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SOME EXAMPLES OF SEEMINGLY PLAUSIBLE
INTERPRETATION OF EXPERIMENTAL RESULTSPACS 06.20.Dk, 42.30.-d

Some examples of a seemingly plausible but wrong interpretation of experimental results have
been considered on the basis of the theory of rigorous mathematical interpretation of exper-
imental data. The ability of apparatus errors to significantly affect the measurement results
in optical experiments is demonstrated. Ignoring this fact can result in erroneous conclusions
concerning the physical nature of the optical phenomena under consideration.
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1. Introduction

The fact that the reliability of interpretation of the
results of physical studies is of fundamental impor-
tance has been emphasized by different outstanding
scientists [1, 2]. In particular, O.S. Davydov wrote
[2]: “Any scientific research in physics (and not only
in physics) is undoubtedly associated with the inter-
pretation of the results obtained. This interpretation
is often called the ‘elucidation of the physical sense’
or the reaching of ‘apprehension’ of the studied phe-
nomena. As a rule, the interpretation of a physical
phenomenon reflects the level of science development
in the corresponding period. Therefore, it is not ab-
solute, but can change in time”. A correct interpre-
tation of the results of a scientific physical experi-
ment inevitably demands that the researcher should
have a clear concept about the interaction between all
components of the experimental process. This under-
standing, in turn, cannot be complete and reliable,
if modern achievements of theoretical, mathematical,
and computational physics are ignored.

A very important qualitative circumstance of this
work consists in the consideration of the fact that ex-
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perimental results include measurement errors, since
any experiment is always carried out on a real experi-
mental installation. This set of data together with er-
rors of various kinds forms a basis, on which serious
difficulties arise quite often. In this work, we examine
a few examples of experimental data, for which their
interpretation seems plausible, but is wrong.

Section 2 is devoted to the description of basic
mathematical concepts and methods applied to solve
the problems of interpretation of experimental data.
The rigorous mathematical formulation of the latter
can often be reduced to the solution of the so-called
ill-posed problems [3–5]. Practical needs to analyze
the results of experimental researches in physics, geo-
physics, biophysics, ecology, and many other scienti-
fic domains are so urgent that the task to critically
examine the modifications and developments of the
methods applied to the solution of ill-posed problems
still remains challenging. In spite of a considerable
number of fundamental books, reviews, and scientific
articles, the body of publications dealing with the
problems of the numerical solution of ill-posed prob-
lems continues to grow. Among those publications, a
series of works by Academician of the Russian Aca-
demy of Sciences V.N. Strakhov [6–16] can be distin-
guished by his unordinary approach to the A.N. Ti-
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khonov regularization method. In those works, an at-
tempt was made to prove that the classical regulariza-
tion method for the solution of systems of linear alge-
braic equations with approximately given right-hand
sides does not satisfy the requirements of geophysical
practice, being “defective”.

In Section 3, on the basis of expounded mathemat-
ical methodology, a possible plausible interpretation
of the availability of experimental error in applied re-
searches is analyzed. This situation arises quite often,
e.g., when considering the results of I-scan (from “in-
tensity scanning”) optical experiment. Here, in con-
trast to the Z-scan experiment, where the specimen is
moved along the axis 𝑂𝑧 through the focus of Gaus-
sian beam, the intensity of the laser beam incident
on the specimen is varied in wide limits [17–22]. In
this case, the account of hardware features inherent
to the measurement installation is extremely impor-
tant, especially at low-intensity sections where instru-
ment errors play a crucial role in the measurement
results. A seemingly plausible interpretation of such
results can give rise to wrong conclusions about the
orders of magnitudes for susceptibilities in various
media. In this work, we discuss an example of ex-
periment in which a danger of such an interpretation
can emerge. This part of the paper has an applied
value for the interpretation of experimental data, be-
ing presented by us for the first time.

Conclusions and final remarks are made in Sec-
tion 4.

2. Mathematical Basis of Interpretation
of the Results of V.N. Strakhov’s Hypothesis

Let us consider a system of linear algebraic equations
(SLAE)
𝐴𝑥 = 𝑢𝛿 = 𝑢+ 𝛿 𝑢, (2.1)
where 𝑢 ∈ 𝐸 and 𝛿𝑢 ∈ 𝐸 are the vectors of useful
signal and its error, respectively (𝐸 is a linear space,
and dim𝐸 = 𝑁); 𝐴 is a given 𝑁 × 𝑀 -matrix; and
𝑥 ∈ 𝑅 is a sought 𝑀 -vector (𝑅 is a linear space, and
dim𝑅 = 𝑀).

For the solution of SLAE (2.1), V.N. Strakhov has
proposed a new theory of regularization, which was
based on two hypotheses [7–9, 11, 14, 15]. Namely,

1) the error vector satisfies the following inequali-
ties:
0 6 inf

𝑥∈𝑅
||𝑢𝛿 −𝐴𝑥|| 2𝐸 < 𝛿2min 6

6 ||𝛿 𝑢|| 2𝐸 6 𝛿 2
max < +∞; (2.2)

where ||𝛿 𝑢||𝐸 is the length of vector 𝛿 𝑢 (||𝛿 𝑢||𝐸 ∈
[𝛿min, 𝛿max]);

2) the vectors 𝑢 and 𝛿𝑢 are mutually orthogonal,
i.e.

(𝑢, 𝛿𝑢) = 0. (2.3)

For instance, in work [6], we read: “It is evident that
the vectors 𝑢 and 𝛿𝑢 in the initial system (2.1) are
coupled by no analytical relation in the general case;
furthermore, in many practically important cases, the
a priori condition (𝑢, 𝛿𝑢) = 0 can be adopted. Hence,
if a functional relation appears between the vectors 𝑢̃𝛼

and Δ𝑢𝛼, which are estimates of the vectors 𝑢 and 𝛿𝑢,
in the framework of any regularization construction,
the construction of this sort has to be regarded as
defective (pathological). The same statement is evi-
dently valid in the case where a functional relation
between the vectors 𝑥𝛼 and 𝑟𝛼 = 𝑢𝛿 − 𝐴𝑥𝛼 emerges
within the limits of any regularization construction.

Now, let us demonstrate that ... the general
construction of additive regularization is defective;
hence, the Lavrent’yev, Tikhonov ... constructions
turn out to be defective”.

V.N. Strakhov used the a priori assumption that
Eq. (2.3) is obeyed even before the publication of
work [6] (see, e.g., works [13, 16]).

Strakhov’s works did not contain any assump-
tion concerning the magnitude of the scalar product
(𝑢𝛿, 𝛿𝑢). In other words, in a lot of practically im-
portant cases, this quantity can be positive, negative,
and sometimes equal to zero. This statement follows
from the fact that, in the general case, the vectors
𝑢 and 𝛿𝑢 are not coupled by any analytical relation,
leaving aside the definition

𝑢𝛿 = 𝑢+ 𝛿𝑢, (2.4)

which follows from Eq. (2.1). However, this is enough
to draw some conclusions. Let us be convinced of
that. Let us scalarly multiply relation (2.4) by the
vector 𝛿𝑢,

(𝑢𝛿, 𝛿𝑢) = (𝑢, 𝛿𝑢) + ||𝛿𝑢||2𝐸 . (2.5)

Using hypothesis (2.3) and assuming that the product
(𝑢𝛿, 𝛿𝑢) is negative, we may obtain from Eq. (2.5)
that

0 > (𝑢𝛿, 𝛿𝑢) = ||𝛿𝑢||2𝐸 .

482 ISSN 2071-0194. Ukr. J. Phys. 2017. Vol. 62, No. 6



Some Examples of Seemingly Plausible Interpretation of Experimental Results

However, the inequality ||𝛿𝑢||2𝐸 < 0 is absurd by its
sense, whereas the equality ||𝛿𝑢||2𝐸 = 0 contradicts
condition (2.2). Therefore, only the variant where

(𝑢𝛿, 𝛿𝑢) = ||𝛿𝑢||2𝐸 > 0 (2.6)

remains. This relation is undoubtedly satisfied, e.g.,
if 𝑢𝛿 = 𝛿𝑢, i.e. when the experimental results are
wrong.

If one also takes into account that relation (2.3)
is valid at 𝛿𝑢 = 0, i.e. in the trivial case, the exam-
ined situation can be described more exactly as fol-
lows. Let the vectors 𝛿𝑢 be elements of the space 𝑅𝑁𝛿

(1 6 𝑁𝛿 6 𝑁), and let the vectors 𝑢 be elements of
the space 𝑅𝑁𝑢 (𝑁𝑢+𝑁𝛿 = 𝑁). In addition, the space
𝑅𝑁 is a direct sum of the subspaces 𝑅𝑁𝑢 and 𝑅𝑁𝛿 ,
i.e.

𝑅𝑁 = 𝑅𝑁𝑢 ⊕𝑅𝑁𝛿 . (2.7)

Then the vector 𝑢𝛿 looks like

𝑢𝛿 = (𝑢1, 𝑢2, ..., 𝑢𝑁𝑢
, 𝛿1𝑢, 𝛿2𝑢, ..., 𝛿𝑁𝛿

𝑢)𝑇, (2.8)

where 𝑇 is the matrix transposition operator. It is
clear that equalities (2.3) and (2.6) are correct in this
case. Physically, this means that 𝑁𝛿 measurements
are false, and 𝑁𝑢 ones are precise. The results pre-
sented above testify to the following theorem.

T h e o r e m. Let we have a system of linear al-
gebraic equations in the form (2.1). The validity of
relation (2.3) means that the components of the vec-
tor 𝑢𝛿 = 𝑢+𝛿𝑢 on the right-hand side of system (2.1)
consist of either absolutely precise values 𝑢 or abso-
lutely wrong values 𝛿𝑢.

As Academician V.I. Arnold emphasized, “Math-
ematics, as well as physics, is an experimental sci-
ence...” [23, p. 1323]. An experiment in mathematics
consists of calculations. Therefore, let us numerically
evaluate the quantities that enter equality (2.5) on
the basis of the following examples.

Example 1. Let the mathematical model of a cer-
tain physical problem can be described by a SLAE
with the right-hand side in the form

𝑓 =
(︀√

2𝜋,
√
3− 1, 𝜋2/4, 5/3, 𝑒/2, 𝐶,

lg 𝑒, ln𝜋, ln 10, 𝑒𝜋/2
)︀𝑇
,

whose dimension equals 𝑁 = 10. Let the values of the
components of the vector 𝑓 be precise to six digits
after the decimal point, i.e.

𝑢 =
(︀
2.506628, 0.732051, 2.467402, 1.666667,

1.359141, 0.577216, 0.434294, 1.144730,

2.302585, 4.810477
)︀𝑇
.

In this case,

𝜋 = 3.141593, 𝑒 = 2.718282, 𝐶 = 0.577216.

At the same time, the values of the same components
but with two digits after the decimal point are as-
sumed to be approximate:

𝑢𝛿 =
(︀
2.51, 0.73, 2.47, 1.67, 1.36, 0.58, 0.43,

1.14, 2.30, 4.81
)︀𝑇
.

In this case,

𝛿𝑢 =
(︀
3.372× 10−3, −2.051× 10−3, 2.598× 10−3,

3.333× 10−3, 8.59× 10−4, 2.784× 10−3,

−4.294× 10−3, −4.730× 10−3, −2.585× 10−3,

−4.77× 10−4
)︀𝑇

and

(𝑢, 𝛿𝑢) = 6.164484× 10−3,

(𝑢𝛿, 𝛿𝑢) = 6.25413× 10−3,

(𝑢𝛿, 𝛿𝑢)− (𝑢, 𝛿𝑢) = ||𝛿𝑢||2 = 8.9646× 10−5,

(𝛿𝑢, 𝛿𝑢) = ||𝛿𝑢||2 = 8.9645× 10−5.

(2.9)

Slightly changing the value of the first component of
the vector 𝑢𝛿 by putting it equal to 2.50, we obtain

𝑢̃𝛿 =
(︀
2.50, 0.73, 2.47, 1.67, 1.36, 0.58, 0.43,

1.14, 2.30, 4.81
)︀𝑇
,

𝛿𝑢̃ = 𝑢̃𝛿 − 𝑢 = (−6.628× 10−3, −2.051× 10−3,

2.598× 10−3, 3.333× 10−3, 8.59× 10−4,

2.784× 10−3, −4.294× 10−3, −4.730× 10−3,

−2.585× 10−3, −4.77× 10−4
)︀𝑇
,

(𝑢, 𝛿𝑢̃) = −1.8901796× 10−2,

(𝑢̃𝛿, 𝛿𝑢̃) = −1.877959× 10−2, (2.10)

(𝑢̃𝛿, 𝛿𝑢̃) − (𝑢, 𝛿𝑢̃) = ||𝛿𝑢̃||2 = 1.22206× 10−4,

(𝛿 𝑢̃, 𝛿𝑢̃) = ||𝛿𝑢̃ ||2 = 1.22205× 10−4.

Example 2.
Let us evaluate the influence of a dimension of the

vector on the right-hand side of SLAE (2.1) on the
magnitude of the scalar product (𝑢, 𝛿𝑢). Let a vector
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with the large dimension 𝐹 be formed by cyclically
repeating the components of the vector

𝑓 = (𝑓𝑖)
𝑇 =

(︀√
2𝜋,

√
3− 1, 𝜋2/4, 5/3, 𝑒/2, 𝐶,

lg 𝑒, ln𝜋, ln 10, 𝑒𝜋/2
)︀𝑇

,

i.e. 𝐹 = (𝑓𝑖, 𝑓𝑖, ..., 𝑓𝑖, ..., 𝑓𝑖)
𝑇 . Let the cycle number

equal 𝐾, so that 𝑁 = 10𝐾.
It is easy to see that, according to relations (2.9),

at 𝑢 = 𝐹 , we have

(𝑢, 𝛿𝑢) = 𝐾 × 6.164484× 10−3,

(𝑢𝛿, 𝛿𝑢) = 𝐾 × 6.25413× 10−3,

(𝑢𝛿, 𝛿𝑢) − (𝑢, 𝛿𝑢) = ||𝛿𝑢||2 = 𝐾 × 8.9646× 10−5.

(2.11)

For instance, if 𝐾 = 1000, then (𝑢, 𝛿𝑢) = 6.164484,
i.e. the magnitude of the scalar product (𝑢, 𝛿𝑢) in-
creases with the growth of the dimension of the vector
on the right-hand side of SLAE.

Now, following V.N. Strakhov, due to the Cauchy–
Buniakowski inequality, we may write that

(𝑢, 𝛿𝑢)2 6 ||𝑢||2||𝛿𝑢||2. (2.12)

From whence, we obtain the estimate

0 6 𝜌2 6 1, (2.13)

where

𝜌2 =
(𝑢, 𝛿𝑢)2

||𝑢||2||𝛿𝑢||2
, ||𝛿𝑢||2 ̸= 0. (2.14)

In the case 𝑢 = 𝐹 for the quantities used in relation
(2.14), we have

(𝐹, 𝛿𝐹 )2 = 𝐾2 (𝑢, 𝛿𝑢)2,

||𝐹 ||2 = 𝐾||𝑢||2, ||𝛿𝐹 ||2 = 𝐾||𝛿𝑢||2.

Hence, as one can see on the basis of equality (2.14),
for the selected structure of the vector 𝐹 , the quantity
𝜌2 does not depend on its dimension.

Note that, for the 𝑢- and 𝛿𝑢-values used in
Eq. (2.9), we have

𝜌2 =
(6.164484× 10−3)2

47.81 × 8.9645× 10−5
= 0.008867.

But if we use the corresponding values from
Eq. (2.10), we obtain

𝜌2 =
(−1.89× 10−2)2

47.81× 1.22206× 10−4
= 0.06115.

Therefore, a very small variation in the values of the
quantities 𝛿𝑢 used in examples (2.9) and (2.10) gives
rise to the change of 𝜌2 by an order of magnitude.

The examples above undoubtedly demonstrate that
there is no orthogonality between the useful signal
vectors 𝑢 and the error vectors 𝛿𝑢. The postulation
of the rigorous hypothesis (𝑢, 𝛿𝑢) = 0 results only in
that two systems of equations,

𝐴1 𝑥1 = 𝑢 and 𝐴2 𝑥2 = 𝛿𝑢,

rather than SLAE (2.1), have to be considered. Con-
cerning an experiment, in which 𝑁𝛿 measurements
are wrong and 𝑁𝑢 ones are absolutely precise, it can
be characterized with the use of the expression “There
is no better experiment that would have been worse
than this one”.

The contribution by Academician V.N. Strakhov
to the development of the theory and practice of the
solution of ill-posed problems is significant and well-
known (e.g., see the references in work [12]). However,
his hypothesis (2.3) turned out, unfortunately, to be
erroneous. It should be noted that the subject matter
of this section is based on the content of work [24].

3. Mathematical Interpretation
of the Optical Experimental Data

Unlike the interpretation variant where (𝑢, 𝛿 𝑢) = 0,
which has a theoretical character and was considered
in the previous section, we now discuss a possible
plausible interpretation of the presence of errors in
the experimental data of an optical experiment.

Conditionally, our example is associated with ex-
perimental researches of optical confinement effects
in thin nanostructured films of various silicon car-
bide polytypes. This is a promising medium for ap-
plications under extreme conditions of high and low
temperatures, under considerable radiation loadings,
and in a chemically active environment [25, 26]. The
results of researches showed, in particular, that no
optical confinement effect, neither at the main lasing
wavelength of a neodymium laser (𝜆 = 1064 nm) nor
at its second harmonic (𝜆 = 532 nm), was revealed
in a silicon carbide specimen mainly consisting of an
amorphous phase. A similar result was also obtained
for a specimen consisting of the crystalline phase (3C)
of nano-sized silicon carbide to an extent of almost
100% owing to its additional annealing (Fig. 1). From
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those results, it follows that the dependence of the in-
tensity of radiation passed through the specimen on
the intensity of incident radiation has an almost lin-
ear character for the amorphous and 100%-crystalline
specimens.

The aim of our further consideration is to reveal
a plausible interpretation that does not strictly ac-
count for the errors in registered data. Therefore, we
use other linear dependences of this kind, but with
the number of experimental points larger by an or-
der of magnitude and with more strongly pronounced
measurement errors.

In Fig. 2, a typical dependence (experiment 1) of
the relative magnitude of a registered signal (e.g.,
when a beam passes through a limiting diaphragm
without a specimen) on the input signal is shown:

𝑢𝛿(𝑥) =
𝐼
(out)
𝛿

𝐼max
, 𝑥 =

𝐼(in)

𝐼max
.

A similar dependence (experiment 2) of the relative
magnitude of the total signal transmitted through the
specimen on the laser radiation intensity is depicted
in Fig. 3:

𝑢𝛿𝑠(𝑥) =
𝐼
(out)
𝛿

𝐼max
, 𝑥 =

𝐼(in)

𝐼max
.

With a rather high confidence, we may assert that
the both dependences have a linear character. Really,
approximating the experimental data by linear func-
tions, we obtain

𝑢̂𝛿(𝑥) = 𝑎1 + 𝑏1𝑥, 𝑎1 = 0.00485266, 𝑏1 = 1.22719;

(3.1)

𝑢̂𝛿𝑠(𝑥) = 𝑎2 + 𝑏2𝑥, 𝑎2 = −0.00175473, 𝑏2 = 1.07823.

(3.2)

The maximum approximation errors in the first and
second cases are equal to 𝛿𝑢̂ = 0.015 and 𝛿𝑢̂𝑠 = 0.012,
respectively. The results of approximations (3.1) and
(3.2) are plotted in Fig. 3.

If the results of the experiment without a specimen
(Fig. 2) are approximated by a cubic polynomial,

𝑢̄𝛿(𝑥) = 𝑎3 + 𝑏3𝑥+ 𝑐3𝑥
2 + 𝑑3𝑥

3, 𝑎3 = −0.0147916,

𝑏3 = 1.53318, 𝑐3 = −1.16683, 𝑑3 = 1.26578.
(3.3)

the obtained maximum approximation error equals
𝛿𝑢̄ = 0.0145, which is less than in the case of the
linear approximation.

Fig. 1. Dependences of the radiation intensity passed through
a specimen on the incident radiation intensity for the amor-
phous (∙) and 100%-crystalline (M, 3C) specimens at 𝜆 = 1064

(a) and 532 nm (b)

0 0.1 0.2 0.3 0.4 0.5
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Fig. 2. Dependence of the relative magnitude of a registered
signal on the input signal (experiment 1)
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Fig. 3. Dependence of the relative magnitude of the total
specimen transmission signal on the laser radiation intensity
(experiment 2)
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Fig. 4. Approximation of experimental data by linear func-
tions

A principal meaning of the fact that the coefficients
𝑎𝑖 (𝑖 = 1, 2, 3) are nonzero for all approximations
(3.1)–(3.3) should be pointed out. In other words, in
the absence of an input signal, the measuring equip-
ment registers the presence of a signal in the first and
second experimental variants. This signal is nothing
else but a simulation error at the coordinate origin,

𝛿𝑢(0) = 𝑢𝛿(0)− 𝑢(0) ̸= 0. (3.4)

Ignoring this fact may give rise to a false physi-
cal interpretation of the result of experimental re-
searches. As a matter of fact, the measurement re-
sults obtained in the second experiment are quite of-
ten compared with the data of the first one by divid-
ing those data by each other: 𝑢̂𝛿𝑠(𝑥)

𝑢̂𝛿(𝑥)
. Such a proce-

dure has a sense, e.g., in the case of a perfect mea-
suring equipment that excludes any error. Provided
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Fig. 5. Function 𝜈1(𝑥) at 𝑎1 = 0 in formula (3.1)
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Fig. 6. Function 𝜈1(𝑥) in the general case (𝑎1 ̸= 0, 𝑎2 ̸= 0)

ideal conditions, all experimental points lie exactly
on a straight line, which, in turn, passes through the
coordinate origin.

Let us illustrate the aforesaid, by using simple cal-
culations. Let 𝑎1 = 0 and 𝑎2 = 0. Then

𝑢̂𝛿𝑠(𝑥)

𝑢̂𝛿(𝑥)
=

𝑏̂2𝑥

𝑏̂1𝑥
= const (𝑏̂1 ̸= 0).

It is significant that either this is a perfect variant,
or the experimental data are approximated by linear
functions 𝑢𝛿𝑖(𝑥) = 𝑏𝑖𝑥 in the course of their prelimi-
nary processing. It is clear that the matter concerns
experiments, whose results are similar to those de-
picted in Figs. 2 and 3.

Let us consider a rather simple, but real case where
the measurement data are accompanied by errors,
but the straight line corresponding to the first mea-
surements strictly crosses zero (i.e. 𝑎1 = 0); in other
words, there is no observable signal in the absence of
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Fig. 7. Function 𝜈3(𝑥)

the input signal. Let all other coefficients have their
previous values from experiments 1 and 2. Then,

𝜈1(𝑥) =
𝑢̂𝛿𝑠(𝑥)

𝑢̃𝛿(𝑥)
=

𝑎2 + 𝑏2𝑥

𝑏1𝑥
=

𝑏2
𝑏1

+
𝑎2
𝑏1𝑥

= 𝛼1 +
𝛽1

𝑥
,

𝛼1 = 0.878614, 𝛽1 = −0.00142988,

and the obtained curve is an ordinary hyperbole. In
the case where all coefficients in Eqs. (3.1) and (3.2)
are different from zero, a hyperbolic dependence is
obtained as well (see Fig. 6).

Now, let us imagine an abstract experimenter. For
some reasons, he disregards Eq. (3.4), being more in-
terested in a variant where the results of the first
experiment are approximated by the cubic polyno-
mial (3.3). Moreover, the functions 𝜈1(𝑥) and 𝜈2(𝑥)
behave unordinarily in the vicinity of zero. As a re-
sult, the function 𝜈3(𝑥) obtains a graphic profile (see
Fig. 7), which could invoke a desire to seek a certain
“profound” physical sense.

As a matter of fact, if the function 𝑢̄𝛿(𝑥) in formula
(3.3) is factorized,

𝑢̄𝛿(𝑥) = (𝑥− 0.00971879)×
× (1.26578𝑥2 − 1.15452𝑥+ 1.52195),

one can see that the value 𝑥* = 0.00971879 is a special
point of the function

𝜈3(𝑥) =
𝑢̂𝛿𝑠(𝑥)

𝑢̄𝛿(𝑥)
=

=
1.07823𝑥− 0.00175473

(𝑥− 0.00971879) (1.26578𝑥2 − 1.15452𝑥+ 1.52195)

and its derivatives. Hence, the pole singularity gov-
erns the character and the behavior of the considered
function 𝜈3(𝑥).

In order to avoid the incorrect interpretation of ex-
perimental results, we recommend to use the ratio
between the derivatives of the functions, 𝑢̂′

𝛿𝑠(𝑥)
𝑢̂′
𝛿(𝑥)

= 𝑏2
𝑏1

,
rather than the ratio between the functions them-
selves, 𝑢̂𝛿𝑠(𝑥)

𝑢̂𝛿(𝑥)
.

4. Conclusions

To summarize, using model examples for the results
of scientific experimental researches, we showed the
following.

1. Any hypotheses and assumptions concerning the
level of measurement errors, their deterministic rela-
tion to predicted precise data have to be carefully and
comprehensively analyzed in the combination with
the results of computational experiments aimed at
the solution of specific ill-posed problems. A neces-
sary condition required for such an analysis to be
complete is the comparison of the results of physical
and computational experiments.

2. The polynomial approximation of the experi-
mental dependences of an optical experiment (as is
often done) together with inattentive attitude to the
presence of errors in the experimental data (espe-
cially, in the vicinity of the coordinate origin) can
result in a seemingly plausible, but incorrect physical
interpretation of the obtained results.
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ПРИКЛАДИ ПРАВДОПОДIБНОЇ
IНТЕРПРЕТАЦIЇ РЕЗУЛЬТАТIВ
ЕКСПЕРИМЕНТАЛЬНИХ ДОСЛIДЖЕНЬ

Р е з ю м е

На основi строгої математичної теорiї iнтерпретацiї експе-
риментальних даних розглянутi приклади правдоподiбної
(але невiрної) iнтерпретацiї остаточних експериментальних
дослiджень. Показано, що апаратнi похибки можуть суттє-
во впливати на результати вимiрювань величин оптичного
експерименту. Проведений нами аналiз доводить, що iгно-
рування цього факту може призвести до помилкових ви-
сновкiв щодо фiзичної сутi розглянутих оптичних явищ.
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