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NULL ONE-WAY FIELDS IN THE KERR SPACETIME

Analytical solutions of the equations for massless fields with arbitrary spins have been obtained
in the Kerr metric in the null one-way form, i.e. in the form of ingoing or outgoing, according
to Chandrasekhar, fields propagating to or from a black hole, respectively. On the basis of the
Newman—Penrose approach in the spinor formulation, the null one-way fields in the Petrov-
type D spacetime are considered. A general analytical solution and an analytical solution with
separated variables are found for the generalized equations of those fields in the Kerr metric. In
the partial case of electromagnetic field, the Mazwell tensor and the energy-momentum tensor
for the outgoing and ingoing one-way fields are calculated.
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1. Introduction

The research of the gravitational field influence on
classical physical fields (scalar, Dirac—Weyl, Maxwell,
and Rarita—Schwinger ones) and on gravitational per-
turbations is a challenging task of modern mathemat-
ical and theoretical physics, and astrophysics. In or-
der to simplify the problem, the influence of those
fields on the gravitational one is neglected, by consid-
ering them as test fields or perturbations. The study
of the behavior of those fields in the gravitational
fields created by black holes — in the Schwarzschild,
Kerr, and Kerr-Newman metrics — is especially im-
portant and interesting.

The main difficulty in studying the fields with non-
zero spins is the interdependence of the systems of
equations that describe them. Therefore, if no re-
strictions are imposed on the space generality, none of
the gauge (in the case of electromagnetism) or coordi-
nate (in the case of gravitation) conditions can decou-
ple those equations. Teukolsky [1], making use of the
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Newman—Penrose formalism, partially decoupled the
equations for the gravitational, electromagnetic, and
neutrino fields in the Petrov-type D spacetime. As
a result, he obtained two separate equations for two
“extreme” field components. When considering the
equations in the Kinnersley tetrad, they were general-
ized to the Teukolsky master equation (TME), which
describes extreme components of the fields with all in-
teger and half-integer spins in the Kerr metric. Using
the ansatz ¢ = e~ “'e™?R(r)S(f), Teukolsky ob-
tained two ordinary differential equations (ODEs),
which are known as the Teukolsky angular equation
(TAE) and Teukolsky radial equation (TRE).
Further important results in this direction were ob-
tained, in particular, in works [2-6]. However, the
obtaining of solutions for the Maxwell field (as well
as other fields, except for scalar ones) in a curved
spacetime, which would be rather general or suit-
able for an effective analysis, as well as researches
of their properties, remain to be a complicated task
[7]. The difficulty consists in the non-linear charac-
ter of the eigenvalue problem, because the separation
constant w enters the equation through the parameter
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E" = E]"(aw) (see p. 653 in work [2]). For simplifica-
tion, special cases of the Maxwell field are considered,
which makes it possible to obtain exact solutions for
corresponding equations.

In our works [8-10], we separately considered the
cases of fields propagating to black holes (according
to Chandrasekar’s terminology, ingoing fields) and
from black hole’s vicinity (outgoing fields), i.e. null
one-way (NOW) fields (NOWFs), which correspond
to two orientations of the electromagnetic principal
null direction with respect to the gravitational prin-
cipal null direction. We obtained a general solution
that is expressed in terms of an arbitrary function of
integrals of a system of partial differential equations
(PDESs) of the first order.

In work [9], we noted that, unlike Teukolsky, we do
not neglect the solutions with a singularity on the ro-
tation axis @ = 0, # = 7 for the following reasons. The
singularity on the semiaxis § = 0 — both in the Kerr
solution and in the solutions of field equations against
the Kerr spacetime background — is a consequence
of the application of the Boyer—Lindquist coordinate
system, which generalizes a spherical coordinate sys-
tem with its singularity on the semiaxis § = 0 (here,
the determinant of the metric tensor equals zero) onto
the Kerr spacetime. Since the metric in the Kerr so-
lution does not cease to be determined at r = 0, the
values r < 0 are also allowed. Therefore, an addi-
tional specific semiaxis § = 7 arises in the equations
for all fields.

However, the singularities on the rotation axis of
either the metric tensor of the Kerr spacetime or the
solutions of field (e.g., the electromagnetic one) equa-
tions against the Kerr spacetime background are not
invariant. A single invariant in the Kerr geometry
and the invariants of the electromagnetic field have
no singularities on the rotation axis, and the met-
ric quadratic form can be analytically continued to
it (except for points on the horizon). This approach
was proposed in work [9], and it will be applied, when
considering the fields with other spins. Accordingly,
the domain of definition of such physically mean-
ingful solutions will be restricted by the condition
0 < 0 < 7. Such coordinate-singular solutions, ow-
ing to their simple form, can be effectively applied to
describe processes in a vicinity of the Kerr black hole,
which will be dealt with in the next paper. It is ex-
pected that the invariant characteristics of fields and
processes would also have no singularities at § = 0
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and 6 = 7. In a flat spacetime, in special cases, the
solution in the Kerr field obtained by us describes a
circularly polarized plane wave and an electromag-
netic field, which is similar of a null field in the form
of knots and links, and arises from the Hopf fibration
[11,12].

The behavior of algebraically special fields was
studied in works [13-16] in detail. In particular, Tor-
res [13] obtained a general solution for an alge-
braically special Maxwell field in a flat spacetime. In
Chandrasekhar’s work [14], a gravitational case of
the algebraically special field in the Kerr metric was
considered, and a solution with separated variables,
which contains terms with the 1/r-, 1/r2-, 1/r3- and
1/r*-asymptotics, was obtained [see Eqs. (9) and (14)
in the cited work|. This result differs from the ours:
our solution with the separated variables has only the
1/r-asymptotic.

The method developed by us for solving a system of
equations describing NOW Maxwell fields can also be
generalized to the case of NOWFs with arbitrary spin
values. Such a generalization and the solution of the
system of equations that describes fields of all spin
values identically are the aim of this work.

Besides the derivation of the analytical general so-
lution for the generalized system of equations, we will
also obtain a solution, by using the variable sepa-
ration method, which allows one to describe some
properties of physical fields in more details (see,
e.g., work [17]). We also compared our results with
Teukolsky’s ones and indicated their further applica-
tion. In addition, using the Maxwell field as an ex-
ample, we will construct wave-like solutions in the
form of NOWFs. For each solution, we calculate the
Maxwell and energy-momentum tensors. Finally, we
determine conditions in the coordinate form that are
specific to NOWFs.

All equations below are presented in the ge-
ometrized system of units, in which ¢ = G = 1.
Furthermore, we assume all functions to be smooth
enough, which does not restrict the physical general-
ity of consideration.

2. Test Zero-Rest-Mass One-Way
Free Fields with the Spin [ in the Vacuum
Type D Spacetime

Let us consider test zero-rest-mass free fields with the
spin [ = |s|, where s = £1/2,+1,+3/2, 42, ... are the
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spin weight values. The fields are given by a symmet-
ric spinor papc ... xr with 2l indices. The evolution
equation for such fields looks like [18§]

VAA/SOABC...KL =0. (1)

Let us extend the approach proposed by us in work
[9], while considering null electromagnetic fields, onto
fields with other spins. For this purpose, let us se-
lect the spin basis so that the principal spinors of
the Weyl spinor, which are multiple in pairs, because
the Kerr spacetime belongs to the type D accord-
ing to Petrov, would be proportional to the basis
ones, i.e. Yapop = Y(aYBOcOp), where v4 = y10a4,
da = —dpLa, 04, and 14 are basis spinors. As a re-
sult, we obtain ¥y = ¥; = U3 = Uy = 0 and, in
accordance with the Goldberg—Sachs theorem, k =
=oc=v=A=0.

Below, we consider algebraically special physi-
cal fields. We assume that all principal spinors a4,
BB, -y AL of the spinor papc. k1L = aaBB .- ALy
are multiple of a multiple of the principal spinor 4
of the Weyl spinor, i.e. g4 ~ va4, B ~ VB, -\
AL ~ L. As a result, the expansion of the field spinor
in the spin basis looks like

PABC...KL = {21 0AOB ... OL, (2)
—_——
21
where @9 = @ABC,,,KLLALBLC...LKLL. The field

vapc ... kr is null under this choice [18]. Following
Chandrasekhar, we will call it “outgoing”. In the
case of gravitational field, condition (2) distinguishes
wave-type fields according to Lichnerowicz.

Definition 1. A field given by a spinor of form (2)
is called the outgoing null one-way field.

The components of Eq. (1) for the outgoing NOWF
(2) in the vacuum type D spacetime look like

{D@Ql + (216 - P)SOZZ = 07 (3)
dpar + (21 — T)par = 0,

where D = [*°V,, § = m®V,, A = n®V,, and
§ = m®V, are derivatives along the directions of the
Newman—Penrose null tetrad; and «, 3, v, €, &, 0, p,
T, V, A\, i, and m are Newman—Penrose scalars.
Analogously, the “ingoing” NOWF is obtained by
selecting all principal spinors a4, fp, ..., Ap of the
spinor apc... kL = ®(afB .- Ary to be multiple of a
multiple of the principal spinor ¢ 4 of the Weyl spinor,
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ie. g ~da, B~ 0B, ..., A, ~ 6r. In this case, the
expansion of the field spinor in the spin basis looks
like

PABC .. KL = POolALB --- LK, (4)

where o = papc ... kro*oBoC ... ok.

Definition 2. A field given by a spinor of form (4)
is called the ingoing null one-way field.

The components of Eq. (1) for the ingoing NOWF
in the vacuum type D spacetime look like

{A% + (1= 207)po =0, 5)
dpo + (m — 2la)pe = 0.

Note that NOWFs (2) and (4) are algebraically spe-
cial fields of the type N, i.e. all principal spinors of
such fields are multiple.

3. General Solution of a Generalized
Equation Describing One-Way Fields
with the Spin ! in the Kerr Metric

Let us consider the systems of equations (3) for an
outgoing NOWF and (5) for an ingoing one in the
Kerr metric in the Boyer—Lindquist coordinates,

e (1 B 2Mr> g2 4Mrasin® 6
Y

—%dh* - (7“2 +a? +

X
dtde — Zdﬂ -

2Mra? sin’
29) sin20ds?,  (6)

where M > 0 is the black hole mass, a the specific
angular momentum (0 < a < M), ¥ = r? + a? cos® 0,
and A = 2 — 2Mr + a?!. The roots of the equa-
tion A = 0, namely, ry = M +vVM? —a? and r_ =
= M — v M? — a?, determine the event and Cauchy
horizons, respectively. The Newman—Penrose null
tetrad is chosen as the Kinnersley tetrad [19]:

r? 4+ a® a
a: 1 —_—
l ( A ’O’A)’

n® = % (T2 +a?, —A,O,a),

1 . i (7)
m*=———liasind,0,1, — |,
V2(r + iacos 0) sin 0
1 —1
mt=— (—iasin®,0,1, — ).
V2(r —iacos ) sm@)

1 The application of the same notation A for different quanti-
ties is traditional for the Newman—Penrose formalism, when
describing the Kerr spacetime, and does not lead to a mis-
understanding.
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The systems of equations for the outgoing and in-
going NOWFs with arbitrary spins [ have similar
forms in the Boyer—Lindquist coordinates, if the cor-
responding change of functions is performed. There-
fore, let us construct the generalized system of equa-
tions,

r? +a2871/; W adw .
Ao 4%, (8)
iasin@a—wf]gainr i 71/’70.
ot 00  sinf oy
where k = sgn s, and
or(r —iacosf)sin' 0, k= —1;
= 1l 9
(4 0 A'sin’ 0 P (9)

2(r — ia cos 0)2-1’

The general solution of system (8) can be found, by
sequentially integrating the partial differential equa-
tions of the first order. We obtain
P = eF(<17€2)) (10)

where F' is an arbitrary function of the complex inte-
grals of system (8):

<1t+k<r+M1nA+

M2

+ 3 =1 i —iacos@), (11)
—Qa r—r_
a r—ry| .. |1—cosf
= ¢+k | 1 .
o (2\/M2a2 S n‘ sin 6 D

(12)

In the case of electromagnetic field (s = £1), the
general solution (10) was obtained in our previous
work [9]. In the partial case of flat spacetime, this so-
lution is reduced to that by Torres [13]. In this work,
the exact solution for a field with an arbitrary spin in
the Kerr field was obtained for the first time.

4. Separation of Variables
in the System of Equations for the NOWF

The application of the variable separation method
for finding regular solutions of the master Teukolsky
equation made it possible to reveal the main proper-
ties of perturbations and predict bright physical ef-
fects in the Kerr field [1, 4]. Bearing all that in mind
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and due to a necessity to compare the NOWF ap-
proach with the others, let us apply this method to
the NOWFs.

Let us seek the solution of the system of equations
(8) in the form

P(t,7,0,¢) = T(t)R(r)S(0)®(¢).

For the unknown functions, we obtain a system of
four ODEs:

T'(t) — XT'(t) =0,
' (¢) —v@(¢) =0,
A(r? +a?)  va

R(r)—k <A + A) R(r) =0,
S'(0) — k (ia)\sinﬁ bt > S(6) =0,

sin 0

(13)

(14)

where A\ € C and v € C are separation constants. Ha-
ving solved those equations, we obtain a solution of
system (8),

w _ Oek§1+u§2—mk’)\ cos 9+iykln|% 7 (15)
where
M? —
51:t+k<r+M1nA+ In |2 —T* )
M? — g2 rT—r_
(16)
a =Ty
= k 1 17
52 ¢+ 9 M2—a2n7'77'_’ ( )

and C' is a complex constant.

Hence, the equations for NOWFs have solutions
with separated variables of form (15), where the func-
tion v is defined by relations (9). Solution (15) is par-
tial. It is obtained from the general solution (10) by
choosing F'(C1,(2) = AG1 + v(a.

Note that the separation of variables for the sys-
tem of first-order equations for NOWFs differs from
the separation of variables in the Teukolsky approach:
the function # in this work [see Eq. (9)] is defined dif-
ferently from the function v in work [1].

5. Solutions with Separated
Variables in the Cases of Outgoing
and Ingoing NOW Maxwell Fields

As an example, let us consider solutions with sep-
arated variables in the case of zero-rest-mass free
NOW Maxwell fields with s = £1. The case s = —1
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describes an outgoing NOW Maxwell field, whereas
s =1 an ingoing one [9, 10].
The equation for a free Maxwell field looks like

VAY o up =0, (18)
where
YAB = Y2040B — p1(0atp + taog) + wotaty  (19)

is the spinor of the electromagnetic field (the Maxwell
spinor); and @9 : @3 — C, @1 : p1 = C, and ¢ :
o +— C are the components of the spinor w45 in the
spin basis.

In the case of outgoing NOWF, the Maxwell spinor
looks like wap = @s040p. The solution with sepa-
rated variables, s, can be written, by using Egs. (15)
and (9) taken at k= —1 and [ = 1:

l—cos @
sin 0

th +vn2+ial cos 0—iv ln|

=C 20
72 sin @ (r — ia cos 0) ’ (20)
where ,

M _
m=t—r—MInA— In | r+’ (21)
M?2 — a2 r—r_
a r—rg

=¢— . 22

N2 =¢ Wik P (22)

When considering the first and second ODEs in sys-
tem (14), the following requirements are imposed on
their solutions. First, the function T'(¢) must be finite
at t — 0o. As a result, we obtain that the separation
constant A has to be imaginary: A = iw, w € R. In so
doing, we exclude quasinormal solutions from consid-
eration.

The second requirement consists in that the func-
tion @(¢) has to be 2w-periodic, i.e. ®(¢) = ®(p+27)
for any argument value ¢. Whence, we obtain that
v =1im, m € Z. Then a solution with separated vari-
ables, which is finite in time and 27-periodic in the
azimuthal argument, has the form [10]

Y2 = (23)

eiwn1+imn27aw cos 6 1—cos@ m
sin 6 '

sin 6 (r — ia cos §)

The solution S(0) of system (14) at k¥ = —1 has
a singularity at the point § = 0 or § = 7, depend-
ing on the value of separation constant m. The solu-
tion R(r) is determined everywhere, except the points
r =714 and r = r_. Below, we will consider solution
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(23) in the domain (0 < 6§ < 7,r > ry), where, as was
marked above, it is physically meaningful.

The Maxwell tensor Fyp = 2¢p2l[,my) + 202l[q1my)
corresponding to solution (23) was calculated with
the help of the software package GRTensor2 [20]. As
a result, we obtained

a 1
0 _KP T sind p
<P 0 _= _r’ta®p
Fab _ \/5 ? . sin A A ’
@ —mmea®@ 0 —asind@
P 4P gsinfQ 0

(24)

where P = ¢ sin(wny + mna) + ¢ cos(wm + mnz) X
x emaweost (Loeosl)™ Q= cpcos(wm + min) —
— cg sin(wny + mag)eawcos? (1%&?0)7” ,C =cy +ics.

The NOWF condition (2) in the coordinate form
looks like

(r? 4+ a®)Fy — aFpy = 0,
asin®0F,y — Fpy =0,
YFp+ AF.9 =0,

Fir+ % Fyy = 0.

(25)

Now, let us calculate the energy-momentum tensor
Tay = (1/27) x |@2|?laly corresponding to solution
(23):

1 —2 0 —asin®f
T, = s —% i—z 0 asinza%
¢ 2 0 0 0 0 ’
—asin?0 asin® 9% 0 aZsin*6
(26)
| |2 _ |C|26—2awc059 1 — cosf 2m (27)
LEUNCYES smo )

Let us also consider a solution with separated
variables for the ingoing NOWF, when the Maxwell
spinor equals wap = wotatp. This solution, ¢, can
be written, by using Eqgs. (15) and (9) at £ = 1 and
=1

QAN FVIa—iaX cos O-+iv In| 255257 |

= 2
7o sinf A(r —iacos@)~1 ~’ (28)
where e

. r—r4
n3=t+r+MInA+ MQ—QQIH | (29)
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a
M? —qa?

A solution of Eq. (28), which is finite in time and
2m-periodic in the azimuthal angle, reads

2€iw?73+i"“74+aw cos 1 —cosf -
31
sinf A(r —iacosf)~! ( ) By

This solution, like solution (23), also has singularities
at @ = 0,0 = mand r = ry, r = r_. Beyond the
rotation axis and the horizons, it is also physically
meaningful.

The Maxwell tensor for the ingoing NOWF is cal-
culated by the formula

r—r4

. (30)

=6+
ng=¢ 5

rT—Tr_

Yo = sin 6

0 %U siIllév U
£ 0 =y r2+a® 1y
Fab = \/5 ? . sin 6 A A
_sin0v 51n0AV 0 asin 0V
U 22U —asingV 0
(32)

where

U = c; sin(wns + mny) + co cos(wns + mny) X

-m
aw cos 0 1 —cost
X e i
sin @

V = ¢ cos(wns + mng) — cosin(wns + mny) X

-m
aw cos 0 1 —cosf
Xe —_— .
sin @

The NOWF condition (4) in the coordinate repre-
sentation has the form

(r* 4+ a?)Fy — aFry = 0,
asin® 0F,y — Fypy =0,

33
YFp — AF9 =0, (33)
Fy — X Fiy = 0.
Finally, the energy-momentum tensor

Tap = (1/27) x X |@o|*nansy of the ingoing NOWF
for solution (31) looks like

1 % 0 —asin’0

PP CH I~ X0 —asin®03
ab — Tgx%2 0 0 0 0 )

—asin® 6 fasm%z 0 a?sint0
(34)

4|C|2xe2awcos0 (1 _ cogh\ 2™
lool? = —55 . . (35)
sin® 6 A sin 6
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6. Conclusions

The equations describing one-way gravitational, elec-
tromagnetic, and neutrino fields in the Petrov-type
D spacetime are reduced to a single form, which is
valid for an arbitrary value of the field spin. When
considering the systems of equations for the outgoing
and ingoing NOWFs in the Kerr metric in the Boyer-
Lindquist coordinates, they can be generalized to the
same system of the first-order PDEs for an unknown
function ¢ (¢, r, 6, ¢), similarly to that done by Teukol-
sky in the case of second-order equations for functions
regular at # = 0 and 6 = 7. The change of the func-
tion in our case [see Eqgs. (9)] differs from analogous
changes in the Teukolsky and Chandrasekhar ap-
proaches. This circumstance, however, does not pro-
hibit a comparison of our solutions describing NOWFs
with the solutions obtained by Teukolsky and Chan-
drasekhar.

We have obtained a generalized system and found
its general solution, by sequentially integrating the
first-order PDEs. This approach is quite different
from the approaches of other authors. In particular,
it allowed us to obtain an analytical solution, which
is general for a certain class of fields: null one-way
fields. The found solution with separated variables
depends on a linear combination of the integrals of
the system.

In the case of NOW Maxwell fields, the solutions
describe circularly polarized waves, with the outgo-
ing wave propagating from the Kerr black hole to
the spatial infinity and the ingoing one propagating
backward. The solutions describing the NOWFs are
meaningful everywhere, except for the rotation axis
and the horizons, where they have coordinate singu-
larities. They were rejected by Teukolsky on the basis
of their irregularity. The application of the obtained
solutions to the analysis of the field behavior in the
Kerr spacetime will be considered elsewhere.

By comparing the outgoing null solution of
Maxwell’s equations at 7 — oo with the radial Teukol-
sky solution that is asymptotically outgoing at infin-
ity [see Eq. (5.4) in work [1]], one can see that the
functions ¢, have the same e’ /r-asymptotics. Fur-
thermore, the limitation of the consideration to only
the outgoing null field does not result in the loss of
information about the only field component that is
meaningful for a remote observer, the “far field”. Vice
versa, the analytical solutions satisfying such require-
ments open possibilities to study the qualitative be-
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havior of fields. This task cannot be done with the
use of the Teukolsky solutions obtained in the form
of series in spheroidal harmonics, because there are
no recurrence relations for the coefficients in those
series.

The authors express their gratitude to the anony-
mous referees for their useful remarks and advices.
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OIHOHAITPAMJIEHI ISOTPOITHI
I1OJIA Y ITIPOCTOPI KEPPA

Pezmowme

Metoro poboTu € moby0Ba y aHAJITHIHOMY BUIVIsA/I PO3B’A3KIB
piBHsIHB 6E3MAaCcOBOIO TOJIs JOBLJIBHOTO CIiHy y MeTpulli Keppa
Y BHIVISZI 130TPOIHUX OJHOHAIPAMJIEHUX — BUXIJTHUX Ta BXi-
nHEX 32 JaHIpaceKapoMm IIOJIiB, TOOTO IIOJIB, SKi ITOIIUPIOIO-
ThCA Bim abo mo dopnoi gipu. Ha ocuoBi merony Hbromena—
Ilenpoysa y itoro cuiHopHiil (popMi PO3IVISHYTO OJHOHAIIPSIM-
jeHi i3orpomnsi mosnst y mpocropi tumy D 3a IlerpoBum Ta
3HAWAEHO y aHAJITHYHOMY BUIVIS/l 3arajibHUil PO3B’S30K Ta
PO3B’sI30K i3 BiJIOKpEMJIEHMMM 3MIiHHMMH y3arajJbHEHUX PiB-
HSIHb TakKuxX mojiB y Merpuni Keppa. Y 4acTKOBOMY BHIIaJI-
Ky €JIEKTPOMAarHiTHOrO moJjis 064ucseHo TeH3op MakcBesia Ta
TEH30D €Hepril-iMIyabCcy AJjIs BUXITHOrO Ta BXiJTHOTO OJIHOHA-
MIPSIMJIEHOT'O ITOJISI.
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