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INVESTIGATION OF ENERGY LEVELS AND
ELECTROMAGNETIC TRANSITIONS FOR Yb–Pt NUCLEI
WITH 𝑁 = 108 USING IBM, IVBM, AND BMMPACS 23.20.Lv

The interacting boson and vector boson models, as well as the Bohr–Mottelson one, are
employed to describe the energy levels and electromagnetic transitions of the 178Yb–186Pt
(𝑁 = 108) nuclei. For the purpose of determining the evolution of the ground state, both
𝑟((𝐼 + 2)/𝐼) and E-GOS ratios have been calculated as functions of the spin 𝐼. Based on the
interacting vector boson model and Bohr–Mottelson model, the negative-parity and GSB bands
have been calculated, while the interacting boson model is only employed to calculate GSB, 𝛾,
and 𝛽. The interacting boson model is also used to calculate the reduced transition probabil-
ities 𝐵(𝐸2). The obtained findings show a very well agreement with experimentally obtained
results elsewhere. We also used the intrinsic coherent state to obtain the potential energy sur-
faces. These results indicate that these nuclei have a rotational property SU(3), while 186Pt
has property O(6).

K e yw o r d s: IBM, IVBM, BMM, energy level, 𝐵(𝐸2) value, PES.

1. Introduction
The low-lying states of the even-even 178Yb–186Pt nu-
clei could be described successfully in the framework
of either phenomenological or microscopic models [1–
2]. The Bohr– Mottelson Model (BMM) is significant
for studying many of nuclei, where the vibrations are
associated with mainly quadrupole oscillations of the
nuclear surface. To study the rotational energy 𝐸 of
some nuclei, a new relation of 𝐼(𝐼 + 1) has been in-
troduced by Bohr and Mottelson [3] The bosoniza-
tion of neutrons and protons in the shell model gives
the interacting boson model (IBM). The interacting
boson model involves two types of bosons called 𝑠
(𝐿 = 0) and 𝑑 (𝐿 = 2), which play an important
role in the reduction of the problems related to a nu-
clear structure. The interacting boson model contains
three limiting symmetries, which are the rotational
SU(3), vibrational U(5), and 𝛾-unstable O(6) ones. In
these limits, the nuclei may have transition prop-
erties, vibrational-rotational, vibrational-𝛾-unstable,
and rotational-𝛾-unstable ones [4, 5]. The interact-
ing boson model (IBM-1) enables one to distinguish
between the proton and neutron bosons. In the even–
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even nuclei, the energy levels can be classified into the
ground-state band (GSB) and 𝛽-band with 𝑘𝜋 = 0+,
as well as the 𝛾-band with 𝑘𝜋 = 2+ [6]. Both bands,
the ground-state and octupole ones can be described
by the Interacting Vector Boson Model (IVBM), in
which the bosons have collective excitation patterns
in a nucleus. The IVBM is developed by Ganev et
al. [7]. A new Semiempirical Formula (SEF) that de-
pends on the angular momentum and energy lev-
els is proposed by Al-Jubbori et al. [8]. This relation
(SEF) is able to calculate the rotational and vibra-
tional energies of the even-even nuclei. In even-even
nuclei, a single octupole band with levels character-
ized by 𝐼𝜋 = 0+1−2+3−4+, ... formed from the two
bands, the GSB with 𝐼𝜋 = 0+, 2+4+, ..., and the ne-
gative-parity band (NPB) with 𝐼𝜋 = 1−, 3−, 5−...
[9–24]. This is an example of the odd-even staggering
or Δ𝐼 = 1 staggering, the latter term is due to the
fact that each energy level with angular momentum
𝐼 is displaced relatively to its neighbors with angular
momenta 𝐼 = ±1 [22]. The aim of the present work is
to study the low-excitation levels by the above men-
tioned models. In this study, the IBM-1is used in the
calculations of energy levels for GSB, reduced transi-
tion probabilities 𝐵(𝐸2) of 178Yb–186Pt, and the po-

936 ISSN 2071-0194. Ukr. J. Phys. 2017. Vol. 62, No. 11



Investigation of Energy Levels and Electromagnetic Transitions

tential energy surfaces. The NPB and GSB energy are
calculated, by using IVBM and BMM for these nuclei.

2. Method of Calculations

The Hamiltonian in IBM-1 can be expressed as [1, 15,
16]

𝐻 = 𝜀𝑠(𝑠
† · 𝑠) + 𝜀𝑑(𝑑

† · 𝑑)+

+
∑︁

𝐿=0,2,4

1

2
(2𝐿+1)1/2𝐶𝐿

[︁
[𝑑† × 𝑑†](𝐿) × [𝑑× 𝑑](𝐿)

]︁(0)
+

+
1√
2
𝜐2

[︁
[𝑑† × 𝑑†](2) × [𝑑× 𝑠](2) + [𝑑† × 𝑠†](2) ×

× [𝑑× 𝑑](2)
]︁(0)

+
1

2
𝜐0

[︁
[𝑑† × 𝑑†](0)[𝑠× 𝑠](0) +

+ [𝑠† × 𝑠†](0)× [𝑑× 𝑑](0)
]︁(0)

+
1

2
𝑢0

[︁
[𝑠† × 𝑠†](0) ×

× [𝑠× 𝑠](0)
]︁(0)

+ 𝑢2

[︁
[𝑑† × 𝑠†](2) × [𝑑× 𝑠](2)

]︁(0)
. (1)

There are two terms of Hamiltonian one-body interac-
tions, (𝜀𝑠 and 𝜀𝑑), and seven terms of two-body inter-
actions [𝑐𝐿(𝐿 = 0, 2, 4), 𝑣𝐿(𝐿 = 0, 2),0 𝑢𝐿(𝐿 = 0, 2)],
where 𝜀𝑠 and 𝜀𝑑 are the single-boson energies, and 𝑐𝐿,
𝑣𝐿 and 𝑢𝐿 describe the two-boson interactions. Ho-
wever, the 𝑁 pairs, 𝑁 = 𝑛𝑠 + 𝑛𝑑, represent the total
number of bosons, and it is conserved [15]. Thus, the
general relation (1) can be written as [16]

𝐻̂ = 𝜀𝑛̂𝑑 + 𝑎0𝑃 · 𝑃 + 𝑎1𝐿̂ · 𝐿̂+ 𝑎2𝑄̂ · 𝑄̂+ 𝑎3𝑇3 · 𝑇3 +

+ 𝑎4𝑇4 · 𝑇4, (2)

where 𝑛̂𝑑 = (𝑑† · 𝑑) represents the boson energy oper-
ator, the pairing operator interaction is represented
by 𝑝 = 1/2[(𝑑 · 𝑑) − (𝑠 · 𝑠)], 𝐿̂ =

√
10 [𝑑† × 𝑑]−1

represents the third term of the relation, which is
the contribution of the angular momentum O(3). The
quadrupole interaction of the 𝐿 = 2 𝑑-bosons is rep-
resented by the fourth term. The last two terms rep-
resent 𝑇𝑟 = [𝑑† × 𝑑]𝑟, where (𝑟 = 3) and (𝑟 = 4)
are the octoupole and hexadecapole interaction oper-
ators, respectively.

The quadrupole operator is given by [15, 17]

𝑄̂ = [𝑑† × 𝑆 + 𝑠† × 𝑑](2) + 𝜒[𝑑† × 𝑑](2), (3)

where 𝜒 is the quadrupole structure parameter and
takes the values 0 and ±

√
7
2 [15, 17].

The eigenvalues for these three limits are given by
[18]

𝐸 = 𝜀 𝑛𝑑+ 𝛽 𝑛𝑑(𝑛𝑑+ 4) + 2𝛾𝜐(𝜐 + 3)+

+2𝛿𝐿(𝐿+ 1) ... 𝑈(5),

𝐸 = 𝑎2

2 (𝜆2 + 𝜇2 + 𝜆𝜇+ 3(𝜆+ 𝜇))+

+
(︁
𝑎1 − 3𝑎2

8

)︁
𝐿(𝐿+ 1)...𝑆𝑈(3),

𝐸 = 𝑎0/4(𝑁 − 𝜎)(𝑁 + 𝜎 + 4) + 𝑎3/2𝜏(𝜏 + 3)+

+ (𝑎1 − 𝑎3/10)𝐿(𝐿+ 1) ... 𝑂(6),

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4)

where 𝛽, 𝛾, and 𝛿 represent the values of parameters.
The eigenvalues of energy levels for the ground-

state band and negative party states in the interacting
vector boson model are given by [20–24]

𝐸(𝐼) = 𝑎𝐼(𝐼 + 1) + 𝑏𝐼, (5)

𝐸(𝐼) = 𝑎𝐼(𝐼 + 1) + (𝑏+ 𝜂)𝐼 + 𝜁, (6)

where 𝑎 and 𝑏 can be estimated from the fit of the
positive ground-state band, whereas the two param-
eters 𝜂 and 𝜁 are estimated from the negative party
state ones.

The energy levels of the ground and negative bands
in BMM are given by [3, 16]

𝐸(𝐼) = 𝐴𝐼(𝐼 + 1)−𝐵𝐼2(𝐼 + 1)2 + 𝐶𝐼3(𝐼 + 1)3, (7)

𝐸(𝐼) = 𝐸0+𝐴
′𝐼(𝐼+1)−𝐵′𝐼2(𝐼+1)2+𝐶 ′𝐼3(𝐼+1)3, (8)

where 𝐸0 represents the band head energy of the neg-
ative party state, while the parameters 𝐴′, 𝐵′ and 𝐶 ′

can be estimated from the fit of the available energy
levels of NPB.

3. Results and Discussion

Based on the interacting boson model, the energy lev-
els of the ground state, 𝛾, 𝛽 bands, 𝐵(𝐸2) values,
and the potential energy surfaces are calculated. The
interacting vector boson model and Bohr–Mottelson
model were used to calculate the energy levels of the
negative parity band. The results are discussed sepa-
rately as follows.

3.1. Energy levels

The total boson numbers 𝑁𝑏 = 𝑁𝜋 + 𝑁𝜈 , where,
𝑁𝜋,𝑁𝜈 represent the bosons of a proton and a neu-
tron respectively. Even-even nuclei have atomic num-
bers 𝑍 = 72 to 80, while the even neutron number
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Fig. 1. (Color online) Energy gamma over spin of the ground-
state band for 178Yb–186Pt nuclei [25–29]

for all 178Yb–186Pt nuclei is 𝑁 = 108. They have (8–
2) proton pairs less than the magic number 𝑍 = 82
and 9 neutron hole pairs less than the magic number
𝑍 = 126. Therefore, the total boson numbers 𝑁𝑏 are
15 to 11.

The ratio 𝑅4/2 = 𝐸4+1 /𝐸2+1 is significant to distin-
guish the symmetry shape of a nucleus. It is 10/3 for
deformed nuclei, while 2.5 for 𝛾-unstable nuclei and
2 for vibrational nuclei [1].

Table 1 shows the experimental values of 𝐸 =
= 𝐸4+1 /𝐸2+1 of these nuclei. In this table, 𝑅4/2 at-
tains the SU(3) value of ∼3.3 for 178Yb–184Os nu-
clei except 186Pt with 𝑅4/2 = 2.5601, which attains
O(6). According to our analysis, 178Yb–184Os nuclei
present features of SU(3)-nuclei, whereas 186Pt nuclei
present features of O(6)-nuclei.

Regan et al. [30] introduced the relation 𝑅 =
= 𝐸𝛾(𝐼 → 𝐼 − 2)/𝐼 energy gamma over spin (E-

Table 1. Experimental excitation
energies (MeV) [25–29] for 178Yb–186Pt

Nuclei
Experimental

𝐸(2+1 ) 𝑅 = 𝐸(4+1 )/𝐸(2+1 )

178Yb 0.084000 3.3095
180Hf 0.09332 3.3065
182W 0.100105 3.2908
184Os 0.11977 3.2035
186Pt 0.19153 2.5601

GOS), this relation provides a valuable information
about the evolution that appears in the yrast line of
the even-even nuclei. For the three limits, these rela-
tions are given by [30]

Vibrational𝑅 =
ℎ𝜔

𝐼
→ 0, when 𝐼 → ∞,

Rotational𝑅 =
~2

2𝜗

(︂
4− 2

𝐼

)︂
→ 4

~2

2𝜗
, when 𝐼 → ∞,

𝛾 − soft:𝑅 =
𝐸2+1

4

(︂
1 +

2

𝐼

)︂
→

𝐸2+1

4
when 𝐼 → ∞.

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9)

From the above equations, the curve drops quickly
from the highest value (≈250 keV) at (𝐼 = 2+1 )
and equals to (0) at (𝐼 → ∞) for vibrational nu-
clei. For the 𝛾-soft nuclei, the situation is different,
since the highest value (≈150 keV) at (𝐼 = 2+1 ), and

the curve drops gradually to
𝐸

2
+
1

4 at (𝐼 → ∞). The
curve for rotational nuclei increases slowly from the
smallest value (≈50 keV) at (𝐼 = 2+1 ) to 4 ~2

2𝜗 at
(𝐼 → ∞) [30].

Figure 1 shows a comparison between the ideal lim-
its mentioned earlier and the experimental curves for
these nuclei. From this figure, the 178Yb–184Os pos-
sess the SU(3) limit, while the 186Pt has the 𝛾-soft
limit.

The systematics of the energy ratios 𝑟
(︀
𝐼+2
𝐼

)︀
of suc-

cessive levels of collective bands in medium and heavy
mass even-even nuclei was studied [31, 32].

The ratios for the given band of each spin 𝐼 were
built to define the symmetry of the excited band of
even-even nuclei in [31, 32]:

𝑟

(︂
𝐼 + 2

𝐼

)︂
=

[︃
𝑅

(︂
𝐼 + 2

𝐼

)︂
exp

− 𝐼 + 2

𝐼

]︃
× 𝐼(𝐼 + 1)

𝐼(𝐼 + 2)
, (10)

𝑅
(︀
𝐼+2
𝐼

)︀
exp

represents the experimental energy ratio
between the 𝐼+2 and 𝐼 states. The ratios 𝑟((𝐼+2)/𝐼)
with 𝐼 = 2, 4, 6, ... have been studied as well. These
ratios show distinctly different behaviors in the vi-
brational, rotational, and 𝛾-unstable limits. The ra-
tio 𝑟 should be close to 0 and to 1 for vibrational
and rotational nuclei, respectively. While, it should
have values spanning between zero and one for 𝛾-
unstable nuclei. In Eq. (10), the value of energy ratios
(𝑟) changes between 0.1 and 1 for GSB of even-even

938 ISSN 2071-0194. Ukr. J. Phys. 2017. Vol. 62, No. 11



Investigation of Energy Levels and Electromagnetic Transitions

nuclei [31, 32]:

0.1 ≤ 𝑟 ≤ 0.35 for vibrational nuclei,

0.4 ≤ 𝑟 ≤ 0.6 for transitional nuclei,

0.6 ≤ 𝑟 ≤ 1.0 for rotational nuclei.

⎤⎥⎥⎦ (11)

Figure 2 shows the ratio 𝑟
(︀
𝐼+2
𝐼

)︀
as a function of 𝐼

for the GSB of 178Yb–186Pt nuclei. The plot is used
to distinguish between different kinds of collective
behavior of rotational SU(3), vibrational U(5), and
𝛾-unstable O(6) nuclei. From this figure, the ratios
𝑟((𝐼 + 2)/𝐼) start with a value very close to one and
then constantly decrease with 𝐼 to 60.6 for 178Yb–
184Os, so this confirms that the nuclei have a rota-
tional limit. While, the curve of 186Pt is close to 0.4
and 0.6, which confirms that 186Pt has O(6) limit.

The interacting boson model, interacting vector bo-
son model, and Bohr–Mottelson model were used to
calculated the energy levels of GSB, 𝛾, 𝛽, and NPB
with special MATLAB software and the PHINT code
written by Scholten [32]. In Tables 2 and 3, the num-
ber of bosons together with the best values of the
parameters [25–29] for 178Yb–186Pt nuclei are sum-
marized.

The calculated GSB, 𝛽- and 𝛾-bands and experi-
mental data [25–29] for 178Yb–186Pt nuclei are shown
in Fig. 3, where the results of calculations are in good
agreement with the experiment for these nuclei.

Levels with “( )” in GBS, 𝛽 and 𝛾-band correspond
to the cases where the spin and/or parity of the
corresponding states are not well established expe-
rimentally.

Table 4 shows the results of calculations, which are
performed within IBVM and BMM and are reliable
to predict the negative party band for all nuclei. This
table shows that the BMM calculations are in a good
agreement with the experimental data for these bands
and better than those of IVBM, except 178Yb nuclei,
since there is no sufficient experimental data for the
NPB band. Levels with “*” correspond to the cases
where the spin and/or parity of the corresponding
states are not well established experimentally.

The odd–even staggering can be calculated by the
equation [33]

Δ𝐸1,𝛾(𝐼) = 1/16[6𝐸1,𝛾(𝐼)− 4𝐸1,𝛾(𝐼 − 1)−

− 4𝐸1,𝛾(𝐼 + 1) + 𝐸1,𝛾(𝐼 − 2) + 𝐸1,𝛾(𝐼 + 2)], (12)

Fig. 2. (Color online) Ratio versus 𝐼 for 178Yb−186Pt nuclei
[25–29]

where 𝐸1,𝛾(𝐼) = 𝐸1,𝛾(𝐼+1)−𝐸(𝐼)Δ𝐸1,𝛾(𝐼) exhibits
the values of alternating sign over the extended region
of the angular momentum. In general, the staggering
starts from relatively high values and then gradually
decreases, as 𝐼 increases. Following that, the stagger-
ing starts to raise and then drops again. The phase
change appears when the staggering reaches a van-
ishing value [9, 19]. The odd-even staggering results
are shown in Fig. 4 for 180Hf–186Pt nuclei. From this
figure, the IVBM and BMM results slightly decrease
with increasing 𝐼, and it is in good agreement with ex-
perimental data. The staggering curves do not reach
zero, which confirms that 180Hf–184Os possess SU(3)
properties, whereas the 186Pt has O(6).

4. 𝐵(𝐸2) Values

The electrical transition can be also calculated un-
der the framework of IBM, and the most general 𝐸2
transition operator can be written as [1, 8, 18]

𝑇𝐸2 = 𝛼2[𝑑
†𝑠+ 𝑠†𝑑](2) + 𝛽2[𝑑

†𝑑](2) = 𝑒𝐵𝑄̂, (13)

where (𝑠†, 𝑑†) and (𝑠, 𝑑) represent the creation and
annihilation operators for 𝑠 and 𝑑 bosons, respec-
tively, while 𝛼2 and 𝛽2 are two parameters, where
𝛽2 = 𝜒𝛼2, 𝛼2 = 𝑒𝐵 are the effective charge of a boson
and the quadrupole operator 𝑄. The matrix elements
of the 𝑇𝐸2 operator can give the reduced transition
rates as [8, 34–35]

𝐵((𝐸2)𝑙𝑖 → 𝐿𝑓 ) =
1

2𝐿𝑖 + 1
|⟨𝐿𝑓 ||𝑇 (𝐸2)||𝐿𝑖⟩|2. (14)
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Fig. 3. (Color online) Comparison of the calculated and experimental data [25–29] within IBM-1,
IVBM, and BMM for 178Yb–186Pt nuclei

Table 2. Parameters in MeV of IBM-1,
IVBM, and BMM used in the calculation of 178Yb–186Pt nuclei

Nuclei 𝑁𝑏

IBM IVBM BM

QQ ELL PAIR OCT CHI 𝑎× 10−3 𝑏× 10−3 𝐴 𝐵 × 10−3 𝐶 × 10−3

178Yb 15 –0.0261 0.0182 – – –1.333 12.7013 7.8545 13.972 5.1982 0.7027
180Hf 14 –0.0269 0.0210 – – –1.333 9.4928 50.3726 13.511 –0.3952 –21.956
182w 13 –0.0299 0.0222 – – –1.333 12.9957 25.9124 16.533 9.1374 0.4463
184Os 12 –0.0239 0.0310 – – –1.333 12.1950 48.9146 19.336 0.2373 2.6987
186Pt 11 – 0.0589 0.0196 0.0242 0.000 6.1512 110.3425 23.877 0.7739 13.073

(PAIR = 𝑎0/2, ELL = 2𝑎1, QQ = 2𝑎2, OCT = 𝑎3/5) [18].
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Fig. 4. (Color online) Staggering calculated from Eq. (12) for 180Hf–186Pt nuclei

180Hf–184Os nuclei are an excellent example to study
the behavior of the total low-lying 𝐸2 strengths. The
effective charge, 𝛼2 = 𝑒𝐵 , can be determined from the
experimental 𝐵(𝐸2); 2+1 → 0+1 . Table 5 shows the val-
ues of the 𝛼2 and 𝛽2 parameters. The electromagnetic
transition rates for the experimental values and the
IBM calculation are listed in Table 6 for 180Hf–184Os
nuclei.

4.1. Potential energy surface

These three symmetry limits form a triangle known as
the Casten triangle and represent the nuclear phase
diagram [18], and all states in IBM-1 possess posi-
tive parity, while the octupole effects within the in-
teracting boson framework can be described in the
framework of the spdf-IBM, introduced by Engel and

Table 3. IVBM and BMM parameters
of NPB in MeV used in the calculation
of 180Hf–186Pt nuclei

Nuclei
IVBM BM

𝜁 𝜂 𝐴× 10−3 𝐵 × 10−3 𝐶 × 10−3

180Hf 1.4290 –0.0783 –2.9235 –18.787 –7.4972
182W 1.37383 –0.0606 7.0609 –4.4987 –1.5444
184Os 1.5437 –0.0958 4.1831 –5.5743 –1.7726
186Pt 1.4077 –0.0625 7.6315 –4.5248 –1.6648

Iachello [34, 35]. At that time, Kusnezov and Iachello
gave a detailed study of the 140−148Ba isotopes [36]
and then the spdf-IBM was developed by Kusnezov
and Zamfir [39–42].
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Table 4. Experimental and calculated
energy levels in MeV within IVBM and BMM of NPB for 180Hf–186Pt

𝐼

180Hf 182W

Exp. IVBM BM Exp. IVBM BM

3 1.4298* 1.4600 1.4205 1.37383 1.3738 1.4648
5 1.444* 1.5750 1.4910 1.62128 1.6213 1.6220
7 1.7651* 1.7660 1.7236 1.91705 1.8588 1.8832
9 2.1342* 2.0330 2.1419 2.27387 2.2313 2.2611

11 2.588* 2.3759 2.5931 2.71093 2.7077 3.7345
13 2.603* 2.7947 2.6011 3.22453 3.2881 3.2180

𝐼

184Os 186Pt

Exp. IVBM BM Exp. IVBM BM

3 1.5437 1.5493 1.6016 1.40771 1.6249 1.5055
5 1.71807 1.6750 1.7146 1.69273* 1.8312 1.6729
7 1.95843* 1.8983 1.9216 1.95233 2.0868 1.9477
9 2.22183* 2.2191 2.2425 2.37492* 2.3915 2.3379

11 2.6615* 2.6375 2.6595 2.788* 2.7459 2.8026
13 3.0835* 3.1539 3.0829 3.2998* 3.1486 3.2918

Table 5. Parameters (in eb) used
to reproduce 𝐵(𝐸2) values for 180Hf–186Pt nuclei

Isotope 𝑁𝑏 𝛼2 𝛽2

180Hf 14 0.1037 –0.1371
182W 13 0.1055 –0.1355
184Os 12 0.0998 –0.1320
186Pt 11 0.1320 0.0000

IBM was formulated initially in terms of the cre-
ation and annihilation boson operators. Its geometric
interpretation was given in terms of shape variables
by introducing the intrinsic coherent state, which is
expressed as a boson condensate [8, 36]:

|𝑁, 𝛽, 𝛾⟩ = 1/
√
𝑁 !(𝑏†𝑐)

𝑁 |0⟩, (15)

where |0⟩ denotes the boson vacuum, and

𝑏†𝑐 = (1 + 𝛽2)−1/2
{︁
𝑠† + 𝛽[cos 𝛾(𝑑†0)+

+
√︀

1/2 sin 𝛾(𝑑†2 + 𝑑†−2)]
}︁
, (16)

where 𝑁 is the boson number, 𝛽 measures the total
deformation of a nucleus, while 𝛾 measures a devia-
tion from the axial symmetry, which determines the
geometrical shape of the nucleus.

Here, 𝛽 > 0 and 0 < 𝛾 < 𝜋/3, 𝛽 and 𝛾 have been
given in [8].

Fig. 5. (Color online) Potential energy surfaces for 178Yb-
186Pt nuclei
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Table 6. IBM-1 and the experimental data [25–29] of 𝐵(𝐸2) (in 𝑒2 𝑏2 ) for 180Hf–186Pt nuclei

Isotopes 180Hf 182W 184Os 186Pt

𝐽𝑖 → 𝐽𝑓 Exp. IBM-1 Exp. IBM-1 Exp. IBM-1 Exp. IBM-1

2+1 → 0+1 0.935 0.931 0.833 0.837 0.619 0.644 0.593 0.757
4+1 → 2+1 1.389 1.315 1.201 1.180 0.870 0.906 0.796
2+2 → 0+1 0.0208 0.00 0.000 0.079
5+1 → 4+2 0.708 0.624 0.467 0.021
6+1 → 4+1 1.322 1.418 1.232 1.269 0.0027< 0.969 0.888
6+2 → 4+2 0.852 0.749 0.561 0.609
6+2 → 5+1 0.527 0.466 0.351 0.000
6+3 → 4+3 1.125 0.734 0.622
8+1 → 6+1 1.479 1.436 1.281 1.281 0.008< 0.972 0.912
8+2 → 6+2 0.994 0.869 0.646 0.608

10+1 → 8+1 1.437 1.416 1.244 1.251 0.0033< 0.941 0.891
12+1 → 10+1 1.364 1.170 1.193 0.0018< 0.886 0.044 0.836
14+1 → 12+1 1.287 1.042 1.111 0.811 0.753

From Hamiltonian (1), the potential energy sur-
faces (PES) were calculated from the intrinsic boson
condensate state (14):

𝐸(𝑁𝑏, 𝛽, 𝛾) =

= ⟨𝑁𝑏, 𝛽, 𝛾|𝐻|𝑁𝑏, 𝛽, 𝛾⟩/⟨𝑁𝑏, 𝛽, 𝛾|𝑁𝑏, 𝛽, 𝛾⟩ =

=
𝑁𝑏𝜀𝑑𝛽

2

(1 + 𝛽2)
+

𝑁𝑏(𝑁𝑏 + 1)

(1 + 𝛽2)2
×

× (𝛼1𝛽
4 + 𝛼2𝛽

3 cos 3𝛾 + 𝛼3𝛽
2 + 𝛼4). (17)

These expressions give, for large 𝑁𝑏, 𝛽min = 0, 1.414,
and 1 for U(5), SU(3), and O(6), respectively. The
calculated potential energy surfaces are shown in
Fig. 5. It can be seen from the figure that the even-
even 178Yb, 180Hf, 182W, and 184Os nuclei under
study are deformed and have rotational symmetry
SU(3), except 186Pt which has O(6).

5. Conclusions

In conclusion, the energy levels are calculated, by us-
ing IBM-1, IVBM and BMM for 178Yb–186Pt nuclei
with 𝐴 = 178 to 186. The analysis shows a good
agreement of the results of these models and the avail-
able experimental data. The energy gamma over spin
curves of the GSB for 178Yb–186Pt nuclei are plot-
ted and compared with the ideal limits of vibrational,
rotational and 𝛾-soft cases. From this study, 178Yb–
184Os nuclei have the rotational property, while the

186Pt has the O(6) property. The ratio 𝑟
(︀
𝐼+2
𝐼

)︀
has

been applied to describe the GSB of the above nu-
clei. The study has demonstrated that the ground
and octupole bands exhibit Δ𝐼 = 1 staggering, and
the vanishing value of the staggering Δ𝐸1, 𝛾(𝐼) = 0
has not been reached. The reduced transition proba-
bilities 𝐵(𝐸2) of these nuclei are calculated,by using
IBM-1. The potential energy surfaces have confirmed
that 178Yb–184Os nuclei possess SU(3), and 86Pt has
O(6) characteristics.

The author thanks University of Mosul, College of
Education for Pure Science, Department of Physics
for supporting this work.
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М.Абед Ал-Джабборi

ВИВЧЕННЯ РIВНIВ ЕНЕРГIЇ
I ЕЛЕКТРОМАГНIТНИХ ПЕРЕХОДIВ У Yb–Pt
ЯДРАХ З 𝑁 = 108 У ВБ, ВВБ, I БМ МОДЕЛЕЙ

Р е з ю м е

У моделях взаємодiючих бозонiв (МВБ), взаємодiючих ве-
кторних бозонiв (МВВБ) i Бора–Моттельсона (МБМ) опи-
санi рiвнi енергiї i електромагнiтнi переходи в ядрах 178Yb–
186Pt (𝑁 = 108). Для визначення еволюцiї основного стану
розрахованi вiдношення 𝑟((𝐼 + 2)/𝐼) i 𝑅 = 𝐸𝛾(𝐼 → 𝐼 − 2)/𝐼

як функцiї спiна 𝐼. У МВВБ i МБМ розрахованi смуги з
негативною парнiстю i смуга в основному станi, тодi як у
МВБ розрахованi 𝑅, 𝛾, 𝛽 i приведенi ймовiрностi перехо-
дiв 𝐵(𝐸2) у хорошiй згодi з експериментальними даними.
Для власного когерентного стану визначенi поверхнi потен-
цiальної енергiї. З цих результатiв випливає, що обертання
цих ядер характеризується SU(3) симетрiєю, а 186Pt O(6)
симетрiєю.
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