𝑏𝑛(𝑦 − 𝑦𝑎 + 𝛿)𝑛, (21)
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where 𝛿 = 𝑦𝑎 − 𝑦0, and to use the integrals
∞∫︁

−∞

(𝑦 − 𝑦𝑎)
2𝑛+1𝐺(𝑦) 𝑑𝑦 = 0, (22)

∞∫︁
−∞

(𝑦 − 𝑦𝑎)
2𝑛𝐺(𝑦) 𝑑𝑦 = (2𝑛− 1)!!𝜎2𝑛

𝑦𝑎
(𝑛 ≥ 1), (23)

∞∫︁
−∞

𝐺(𝑦) 𝑑𝑦 = 1, (24)

while calculating 𝑥𝑎 and 𝜎2
𝑥𝑎

. To the fourth-order ac-
curacy in 𝜎𝑦𝑎

, we obtain

𝑥𝑎 =

∞∫︁
−∞

𝐺(𝑦)𝑔(𝑦)𝑑𝑦 = 𝑏0 + 𝑏1𝛿+

+ 𝑏2(𝛿
2 + 𝜎2

𝑦𝑎
) + 𝑏3(𝛿

3 + 3𝛿𝜎2
𝑦𝑎
)+

+ 𝑏4(𝛿
4 + 6𝛿2𝜎2

𝑦𝑎
+ 3𝜎4

𝑦𝑎
). (25)

The variance 𝜎2
𝑥𝑎

is calculated by the formula

𝜎2
𝑥𝑎

= 𝑥2
𝑎 − 𝑥𝑎

2, (26)

where

𝑥2
𝑎 =

∞∫︁
−∞

𝐺(𝑦)𝑔(𝑦)2𝑑𝑦. (27)

Assuming 𝛿 to have the same order of smallness as
𝜎𝑦𝑎 , we obtain that, to the fourth-order accuracy
in 𝜎𝑦𝑎 ,

𝜎2
𝑥𝑎

= 𝑏21𝜎
2
𝑦𝑎

+ 4𝑏1𝑏2𝛿𝜎
2
𝑦𝑎

+ 2𝜎4
𝑦𝑎
(3𝑏1𝑏3 + 𝑏22)+

+2𝜎2
𝑦𝑎
𝛿2(3𝑏1𝑏3 + 2𝑏22). (28)

3.3. Relations for the coefficients
in the Taylor series of the functions
𝑦 = 𝑓(𝑥) and 𝑥 = 𝑔(𝑦)

For further calculations, we have to find the rela-
tions between the collections of coefficients {𝑏𝑛} (𝑛 =
= 1, 2, 3, 4) and {𝑎𝑛} (𝑛 = 1, 2, 3, 4). The coefficients
𝑎𝑛 are determined by formula (6) via the derivatives
of the function 𝑓(𝑥). The required relations can be
found from the identity

𝑔(𝑓(𝑥)) = 𝑥. (29)

The latter, being rewritten in terms of the Taylor
series for the functions 𝑓(𝑥) and 𝑔(𝑥), reads

∞∑︁
𝑛=0

𝑏𝑛

(︃ ∞∑︁
𝑚=0

𝑎𝑚(𝑥− 𝑥̄)𝑚 − 𝑎0

)︃𝑛
= 𝑥. (30)

By equating the terms with the same power expo-
nents of 𝑥 in the left- and right-hand sides of Eq. (30),
we obtain equations that determine the coefficients
{𝑏𝑛} in terms of the known coefficients {𝑎𝑛}. In cal-
culations, it is convenient to introduce the variable
𝜉 = 𝑥− 𝑥̄ and to rewrite Eq. (30) in the form

∞∑︁
𝑛=0

𝑏𝑛

(︃ ∞∑︁
𝑚=1

𝑎𝑚𝜉𝑚

)︃𝑛
= 𝑥̄+ 𝜉. (31)

Now, we should equate the coefficients in the terms
on the left- and right-hand sides of Eq. (31) with the
same power exponents of 𝜉. The first five equalities
look like

𝑏0 = 𝑥̄, (32)

𝑏1𝑎1 = 1, (33)

𝑎21𝑏2 + 𝑎2𝑏1 = 0, (34)

𝑎31𝑏3 + 2𝑎1𝑎2𝑏2 + 𝑎3𝑏1 = 0, (35)

𝑎41𝑏4 + 3𝑎21𝑎2𝑏3 + 2𝑎1𝑎3𝑏2 + 𝑎22𝑏2 + 𝑎4𝑏1 = 0. (36)

As a result, we obtain

𝑏0 = 𝑥̄, (37)

𝑏1 =
1

𝑎1
, (38)

𝑏2 = −𝑎2
𝑎31

, (39)

𝑏3 =
−𝑎1𝑎3 + 2𝑎22

𝑎51
, (40)

𝑏4 =
−𝑎21𝑎4 + 5𝑎1𝑎2𝑎3 − 5𝑎32

𝑎71
. (41)

3.4. Calculation errors
for the mean value and the variance
obtained by the method of works [2, 3]

In order to determine the calculation errors for 𝑦 and
𝜎𝑦, let us identify the quantities 𝑥̄𝑎 and 𝜎𝑥𝑎

, which
characterize the non-normal distribution of the vari-
able 𝑥 after the transformation 𝑦 → 𝑥 = 𝑔(𝑦) of the
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normally distributed variable 𝑦, with 𝑥̄ and 𝜎𝑥, re-
spectively. As was marked above, it is this equating
that lies in the basis of works [2, 3] and gives rise
to the accuracy restriction of the formulas presented
there. Let us compare 𝑦 with 𝑦𝑎 and 𝜎2

𝑦 with 𝜎2
𝑦𝑎

. The
differences between those values will characterize the
error of the method proposed in works [2, 3] to calcu-
late the mathematical expectation and the variance of
the random variable 𝑦 = 𝑓(𝑥). Our calculations will
be carried out with an accuracy of up to the fourth-
order of smallness in 𝜎𝑥.

The solutions 𝛿 and 𝜎𝑦𝑎 of the equations
𝑥 = 𝑏0 + 𝑏1𝛿 + 𝑏2(𝛿

2 + 𝜎2
𝑦𝑎
) + 𝑏3(𝛿

3 + 3𝛿𝜎2
𝑦𝑎
)+

+ 𝑏4(𝛿
4 + 6𝛿2𝜎2

𝑦𝑎
+ 3𝜎4

𝑦𝑎
), (42)

𝜎2
𝑥 = 𝑏21𝜎

2
𝑦𝑎

+ 4𝑏1𝑏2𝛿𝜎
2
𝑦𝑎

+ 2𝜎4
𝑦𝑎
(3𝑏1𝑏3 + 𝑏22)+

+2𝜎2
𝑦𝑎
𝛿2(3𝑏1𝑏3 + 2𝑏22) (43)

are sought in the form
𝛿 = 𝑑1 + 𝑑2 + 𝑑3 + 𝑑4, (44)
𝜎2
𝑦𝑎

= 𝑠2 + 𝑠4, (45)

where the terms 𝑑𝑛 and 𝑠𝑛 are assumed to have the
𝜎𝑛
𝑥 -order of smallness. Substituting Eqs. (44) and (45)

into Eqs. (42) and (43), equating the coefficients in
the terms with the same order of smallness on the
left- and right-hand sides of the equations obtained,
and taking Eqs. (37)–(41) into account, we arrive at
𝑑1 = 0, (46)
𝑑2 = 𝑎2𝜎

2
𝑥, (47)

𝑑3 = 0, (48)
𝑑4 = 3𝑎4𝜎

4
𝑥 − 6

𝑎2𝑎3
𝑎1

𝜎4
𝑥, (49)

𝑠2 = 𝑎21𝜎
2
𝑥, (50)

𝑠4 = 6𝑎1𝑎3𝜎
4
𝑥 − 10𝑎22𝜎

4
𝑥. (51)

Accordingly, from Eqs. (42) and (43), we get

𝑦𝑎 = 𝑎0 + 𝑎2𝜎
2
𝑥 + 3𝑎4𝜎

4
𝑥 − 6

𝑎2𝑎3
𝑎1

𝜎4
𝑥, (52)

𝜎2
𝑦𝑎

= 𝑎21𝜎
2
𝑥 + 6𝑎1𝑎3𝜎

4
𝑥 − 10𝑎22𝜎

4
𝑥. (53)

By comparing Eqs. (52) and (53) with Eqs. (8)
and (17), one can see that the errors calculated for the
mean value and the variance of the random quantity
𝑦 connected with the normally distributed random
variable 𝑥 by the relation 𝑦 = 𝑓(𝑥) with the use of
the method proposed in works [2, 3] are

𝑦𝑎 − 𝑦 = −6
𝑎2𝑎3
𝑎1

𝜎4
𝑥, (54)

𝜎2
𝑦𝑎

− 𝜎2
𝑦 = −12𝑎22𝜎

4
𝑥. (55)

4. Discussion of the Results Obtained

To illustrate the results obtained, let us compare the
mean values and the variances of the random quantity
𝑦 = 𝑓(𝑥) =

√
𝑥 calculated in different ways:

1. numerical integration in expressions (7) and (9);
2. using the formulas of work [3];
3. using the obtained formulas (8) and (17);
4. using the obtained formulas (52) and (53).
Furthermore, let us estimate the accuracy of the

error propagation method, which was proposed in
works [2, 3], using formulas (54) and (55).

While calculating 𝑦, 𝑦𝑎, 𝜎2
𝑦, and 𝜎2

𝑦𝑎
, we have to

know the Taylor series expansion coefficients of the
function 𝑓(𝑥) =

√
𝑥 in a vicinity of the mean value 𝑥̄

of the random quantity 𝑥. Using Eq. (6), we obtain

𝑎0 =
√
𝑥̄, (56)

𝑎1 =
1

2
√
𝑥̄
, (57)

𝑎2 = − 1

8𝑥̄
√
𝑥̄
, (58)

𝑎3 =
1

16𝑥̄2
√
𝑥̄
, (59)

𝑎4 = − 5

128𝑥̄3
√
𝑥̄
. (60)

The formulas for the mean value and the variance
obtained in work [3] are

𝑦Rode =
4

√︂
𝑥̄2 − 1

2
𝜎2
𝑥, (61)

𝜎2
𝑦Rode

= 𝑥̄−
√︂

𝑥̄2 − 1

2
𝜎2
𝑥. (62)

Let us compare these results with 𝑦Numerical and
𝜎2
𝑦Numerical

obtained by numerically integrating expres-
sions (7) and (9) to an accuracy of 10−10, by putting
𝑓(𝑥) =

√︀
|𝑥|. Below, the results of a numerical inte-

gration will be referred to as “exact” ones. The error
is determined as the difference between the calculated
value and the corresponding result of a numerical in-
tegration.

In Table, the results of calculations of the mean
value and the variance of the quantity 𝑦 after the
transformation 𝑦 =

√
𝑥 of the random variable 𝑥

distributed according to Eq. (1) with 𝑥̄ = 25 and
𝜎𝑥 = 5 are quoted. As was expected, 𝑦 and 𝜎2

𝑦 are the
closest to the exact values. The calculation errors for
𝑦Rode and 𝑦𝑎 are approximately identical, as well as
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Calculation results for the mean
value and variance variance of the quantity
𝑦 =

√
𝑥 at 𝑥̄ = 25 and 𝜎𝑥 = 5

Quantity Value Error

𝑦Rode 4.9748103 8.7× 10−4

𝑦 4.9740625 1.2× 10−4

𝑦𝑎 4.9748125 8.7× 10−4

𝜎2
𝑦Numerical

0.2599280 0

𝜎2
𝑦Rode

0.2512627 −8.7× 10−3

𝜎2
𝑦 0.2587500 −1.2× 10−3

𝜎2
𝑦𝑎 0.2512500 −8.7× 10−3

the calculation errors for 𝜎2
𝑦Rode

and 𝜎2
𝑦𝑎

. This means
that expressions (52) for 𝑦𝑎 and (53) for 𝜎2

𝑦𝑎
describe

well dependences (61) and (62) obtained in work
[3]. Their differences are 𝑦Rode−𝑦𝑎 = −2.2×10−6 and
𝜎2
𝑦Rode

− 𝜎2
𝑦𝑎

= 1.3 × 10−5 for the indicated parame-
ter values. The data presented in Table also demon-
strate that the substitution of the normal distribution
by a non-normal one, for which formulas (52), (53)
and (61), (62) are valid – this procedure was made in
works [2, 3] – inserts the errors 𝑦𝑎 − 𝑦 = 7.5 × 10−4

and 𝜎2
𝑦𝑎

− 𝜎2
𝑦 = −7.5× 10−3.

Note that the illustrative example given in work [3]
as an additional argument in favor of the error prop-
agation method [2, 3] developed on the basis of in-
verse functions, for which integrals in Eqs. (7) and (9)
can be calculated analytically, looks like a convincing
one. The reason is very simple: the ratio between the
parameters 𝑥̄ = 40.45 and 𝜎𝑥 = 0.89 used in calcu-
lations turns out rather small, 𝜎𝑥/𝑥̄ = 2.2× 10−2. In
this case, one may expect that one or two terms in the
series expansion of the function 𝑓(𝑥) =

√
𝑥 will suf-

fice for a rather accurate calculation of the mean value
and the variance. Our calculations for the same val-
ues of statistical parameters gave 𝑦Rode−𝑦Numerical =
= 1.4× 10−7 and 𝜎2

𝑦Rode
− 𝜎2

𝑦Numerical
= −1.8× 10−6.

5. Conclusions

In this work, the accuracy of the error propagation
method proposed in works [2,3], which was developed

for the transformation 𝑦 = 𝑓(𝑥) on the basis of for-
mulas obtained for the inverse function 𝑥 = 𝑔(𝑦) with
the normal distribution of the random variable 𝑦, is
analyzed. Our results testify that this method, gen-
erally speaking, has no advantages over the standard
method – the expansion the function 𝑓(𝑥) into the
Taylor series and the account for only the zeroth and
first terms [1] – while calculating the variance of the
random variable 𝑦. At the same time, it gives a more
precise, with an accuracy of 𝜎2

𝑥, mean value, which is
equivalent to the account for the second term in the
Taylor series. As one can see from formulas (52)–(55),
the case where the second derivative of 𝑓(𝑥) at 𝑥 = 𝑥̄
vanishes is an exception, and the method proposed in
works [2, 3] gives the average value and the variance
with an accuracy of least 𝜎4

𝑥.
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Translated from Ukrainian by O.I. Voitenko

В.I. Романенко, Н.В.Корнiловська

ПРО ТОЧНIСТЬ РОЗРАХУНКУ
ПЕРЕНЕСЕННЯ ПОХИБОК ЗА АНАЛIТИЧНИМИ
ФОРМУЛАМИ ДЛЯ ОБЕРНЕНОГО ПЕРЕТВОРЕННЯ

Р е з ю м е

Оцiнено точнiсть розрахунку перенесення похибок при пе-
ретвореннi 𝑥 → 𝑦 = 𝑓(𝑥) при нормальному розподiлi випад-
кової величини 𝑥 на основi формул для перенесення похи-
бок, отриманих для оберненого перетворення 𝑦 → 𝑥 з роз-
подiленою за нормальним законом випадковою величиною
𝑦. Показано, що у загальному випадку точнiсть розрахунку
середнього значення i дисперсiї випадкової величини 𝑦 має
перший порядок за дисперсiєю випадкової величини 𝑥.
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