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BOSE GAS IN CLASSICAL
ENVIRONMENT AT LOW TEMPERATURES

The properties of a dilute Bose gas with the non-Gaussian quenched disorder are ana-
lyzed. Being more specific, we have considered a system of bosons immersed in the classical
bath consisting of the non-interacting particles with infinite mass. Making use of perturbation
theory up to the second order, we have studied the impact of environment on the ground-state
thermodynamic and superfluid characteristics of the Bose component.
K e yw o r d s: dilute Bose gas, weak non-Gaussian disorder, superfluid properties.

1. Introduction

The properties of a Bose gas with quenched disorder
was studied extensively during last two decades. This
rise of an interest in such a system was stimulated
by the possibility to observe Bose glass state transi-
tion [1], where the superfluidity disappears [2] even
at very low temperatures. The first attempts for mi-
croscopic description within the approximate second-
quantization method adopted for Bose systems with
disorder at low temperatures were undertaken in
[3]. The further developments [4], particularly the
non-perturbative extensions to the case of an arbi-
trary two-body coupling strength [5] and a strong ex-
ternal potential [6,7] generally confirm these findings.
Diffusive Monte Carlo simulations [8] also agree with
the Bogoliubov-like result in the dilute limit, but the
increase of the disorder potential makes the differ-
ences more visible. The finite-temperature phase di-
agram of the system was clarified extensively in [9–
11]. A shift of the Bose–Einstein condensation tran-
sition temperature was determined in [12, 13], and
the critical parameters of a Bose gas in the disor-
dered medium were calculated [14] using quantum
Monte Carlo methods. No less interesting is the struc-
ture of the quasiparticle spectrum and damping for a
Bose systeam in the weak random external potential
[15–18]. In particular, it was shown that the presence
of a disorder broadens the phonon peak of the dy-
namic structure factor. For a case of liquid 4He with
the randomly distributed static impurities, this fac-
tor was computed [19] by means of the Path Inte-
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gral Monte Carlo method and experimentally mea-
sured in Ref. [20]. Another consequence of a disorder
is the necessity to correct the exact universal identi-
ties which are characteristic of many-boson systems
like the Hugenholtz–Pines theorem [21] and Joseph-
son’s relation [22].

In recent experiments, the disorder is usualy pro-
duced by the employment of an optical speckle poten-
tial, whose characteristics are precisely controllable
[23]. The behavior of bosons in a random potential
created by laser speckles was also investigated theo-
retically [24–26]. The realization of a disorder simple
for the understanding can be achieved, however, by
the immersion of randomly distributed static impu-
rities in the Bose condensate. The quenched disorder
in this system can be then produced by averaging
over positions of impurities. When the concentration
of impurity particles is small or the interaction with
bosons is weak, the function governing the distribu-
tion of the random external potential acting on Bose
particles can be modeled by the Gaussian. This is ex-
actly the situation considered practically in all avail-
able theoretical studies concerning interacting bosons
with disorder. But, for weakly-interacting Bose sys-
tems, the role of higher-order boson-impurity scat-
tering processes increases that requires to go be-
yond the standard model of weak disorder and to
include the distribution non-Gaussianity. The latter
forms the main goal of present study.

2. Formulation of Problem

We consider the system of 𝑁 interacting bosons im-
mersed in the bath formed by 𝒩 non-interacting clas-
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sical (infinite mass) particles. This model is described
by the following Euclidean action after the elimina-
tion of “rapidly” varying fields (see, [27] for more
details):

𝑆 =

∫︁
𝑑𝑥𝜓*(𝑥)

{︂
𝜕

𝜕𝜏
+

~2∇2

2𝑚
+ 𝜇− 𝑔𝜌(r)

}︂
𝜓(𝑥)−

− 𝑔

2

∫︁
𝑑𝑥|𝜓(𝑥)|4, (1)

where the complex field 𝜓(𝑥) describes bosonic de-
grees of freedom, 𝜇 is the chemical potential that
fixes the Bose gas density. The integration over 𝑥 =
= (𝜏, r) is carried out in a (3 + 1)-domain of the
volume 𝛽𝑉 (𝛽 is the inverse temperature) with pe-
riodic boundary conditions. The quantity 𝜌(r) =
=

∑︀
1≤𝑗≤𝒩 𝛿(r− r𝑗) represents the density of homo-

geneously distributed classical particles. Both boson-
boson and boson-impurity two-body interactions are
assumed to be short-ranged that are characterized by
the coupling constants 𝑔 and 𝑔, respectively. The lat-
ter should be related to the appropriate 𝑠-wave scat-
tering lengths at the end of calculations. We have

1

𝑔
=

1

𝑡
− 1

𝑉

∑︁
k

1

2𝜀𝑘
,

1

𝑔
=

1

𝑡
− 1

𝑉

∑︁
k

1

𝜀𝑘
, (2)

where 𝑡=4𝜋~2𝑎/𝑚, 𝑡=2𝜋~2𝑎̃/𝑚, and 𝜀𝑘 = ~2𝑘2/2𝑚
is the free-particle dispersion. Introducing phase-
density representation for bosonic fields 𝜓*(𝑥) =
=

√︀
𝑛(𝑥)𝑒−𝑖𝜙(𝑥), 𝜓(𝑥) =

√︀
𝑛(𝑥)𝑒𝑖𝜙(𝑥) and making

use of the Fourier transformation for 𝑛(𝑥) and 𝜙(𝑥),
we get

𝑛(𝑥) = 𝑛+
1√
𝛽𝑉

∑︁
𝐾

𝑒𝑖𝐾𝑥𝑛𝐾 ,

𝜙(𝑥) =
1√
𝛽𝑉

∑︁
𝐾

𝑒𝑖𝐾𝑥𝜙𝐾 ,
(3)

where 𝐾 = (𝜔𝑘,k) stands for the bosonic Matsubara
frequency 𝜔𝑘 and three-dimensional wave-vector k, as
well as for the classical component density

𝜌(r) = 𝜌+
1√
𝑉

∑︁
k̸=0

e𝑖kr𝜌k, (4)

where 𝜌 = 𝒩/𝑉 is the average density of bath par-
ticles and 𝜌k = 1√

𝑉

∑︀
1≤𝑗≤𝒩 e−𝑖kr𝑗 . So, we rewrite

action (1) in the following way:

𝑆 = 𝑆𝐵 + 𝑆𝑑. (5)

The first term describes the Bose gas itself [28]

𝑆𝐵 = 𝛽𝑉 𝜇𝑛− 1

2
𝛽𝑉 𝑔𝑛2 −

− 1

2

∑︁
𝐾

{︂
𝜔𝑘𝜙𝐾𝑛−𝐾 − 𝜔𝑘𝜙−𝐾𝑛𝐾 +

+2𝑛𝜀𝑘𝜙𝐾𝜙−𝐾 +

[︂
𝜀𝑘
2𝑛

+ 𝑔

]︂
𝑛𝐾𝑛−𝐾

}︂
+

+
1

3!
√
𝛽𝑉

∑︁
𝐾+𝑄+𝑃=0

1

4𝑛2
(𝜀𝑘 + 𝜀𝑞 + 𝜀𝑝)𝑛𝐾𝑛𝑄𝑛𝑃 +

+
1

2
√
𝛽𝑉

∑︁
𝐾,𝑄

~2

𝑚
kq𝜙𝐾𝜙𝑄𝑛−𝐾−𝑄 + ..., (6)

while 𝑆𝑑 accounts for the presence of the environment:

𝑆𝑑 = −𝛽𝑉 𝑔𝑛𝜌−
√︀
𝛽𝑔

∑︁
𝐾

𝛿𝜔𝑘,0𝜌−k𝑛𝐾 . (7)

Dots in Eq. (6) stand for terms with products of
four, five, etc. density fluctuation fields 𝑛𝐾 and de-
scribe the higher-order quasiparticle scattering pro-
cesses, which are less probable for weakly interacting
Bose systems and, therefore, negligible. The thermo-
dynamic relation −𝜕Ω/𝜕𝜇 = 𝑁 for the grand poten-
tial together with explicit form of Eq. (6) fix 𝑛 = 𝑁/𝑉
[29,30] to be the density of the Bose system. This ob-
servation allows us to proceed in the canonical ensem-
ble. In order to obtain a physically meaningful result,
the averaging over the positions of classical particles
should be performed for the free energy of our sys-
tem. This particularly means that, first, we have to
calculate the free energy 𝐹 of the Bose gas in the pres-
ence of a local external potential 𝑔𝜌(r) and then to
identify the Helmholtz potential of the system “Bose
gas + classical bath” with

𝐹 =
1

𝑉 𝒩

∫︁
𝑉

𝑑r1 ...

∫︁
𝑉

𝑑r𝒩𝐹. (8)

Let us briefly discuss the above averaging procedure
and how it can be understood from the point of view
of an experimental realization. Suppose that the pre-
pared mixture of bosons and heavy particles is large
enough to be divided (at least imaginably) into many
independent macroscopic “regions”. In every such “re-
gion,” the positions of classical particles distinguish
from the neighboring ones. Therefore, by probing the
properties of the whole system, we actually observe
the averaged impact of all “regions”. The described
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situation is the simplest realization of the quenched
disorder in many-body systems. Note that it suffi-
ciently differs from the case of the so-called annealed
disorder, which can be also realized on the basis of
our simple two-component model at finite tempera-
tures. In that case, the positions of heavy impurities
vary slowly, but the relaxation time of the “light” com-
ponent (bosons in the present study) is assumed to
be small enough to keep the system at the thermody-
namic equilibrium.

In the following, we will assume that bosons are
weakly coupled to one another and will study the im-
pact of the classical component on the properties of
a Bose gas in the zero-temperature limit. It is well
known that the presence of a disorder or an interac-
tion with other quantum systems depletes the super-
fluid density of the Bose gas even at absolute zero
[31–34]. Of course, this phenomena is observed in our
case too. In order to calculate the normal density of a
superfluid, we have to assume that the Bose subsys-
tem moves as a whole with velocity v. Simple analysis
[35] shows that the account for this motion only leads
to a shift 𝜔𝑘 → 𝜔𝑘−𝑖~vk of the Matsubara frequency
in the action 𝑆𝐵 . Then the general consideration in
the spirit of perturbation theory in terms of 𝑔 leads to

𝐸̄v = 𝐸𝐵 +𝑁
𝑚v2

2
+ 𝑉 𝑔𝑛𝜌−

− 1

2

∑︁
k

𝑔2𝜌k𝜌−k⟨𝑛𝐾𝑛−𝐾⟩|𝜔𝑘=0 +

+
1

3!

∑︁
k+q+p=0

𝑔3𝜌k𝜌q𝜌p
√︀
𝛽⟨𝑛𝐾𝑛𝑄𝑛𝑃 ⟩|𝜔𝑘,𝜔𝑞,𝜔𝑝=0 (9)

for the ground-state energy of the system, where 𝐸𝐵

is the contribution of the Bose gas in rest alone,
and ⟨𝑛𝐾𝑛−𝐾⟩, ⟨𝑛𝐾𝑛𝑄𝑛𝑃 ⟩, ... denote the irreducible
density correlation functions of pure bosons mov-
ing with velocity v. The structure factors of classi-
cal non-interacting particles are fully determined by
their density and can be easily evaluated by using the
procedure described above: 𝜌k𝜌−k = 𝜌, 𝜌k𝜌q𝜌p =

= 𝜌𝛿k+q+p,0/
√
𝑉 , etc. Expanding r.h.s. of Eq. (9) in

powers of velocity

𝐸̄v = 𝐸̄v=0 + 𝑉
𝑚v2

2
𝑛𝑠 + 𝑜(v2) (10)

(actually in powers of the dimensionless parameter
𝑣/𝑐, where 𝑐 is the sound velocity) to the quadratic

order, one obtains the density 𝑛𝑠 of the superfluid
component. It should be noted that Eq. (10) rep-
resents the energy of a Bose system with disorder
in the laboratory frame, and it assumes that only
the superfluid component is moving with velocity
v. Equation (10) also suggests that, even at abso-
lute zero, the superfluid component of the Bose gas
is depleted due to the disorder-induced loss of coher-
ence. The considered situation is somewhat similar to
the Bose system with mobile impurities [36] (for in-
stance, small amount of 3He atoms immersed in liquid
4He), where the effective mass of impurity particles
can be straightforwardly related to the depletion of
the superfluid density (see, for example, [37]). Fur-
thermore, the increase of the disorder strength may
lead to the total destruction of the superfluidity in
Bose systems, but this is not a case of weak disorder
addressed in this study. Another consequence follow-
ing from Eq. (10) is that, even at very low temper-
atures, the presence of a quenched disorder modifies
the equations of the two-fluid hydrodynamics provid-
ing that the velocity of the first sound should decrease
(because the total density of bosons in front of the
derivative in the equation 𝑐2 = 𝑛

𝑚
𝜕𝜇
𝜕𝑛 has to be re-

placed with 𝑛𝑠). The latter fact can be used for the
experimental measurements of the superfluid density
depletion in disordered Bose systems.

In addition to a depletion of the superfluid den-
sity, the interaction with the bath also decreases the
number of Bose particles with zero momentum. To
calculate the condensate density of a Bose gas, we
use the following prescription: first, within the varia-
tional differentiation

𝑁𝑘 =

(︂
𝛿𝐸̄

𝛿𝜀𝑘

)︂
𝑛

, (11)

we determine the distribution function of particles
with non-zero momentum and then obtain the con-
densation fraction

𝑛0
𝑛

= 1− 1

𝑁

∑︁
k ̸=0

𝑁𝑘. (12)

To this stage, our consideration is formally exact, and
the problem is actually reduced to the calculation of
irreducible density correlators of a pure Bose gas. But
even in the Bogoliubov approximation, these calcu-
lations are very cumbersome. Therefore, we restrict
ourselves below to the case of weak interaction of in-
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terspecies, where the perturbation theory in terms of
𝑔 can be used.

3. Perturbation Theory

By treating the Bose subsystem on the basis of Bo-
goliubov’s theory, we greatly simplify the analysis be-
low. But, at that time, we restrict it to considera-
tion of dilute gases. This is exactly the situation re-
alized in experiments with cold alkali atoms. From
the point of view of further calculations in the di-
lute limit, we are free to drop the beyond Bogoli-
ubov corrections to the various density correlation
functions. Additionally, working with the same accu-
racy, one should treat the ground-state energy of pure
bosons 𝐸𝐵 = 𝐸LHY on level of the Lee–Huang–Yang
[38] formula.

Following the above-mentioned approximation
scheme in the first order of perturbation theory, we
have to neglect the last term in Eq. (9) and substitute
the pair density correlation function

⟨𝑛𝐾𝑛−𝐾⟩ = 2𝑛𝜀𝑘
𝐸2

𝑘 + (𝜔𝑘 − 𝑖~kv)2
, (13)

with 𝐸𝑘 =
√︀
𝜀2𝑘 + 2𝑛𝑔𝜀𝑘 being Bogoliubov’s spec-

trum. The resulting formula has to be used for ob-
taining the particle distribution 𝑁𝑘 and condensate
density

𝑛0
𝑛

=
𝑛𝐵0
𝑛

− 1

𝑉

∑︁
k ̸=0

𝜌𝑡2
𝜀2𝑘
𝐸4

𝑘

, (14)

(𝑛𝐵0 /𝑛 is the Bogoliubov result for pure bosons) in the
adopted approximation and after the renormalization
of the coupling constant (2) for the explicit evaluation
of the energy correction

𝐸̄
(1)
v=0

𝑁
= 𝜌𝑡− 1

𝑉

∑︁
k ̸=0

𝜌𝑡2
[︂
𝜀𝑘
𝐸2

𝑘

− 1

𝜀𝑘

]︂
, (15)

and a depletion of the superfluid component

𝑛𝑠
𝑛

= 1− 4

3𝑉

∑︁
k̸=0

𝜌𝑡2
𝜀2𝑘
𝐸4

𝑘

. (16)

From general principles as well as from the above for-
mulas, it is clear that, in the first-order approxima-
tion, the results derived for our system are identical
to those obtained for a dilute Bose gas with weak dis-
order [8]. The differences appear in the next orders of
the formulated perturbation theory.

The second-order calculations require the account
for the last term in Eq. (9). The appropriate three-
point density correlator reads

⟨𝑛𝐾𝑛𝑄𝑛𝑃 ⟩ =
𝛿𝐾+𝑄+𝑃,0√

𝛽𝑉
×

×
[︂
~2

𝑚
kq⟨𝑛𝐾𝜙−𝐾⟩⟨𝑛𝑄𝜙−𝑄⟩⟨𝑛𝑃𝑛−𝑃 ⟩+

+
𝜀𝑘
4𝑛2

⟨𝑛𝐾𝑛−𝐾⟩⟨𝑛𝑄𝑛−𝑄⟩⟨𝑛𝑃𝑛−𝑃 ⟩+ perm.
]︂
, (17)

in the dilute limit, where we have used shorthand no-
tation for the phase-density correlator

⟨𝜙𝐾𝑛−𝐾⟩ = 𝜔𝑘 − 𝑖~kv
𝐸2

𝑘 + (𝜔𝑘 − 𝑖~kv)2
. (18)

The further strategy is the same as previously
used. By calculating the next correction to the parti-
cle distribution 𝑁𝑘, we are in position to obtain the
condensate density up to the second-order of pertur-
bation theory. Then the application of the coupling
constant renormalization procedure (2) yields

6

𝑉 2

∑︁
k,q ̸=0

𝜌𝑡3𝑛𝑡
𝜀𝑘
𝐸2

𝑘

𝜀𝑞
𝐸2

𝑞

𝜀2|k+q|

𝐸4
|k+q|

−

− 2

𝑉

∑︁
k̸=0

𝜌𝑡2
𝜀2𝑘
𝐸4

𝑘

1

𝑉

∑︁
q ̸=0

𝑡

[︂
𝜀𝑞
𝐸2

𝑞

− 1

𝜀𝑞

]︂
(19)

for the fraction of non-condensed particles. In the
same fashion, we obtain the energy correction

𝐸̄
(2)
v=0

𝑁
=

1

𝑉 2

∑︁
k,q

𝜌𝑡3
{︂
𝜀𝑘
𝐸2

𝑘

𝜀𝑞
𝐸2

𝑞

[︂
𝜀2|k+q|

𝐸2
|k+q|

− 1

]︂
+

+

[︂
𝜀𝑘
𝐸2

𝑘

− 1

𝜀𝑘

]︂[︂
𝜀𝑞
𝐸2

𝑞

− 1

𝜀𝑞

]︂}︂
(20)

and the second-order normal density fraction

2

3𝑉 2

∑︁
k,q

𝜌𝑡3
(︂
~2kq
𝑚

)︂2 𝜀|k+q|

𝐸2
𝑘𝐸

2
𝑞𝐸

2
|k+q|

−

− 4

3𝑉 2

∑︁
k,q

𝜌𝑡3
𝜀3|k+q|

𝐸4
|k+q|

𝜀𝑞
𝐸2

𝑞

𝜀𝑘
𝐸2

𝑘

−

− 8

3𝑉 2

∑︁
k,q

𝜌𝑡3
{︂
𝜀2𝑘
𝐸4

𝑘

[︂
𝜀2𝑞
𝐸2

𝑞

− 1

]︂
𝜀|k+q|

𝐸2
|k+q|

+

+
𝜀2𝑘
𝐸4

𝑘

[︂
𝜀𝑞
𝐸2

𝑞

− 1

𝜀𝑞

]︂}︂
(21)

associated with the presence of a disorder.
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4. Results

An interesting feature of the model with a delta-like
potential is that all integrals appearing during the
calculation of energy corrections and the depletion of
the condensate and superfluid densities can be evalu-
ated analytically to the very end. Particularly, for the
fraction of condensed particles in the presence of the
classical bath, we obtained the following expansion:

𝑛0
𝑛

=
𝑛𝐵0
𝑛

−
√
𝜋

2

𝜌𝑎̃2√
𝑛𝑎

− 6𝜋𝜌𝑎̃3. (22)

After the tedious integration, the formula for a super-
fluid density with a similar structure was also derived
in the form:

𝑛𝑠
𝑛

= 1− 2
√
𝜋

3

𝜌𝑎̃2√
𝑛𝑎

− 4𝜋

{︂
3− 2

3
ln

16

3

}︂
𝜌𝑎̃3. (23)

The situation with energy is more complicated. There
is no problem in the calculation of the first-order cor-
rection, but the second one is logarithmically diver-
gent. Let us recall that the same type of problems
originally occurs [39] during the computation of the
beyond Lee–Huang–Yang ground-state energy of a
pure Bose gas and is totally connected with the point-
like approximation of the two-body potential. App-
lying a similar regularization procedure, i.e., cutting
off the upper integration limit on a scale of order 1/𝑎̃,
we finally have (with logarithmic accuracy)

𝐸̄v=0

𝑁
=
𝐸LHY

𝑁
+

+ 𝜌𝑡

{︂
1 + 4

√
𝜋
√
𝑛𝑎𝑎̃2 − 8𝜋𝑛𝑎𝑎̃2 ln

1

𝑛𝑎𝑎̃2

}︂
. (24)

Of course, this result can be justified within a
more sophisticated consideration which particularly
intends the explicit momentum dependence of the 𝑡-
matrix (2). Indeed, in the limit of 𝑘 → ∞, the lead-
ing asymptote is 𝑡 ∼ 1/(𝑘𝑎̃)2 in the limit of vanishing
effective interaction range that provides the conver-
gence of integrals and the correctness of the above
cut-off procedure.

5. Conclusions

In summary, by means of the hydrodynamic ap-
proach, we have studied properties of a dilute Bose
gas with the non-Gaussian quenched disorder. The re-
alization of an external random potential is performed

by inserting a macroscopic number of non-interacting
classical particles with infinite mass into the sys-
tem. Assuming that the two-body potential describ-
ing the interaction between bath particles and bosons
is short-ranged and weak, we have perturbatively an-
alyzed the thermodynamic and superfluid character-
istics of the system. Particularly, we obtained, in ad-
dition to the well-known Bogoliubov-like result, the
second-order beyond-mean-field corrections to the en-
ergy, condensate fraction, and superfluid density of
the Bose gas. It is instructive to note that the pres-
ence of the environment generally depletes the su-
perfluid and condensate densities. Furthermore, the
second-order terms of these observables do not de-
pend on the number of bosons and are totally deter-
mined by the interaction with impurities.

The possible experimental visualization of the cal-
culated next to beyond-mean-field effects can be re-
alized not only on the system of “dirty” bosons. Very
promising in this context is a two-component mix-
ture of Fermi particles [40], where the strength of the
tunnable interaction can be tuned in a wide range to
observe both the weakly non-ideal Fermi gas and the
dilute Bose condensate of dimers.
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РОЗРIДЖЕНИЙ БОЗЕ-ГАЗ В КЛАСИЧНОМУ
СЕРЕДОВИЩI ПРИ НИЗЬКИХ ТЕМПЕРАТУРАХ
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Проаналiзовано властивостi розрiдженого бозе-газу з нега-
усовим безладом. Бiльш конкретно, ми розглянули систему
бозонiв, занурених у класичну ванну, що складається з нев-
заємодiючих частинок з нескiнченною масою. Використову-
ючи теорiю збурень до другого порядку, ми вивчили вплив
середовища на термодинамiчнi та надплиннi характеристи-
ки основного стану бозе-компоненти.
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