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Various aspects of the influence of Coulomb resonances and quasireal photons on the dynamics
of nuclear electro-disintegration by high-energy electrons have been studied in the framework
of the nuclear shell model. Some peculiarities of numerical methods used to study the inelastic
scattering cross-sections of high-energy electrons are also considered.
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1. Introduction:
Inelastic Scattering of High-Energy
Electrons by Atomic Nuclei

Nowadays, the study of the processes of elastic and
inelastic scattering of high-energy electrons by nu-
clei is known to be a source of the most reliable
information on the structure of atomic nuclei [1–
31]. The validity of this statement is supported by
various theoretical and experimental factors. In the
theoretical aspect, the weakness of the electromag-
netic interaction between high-energy electrons and
the nucleons of an atomic nucleus allows the relia-
bility of the scattering theory formulas, which were
obtained, as is known, in the framework of pertur-
bation theory, to be considerably enhanced. At the
same time, from the experimental viewpoint, physi-
cists possess such experimental installations as highly
effective beam accelerators of high-energy monoen-
ergetic electrons. They also apply effective and re-
cently improved methods to register charged particles
in experiments dealing with the inelastic scattering
of electrons by atomic nuclei accompanied, e.g., by
the knockout of nucleons from nuclei (the reactions
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[𝐴(𝑒, 𝑒′𝑝)𝐴− 1] and [𝐴(𝑒, 𝑒′𝑛)𝐴− 1]). The perfection
of the technique used to form highly intense beams of
monoenergetic electrons in a wide range of energies,
as well as to register those particles in nuclear exper-
iments, plays a crucial role, when selecting projectile
particles for an external action on the atomic nucleus
in studies of the nuclear structure and properties:
surely, these are high-energy electron beams. Hence,
the application of the phenomenon of inelastic high-
energy electron scattering by nuclei in order to study
the structure of atomic nuclei may probably be, at
the moment, the most effective method to obtain
the comprehensive information on the atomic nucleus
structure 1.

One of the research directions presented in this
work is the elucidation of the basis to interpret the
giant dipole resonance in the framework of the shell
model of atomic nuclei, which was used earlier in a
number of works [9, 18, 19, 29–31]. We will also try
to be convinced that, in order to study the electronu-
clear phenomenon indicated above, it is possible to ef-

1 Note that the highly intensive sources of monoenergetic
beams of other particles that weakly interact with nucle-
ons of atomic nuclei (neutrinos, photons, positrons) have not
been yet created for today.
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Fig. 1

ficiently use the phenomenon of inelastic high-energy
electron scattering by atomic nuclei, provided that
the experimental basis for studying the inelastic scat-
tering of electrons with mass 𝑚 and the initial and
final energies 𝜀 and 𝜀′ at small angles 𝜃′ (the “0–0”-
scattering [29, 31]),

𝜃′ ≪
𝑚(𝜀− 𝜀′)

𝜀𝜀′
≪ 1, (1)

would be extended.
The well-known phenomenon of giant dipole reso-

nance [32] consists in the intense absorption of pho-
tons with a definite energy 𝐸dgr (7 MeV . 𝐸dgr .
. 23 MeV) by the nuclei of almost all chemical
elements. Such absorption is reliably registered ex-
perimentally in rather a wide (∼3÷5 MeV) energy
interval (the giant resonance). Note that the most
amazing property of the giant dipole resonance is
the mentioned universality of this electronuclear phe-
nomenon, namely, the absorption of photons by prac-
tically all (𝐴 > 8) atomic nuclei. It is also worth
noting that the maximum energy of photon absorp-
tion, 𝐸dgr, slightly exceeds 20 MeV (𝐸dgr . 23 MeV)
in the case of light atomic nuclei and gradually de-
creases to about 7 MeV (𝐸dgr & 7 MeV) for heavier
atomic nuclei.

The conventional, at the moment, interpretation
of the giant resonance phenomenon is constructed in
the framework of the Migdal–Goldhaber–Teller model
[32]. According to the hypothesis put forward by the
indicated physicists, the phenomenon of photon ab-
sorption by atomic nuclei is accompanied by the ex-
citations of collective motions in them, when the cen-
ter of mass of all protons in the atomic nucleus shifts
with respect to the center of mass of all neutrons in
the same nucleus. We may assert that, despite its
exotic nature, the Migdal–Goldhaber–Teller model
[32] allows a significant progress in the interpreta-

tion of the giant dipole resonance phenomenon to be
achieved 2.

In the present work with the help of the Coulomb
resonance and quasireal photon concepts, we will try
to interpret some specific features of the giant dipole
resonance phenomenon by doing it in the framework
of the shell model of atomic nucleus. We will also in-
tend to propose a new method to study this phe-
nomenon, while researching the inelastic scattering
of high-energy electrons by nuclei. With that end in
view, we recall below some properties of such con-
cepts as Coulomb resonances and quasireal photons
[9,18,19,23,29–31], which are rarely used. First of all,
we note that, in the case of inelastic high-energy elec-
tron scattering, the electro-disintegration processes
of atomic nuclei are described in a first approxima-
tion by the quantum-electrodynamic Feynman dia-
gram depicted in Fig. 1. In what follows, we consider
that the process of inelastic high-energy electron scat-
tering by an atomic nucleus is accompanied by the
transfer of the energy 𝜔 = 𝜀− 𝜀′ > 0, where 𝜀 and 𝜀′
are the electron energies before and after the inelas-
tic scattering event, respectively, and the momentum
q = k − k′, where k and k′ are the momenta of the
scattered electron before and after its collision with
the nucleus, respectively, to the target nucleus. We
also consider that the magnitudes of transferred en-
ergy, 𝜔, and momentum, |q|, as well as the magnitude
of the momentum of a knocked out nucleon, |K|, sat-
isfy the conditions: 𝜔

𝑀 ≪ 1, 𝑞
𝑀 ≪ 1, and 𝐾

𝑀 ≪ 1.
Under the indicated assumptions, according to the

diagram shown in Fig. 1, the process of inelastic elec-
tron scattering by the atomic nucleus 𝐴 can be in-
terpreted, e.g., as follows [30, 31]. An electron with
the four-momentum 𝑘 ≡ 𝑘𝜇 = (k, 𝑖𝜀) approaches the
atomic nucleus 𝐴, emits a virtual photon character-
ized by the four-momentum 𝑞 ≡ 𝑞𝜇 = (q, 𝑖𝜔), and
acquires the status of scattered electron with the four-
momentum 𝑘′ ≡ 𝑘′𝜇 = (k′, 𝑖𝜀′) ≡ ((k− q), 𝑖(𝜀 − 𝜔)).
Note that if the standard definition of a relativis-
tic virtual photon mass is applied, 𝜔2 = q2 + 𝑚𝑓

2,

2 Note also that no interpretation of at least the main fea-
tures of the giant dipole resonance phenomenon in the frame-
work of the shell model of atomic nucleus has been given till
now. One can hardly deny the fact that the “triumph” of the
Migdal–Goldhaber–Teller model [32] in the interpretation of
the giant dipole resonance phenomenon is associated with its
unshakable monopoly in the indicated domain of theoretical
nuclear physics.

1134 ISSN 2071-0194. Ukr. J. Phys. 2014. Vol. 59, No. 12



Coulomb Resonances, Quasireal Photons

we may assert that the mass 𝑚𝑓 of a virtual pho-
ton is always determined by an imaginary number,
since the inequality 𝜔2 < q2 holds true for an arbi-
trary scattering angle [29]. Note that the mass 𝑚𝑓 at
fixed 𝜀 and 𝜀′ grows by absolute value with the an-
gle of inelastic electron scattering 𝜃′. In other words,
the mass of a virtual photon moving along the direc-
tion of motion of the inelastically scattered electron
is minimum.

The virtual photon mentioned above (𝑞 ≡ 𝑞𝜇 ≡
≡ (q, 𝑖𝜔)) is captured by one of the protons in the
atomic nucleus. Occasionally, this proton can obtain
the energy sufficient to overcome attractive nuclear
forces and escape from the residual atomic nucleus
(𝐴 − 1). The knocked out proton moves in the force
field created by the atomic nucleus (𝐴 − 1), i.e. it is
scattered by this nucleus by means of exchanging a
hypothetical 𝜋-meson, as it is schematically shown in
Feynman’s diagram (Fig. 1).

In the framework of the nuclear shell model (the
𝐿𝑆-coupling) under the conditions formulated above,
the following formula can be obtained for the cross-
section of high-energy electron scattering by nuclei
[6, 18, 29–31] with the use of the McVoy–Van Hove
interaction Hamiltonian [1, 2]:

𝜎𝑥𝑛𝑙(k,k
′,K) ≡ 𝑑5𝜎𝑥𝑛𝑙

𝑑𝜀′𝑑Ω′𝑑Ω
=

= 𝑒4𝑁𝑥𝑛𝑙𝐹
2
𝑥 (𝑞

2
𝜇)

4𝑀𝐾

k2

[︂
𝑆𝑥(k,k

′,K)×

×𝑃 (k,k′)𝐺𝑥𝑛𝑙(q,K)

]︂
, (2)

where 𝑒 is the electron charge, 𝑁𝑥𝑛𝑙 is the number of
𝑥-nucleons in the nuclear 𝑥𝑛𝑙-shell, 𝑑Ω′ ≡ 𝑑Ωk′ , 𝑑Ω ≡
≡ 𝑑ΩK,

𝜃′ ≡ 𝜃k′ , 𝜃 ≡ 𝜃K, 𝜃k = 0,

𝜙′ ≡ 𝜙k′ = 0, 𝜙q = 𝜋,
(3)

𝛾𝑥 = 1.79𝛿𝑥𝑝 − 1.91𝛿𝑥𝑛, (4)

𝐹𝑥(𝑞
2
𝜇) ≡ 𝐹 (𝑞2𝜇) = (1 + 0.055(𝐹𝑚)2𝑞2𝜇)

−2; (5)

𝑆𝑥(k,k
′,K) =

1

2𝑘𝑘′

{︂
𝛿𝑥𝑝

[︂(︂
1 +

𝜔

𝑀
+

q2(1− 2𝛾𝑥)

4𝑀2

)︂
×

× (𝜀𝜀′ + kk′)− 2

𝑀
K(𝜀k′ + 𝜀′k)+

+
𝑞2𝜇K

2 + 4(kK)(k′K)

2𝑀2

]︂
+ 𝛾2𝑥

4[kk′]2 + (𝑞2𝜇)
2

4𝑀2

}︂
(6)

is a dimensionless positive (𝑆𝑥(k,k
′,K) ∼ 1) function

of the vector arguments k, k′, and K, which changes
rather smoothly, as the kinematic parameters of elec-
tron scattering by the atomic nucleus vary. Note that
the function 𝑆𝑥(k,k

′,K) mainly reflects the struc-
tural features of the interaction between the relativis-
tic electron and the quasirelativistic non-point nu-
cleon in the McVoy–Van Hove Hamiltonian [1, 2].

The emission probability for a virtual photon 𝑞𝜇 =
= (q, 𝑖𝜔) at the electron vertex 𝜇 (𝑞𝜇 = (q, 𝑖𝜔)) is
connected with the dimensionless function

𝑃 (k,k′) ≡ 𝑃 (𝜃′) =
k2k′2

(𝑞2𝜇)
2
, (7)

and the probability that this virtual 𝑞𝜇-photon knocks
out an 𝑥-nucleon from the bound 𝑥𝑛𝑙-state of the nu-
cleus 𝐴 to the state |K⟩ in the continuous spectrum
of the same nucleus, with the function

𝐺𝑥𝑛𝑙(q,K) =
1

(2𝑙 + 1)(2𝜋)3
×

×
𝑚=𝑙∑︁
𝑚=−𝑙

⃒⃒⃒⃒∫︁ (︁
𝜓
(−)*
K (r) exp(𝑖qr)𝜙𝑥𝑛𝑙𝑚(r)

)︁
𝑑3r

⃒⃒⃒⃒2
(8)

describing the perturbed distribution of 𝑥-nucleons
over the momenta in the 𝑥𝑛𝑙-shell of the atomic nu-
cleus [6, 30]. It is in functions (7) and (8) that the
most important features of the processes of inelastic
electron scattering by atomic nuclei, which are known
as quasireal photons and Coulomb (centrifugal) reso-
nances [18, 19, 23, 29–31], are hidden.

2. Coulomb Resonances, Quasireal
Photons, and Quasidiscrete Nuclear Spectra

To clarify the role of Coulomb resonances and
quasireal photons in the processes of nuclear electro-
disintegration by high-energy electrons, let us con-
sider some features inherent to the processes of inelas-
tic high-energy electron scattering by some (medium
and heavy) atomic nuclei. For this purpose, remain-
ing in the framework of the nuclear shell model, let us
append formula (2) by the definitions of the follow-
ing additional quantities: the cross-section of inelas-
tic electron scattering at a certain scattering angle 𝜃′
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and with a knockout of nucleons from the 𝑥𝑛𝑙-shell
(𝜎𝑥𝑛𝑙(𝜔)|𝜃′=𝜃′

0
≡ 𝜎𝑥𝑛𝑙(𝜔)),

𝜎𝑥𝑛𝑙(𝜔) | 𝜃′=𝜃′
0
=

∫︁
𝑑ΩK𝜎𝑥𝑛𝑙(k,k

′,K) | 𝜃′=𝜃′
0

(9)

and the total cross-section of inelastic electron scat-
tering at the same angle, which depends on the trans-
ferred energy 𝜔,

𝜎(𝜔) | 𝜃′=𝜃′
0
≡

∑︁
𝑥𝑛𝑙

𝜎𝑥𝑛𝑙(𝜔) | 𝜃′=𝜃′
0
. (10)

In the case of nuclear electro-disintegration, if the
interaction between the knocked out nucleons in the
final state and the residual nucleus (𝐴 − 1) is taken
into account, the cross-sections of inelastic scattering
at resonance transferred energies,

𝜀rez = 𝜔𝑥𝑛𝑙→𝑥𝑁𝐿 = 𝐸𝑥𝑁𝐿 + |𝜀𝑥𝑛𝑙| ≡ 𝜔[𝑟], (11)

can reach huge values [30] 3. In this case, the ex-
tremely useful physical information can be ob-
tained by calculating the excitation cross-sections of
Coulomb resonances, which are determined by the
cross-sections of inelastic electron scattering at the
resonance energies indicated above,

𝐸rez ≡ 𝜔𝑥𝑛𝑙→𝑥𝑁𝐿 = 𝐸𝑥𝑁𝐿 + |𝜀𝑥𝑛𝑙|.

Hence, the specific excitation cross-sections of
Coulomb and centrifugal resonances (𝜎𝑖𝑖

𝑥𝑛𝑙→𝑥𝑁𝐿) for
inelastic electron scattering at a certain scattering an-
gle 𝜃′ and a nucleon knockout from the 𝑥𝑛𝑙-shell of
the atomic nucleus are determined by the formula

𝜎𝑖𝑖
𝑥𝑛𝑙 =

1

𝑁𝑥𝑛𝑙

𝜔[𝑟]+△𝐸𝑠∫︁
𝜔[𝑟]−△𝐸𝑠

𝜎𝑥𝑛𝑙(𝜔)𝑑𝜔. (12)

Note that, as a rule, 𝜎𝑖𝑖
𝑥𝑛𝑙 is measured in the

nb/sr units. To obtain the total excitation cross-
section 𝜎𝑖

𝑥𝑛𝑙 of corresponding resonance, it is neces-
sary to multiply 𝜎𝑖𝑖

𝑥𝑛𝑙 by Ωexper, the solid angle in
which inelastically scattered electrons are registered
in physical experiments. We assume that Ωexper ≪

3 Hereafter, instead of a cumbersome sequence of symbols
[𝑥𝑛𝑙 → 𝑥𝑁𝐿], we use a shorter and more convenient sym-
bol [𝑟].

≪ 1. Formula (12) implicitly contains the inequal-
ity 𝛾𝑥𝑛𝑙 ≪ △𝐸𝑠. Formula (12) also implicitly pos-
tulates that the examined resonance is isolated, i.e.
the energy △𝐸𝑠 is much less than the energy inter-
val |𝜔[𝑟] − 𝜔[𝑟′]| between two neighbor Coulomb reso-
nances registered in experiment.

Hence, in what follows, we adopt that the condition

𝛾𝑥𝑁𝐿 ≪ △𝐸𝑠 ≪ |𝜔[𝑟] − 𝜔[𝑟′]| (13)

holds true, and the inequality

𝜆 ≈ 𝑚𝜔

𝜀𝜀′
≪ 1 (14)

is satisfied. Then it is also possible to approxi-
mately determine the total excitation cross-section of
Coulomb resonance, when a single proton is knocked
out from the 𝑝𝑛𝑙-shell of the atomic nucleus at the
inelastic electron scattering:

𝜎𝑢𝑟
𝑥𝑛𝑙→𝑥𝑁𝐿(𝜔)=

1

𝑁𝑥𝑛𝑙

∫︁∫︁
(Ω=4𝜋)

𝑑Ω′

𝜔[𝑟]+△𝐸𝑠∫︁
𝜔[𝑟]−△𝐸𝑠

𝑑𝜔[𝜎𝑥𝑛𝑙(𝜔, 𝜃
′)]≈

≈ 1

𝑁𝑥𝑛𝑙

∫︁∫︁
(Ω=4𝜋)

𝑑Ω′
∞∫︁

−∞

𝑑𝜔[𝜎𝑥𝑛𝑙(𝜔, 𝜃
′)]. (15)

The integration in Eq. (15) under conditions (13) and
(14) is easy to be done [29].

The integral cross-sections 𝜎𝑖
𝑥𝑛𝑙 of inelastic electron

scattering at a certain scattering angle and with the
knockout of protons from the 𝑥𝑛𝑙-shell or all (𝜎𝑖) pro-
ton and neutron shells of the considered atomic nu-
cleus equal

𝜎𝑖
𝑥𝑛𝑙 | 𝜃′=𝜃′

0
=

𝜀∫︁
0

𝑑𝜔[𝜎𝑥𝑛𝑙(𝜔) | 𝜃′=𝜃′
0
], (16)

𝜎𝑖 | 𝜃′=𝜃′
0
=

𝜀∫︁
0

[𝜎(𝜔) | 𝜃′=𝜃′
0
]𝑑𝜔. (17)

Since the occupation numbers are substantially dif-
ferent in different nuclear shells, the useful physical
information can be obtained by analyzing the specific
knockout cross-sections of single 𝑥𝑛𝑙-nucleons from
the atomic nucleus,

𝜎𝑖𝑢
𝑥𝑛𝑙 =

1

𝑁𝑥𝑛𝑙

𝜀∫︁
0

𝑑𝜔𝜎𝑥𝑛𝑙(𝜔) | 𝜃′=𝜃′
0
. (18)
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Taking advantage of the properties of the function
𝜎𝑥𝑛𝑙(𝜔, 𝜃

′) described earlier [30], we may assert that
the integral

𝜎𝑢𝑟
𝑥𝑛𝑙→𝑥𝑁𝐿(𝜔)=

1

𝑁𝑥𝑛𝑙

∫︁∫︁
(Ω=4𝜋)

𝑑Ω′

𝜔[𝑟]+△𝐸𝑠∫︁
𝜔[𝑟]−△𝐸𝑠

𝑑𝜔𝜎𝑥𝑛𝑙(𝜔, 𝜃
′) =

=
2𝜋

𝑁𝑥𝑛𝑙

𝜃′
0∫︁

0

sin 𝜃′𝑑𝜃′

𝜔[𝑟]+△𝐸𝑠∫︁
𝜔[𝑟]−△𝐸𝑠

𝜎𝑥𝑛𝑙(𝜔, 𝜃
′)𝑑𝜔 (19)

approximately determines the lower limit for the ex-
citation cross-section of the Coulomb 𝑝𝑁𝐿-resonance
at the proton knockout from the 𝑝𝑛𝑙-shell of the
atomic nucleus 4.

A detailed analysis of the properties of the func-
tion 𝜎𝑥𝑛𝑙(𝜔, 𝜃

′) depending on two kinematic vari-
ables, the energy 𝜔 transferred from the electron to
the knocked out proton and the angle 𝜃′ of inelas-
tic electron scattering, demonstrates that, in a close
vicinity of the point corresponding to the resonance
energy 𝐸 (𝜔[𝑟] − △𝐸𝑠 < 𝐸 < 𝜔[𝑟] + △𝐸𝑠, where
𝜔[𝑟] = 𝜔𝑥𝑛𝑙→𝑥𝑁𝐿) and the electron scattering angle
𝜃′ = 0, the cross-section 𝜎𝑢𝑟

𝑥𝑛𝑙→𝑥𝑁𝐿(𝐸, 𝜃
′) of inelastic

electron scattering accompanied by the excitation of
a Coulomb resonance can be approximately written
in the form [30]

𝜎𝑥𝑛𝑙→𝑥𝑁𝐿(𝜔, 𝜃
′) ∼ 𝐵[𝑟](𝜔, 𝜃

′)

(𝜃′2 + 𝜆2)2[(𝜔 − 𝜔[𝑟])2 +
𝛾2𝑥𝑁𝐿

4
]

.

(20)

According to the results of calculations, the function
𝐵[𝑟](𝜔, 𝜃

′) of two variables 𝜔 and 𝜃′ that enters for-
mula (20) changes rather smoothly in a vicinity of
the point

(︀
𝜔 = 𝜔[𝑟], 𝜃

′ = 0
)︀
. It is evident that, un-

der those conditions, the maximum value 𝜎𝑚
[𝑟](𝜔, 𝜃

′) of
the inelastic electron scattering cross-section function
𝜎𝑢𝑟
[𝑟](𝜔, 𝜃

′) is reached at the point
(︀
𝜔 = 𝜔[𝑟], 𝜃

′ = 0
)︀
,

𝜎𝑚
𝑥𝑛𝑙→𝑥𝑁𝐿 ≡ 𝜎𝑚

[𝑟] =
4𝐵[𝑟](𝜔[𝑟], 0)

𝜆2𝛾2𝑥𝑁𝐿

=

=
4𝜀𝜀′𝐵[𝑟](𝜔[𝑟], 0)

𝑚2𝜔2𝛾2𝑥𝑁𝐿

. (21)

4 It is quite evident that, at the present stage of researches,
in this and other similar cases, we do not consider exchange
forces arising at the excitation of neutron (centrifugal) res-
onances by knocking out protons from the atomic nuclei at
the inelastic high-energy electron scattering.

Expanding the function 𝐵[𝑟](𝜔, 𝜃
′) in a two-

dimensional Taylor series in a vicinity of the point(︀
𝜔 = 𝜔[𝑟], 𝜃

′ = 0
)︀
, confining the expansion to the first

term 𝐵[𝑟] = 𝐵[𝑟](𝜔[𝑟], 0), and, under the conditions
given above, calculating the integral in Eq. (15)
approximately (the obtained accuracy is enough to
make estimations), we obtain the final result in terms
of the quantities that can be calculated using the cor-
responding calculation program:

𝜎𝑢
[𝑟](𝜔, 𝜃

′)|𝜃′=0≈
1

𝑁𝑥𝑛𝑙

2𝜋∫︁
0

𝜋∫︁
0

𝑑Ω′

𝜔[𝑟]+△𝐸𝑠∫︁
𝜔[𝑟]−△𝐸𝑠

𝑑𝜔𝜎𝑢
[𝑟](𝜔, 𝜃

′) ≈

≈ 2𝜋

𝑁𝑥𝑛𝑙

𝜃′
0∫︁

0

𝜃′𝑑𝜃′

(𝜃′2 + 𝜆2)2

𝜔[𝑟]+△𝐸𝑠∫︁
𝜔[𝑟]−△𝐸𝑠

𝐵[𝑟]𝑑𝜔[︂
(𝜔 − 𝜔[𝑟])2+

𝛾2𝑥𝑁𝐿

4

]︂ ≈

≈ 2𝜋

𝑁𝑥𝑛𝑙

∞∫︁
0

𝜃′𝑑𝜃′

(𝜃′2+𝜆2)2

+∞∫︁
−∞

𝐵[𝑟]𝑑𝜔[︂
(𝜔 − 𝜔[𝑟])2+

𝛾2𝑥𝑁𝐿

4

]︂ =

=
2𝜋2𝐵[𝑟]

(𝛾𝑥𝑁𝐿)𝜆2
=
𝜋2𝜎𝑚

[𝑟]𝛾[𝑟]

2
. (22)

Hence, in order to obtain the excitation cross-
section 𝜎𝑝𝑛𝑙→𝑝𝑁𝐿 of a Coulomb resonance, i.e. to ap-
proximately integrate over the solid angle of electron
scattering 𝑑Ω′ and the transferred energy 𝑑𝜔, it is
necessary to use formula (22). Just formula (22) is
used in this work to evaluate the approximate val-
ues of excitation cross-sections of the Coulomb 𝑝𝑁𝐿-
resonances in the case where 𝑝𝑛𝑙-protons are knocked
out from the 𝑝𝑛𝑙-shell of an atomic nucleus at the in-
elastic high-energy electron scattering by atomic nu-
clei. Note that the excitations of neutron (centrifu-
gal) resonances in the processes with participation of
quasireal photons can be neglected.

Paying attention to the important role of Coulomb
resonances and their influence on the course and the
interpretation of experiments aimed at studying the
nuclear structure in the processes of inelastic high-
energy electron scattering by nuclei, let us recall some
peculiarities of the resonance structure in the qua-
sidiscrete spectrum of atomic nuclei stemming from
the properties of Coulomb resonances. First of all,
we note that, according to the theory, the Coulomb
resonances have to manifest themselves in the spec-
tra of inelastically scattered electrons in the form,
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as a rule, of extremely high and, simultaneously, ex-
tremely narrow peaks. Those peaks are connected
with the peculiarities in the behavior of the wave
function 𝜓

(−)*
K (r) belonging to the continuous spec-

trum of protons in the region of the atomic nucleus
observed when the energy of protons 𝐸𝑝 grows in the
interval 0 < 𝐸𝑝 / 𝑉𝐶 , where 𝑉𝐶 is the Coulomb bar-
rier height in the atomic nucleus 5. The theory also
asserts that, in real experiments, Coulomb resonances
should have finite, rather low heights [31]. However,
under certain conditions, those heights can even ex-
ceed the height of the quasielastic peak [30, 31]. It
is worth noting the universal character of this phe-
nomenon. Theoretical calculations demonstrate that
Coulomb resonances reveal themselves in the spectra
of inelastic electron scattering by almost all (𝐴 & 7)
atomic nuclei and under various kinematic conditions
of scattering (the electron scattering angle 𝜃′ and the
initial energy of scattered electrons 𝜀).

Note that the soundest contribution of Coulomb
resonances to the theoretical physics is, undoubtedly,
the standard interpretation of quasidiscrete spectrum
of atomic nuclei and other quantum-mechanical sys-
tems (the wave function, the exact and approximated
quantum numbers, and so forth). It was Coulomb res-
onances that opened a way to interpret the quantum-
mechanical transitions of atomic nuclei from discrete
states to states in the quasidiscrete spectrum (as well
as from quasidiscrete states to another quasidiscrete
and discrete ones) on the basis of standard procedures
of the quantum-mechanical theory [29–31]. Moreover,
it was Coulomb resonances that refuted the doubts
[35] about the correctness of the method of complex
energies developed by J.J. Thomson and applied by
G. Gamov, while interpreting the 𝛼-decay of heavy
atomic nuclei [29–31].

We have also to note that it is Coulomb reso-
nances that allow the well-known electro-nuclear phe-
nomenon of giant dipole resonance to be interpreted
in the framework of the nuclear shell model [18,
31]. Undoubtedly, this is also an important achieve-

5 It is pertinent to note that the presence of a Coulomb barrier
(or a barrier with another shape) is not a mandatory con-
dition for the function 𝜓(−)*

K (𝑟) in the continuous spectrum
to have a resonance structure. Using the method proposed
in works [18, 19, 23], it is easy to find, e.g., that, theoret-
ically, there can exist the so-called antibarrier resonances.
However, the properties of the latter are a little different in
comparison with those of Coulomb resonances.

ment of Coulomb resonances, which allows the in-
terpretation of giant dipole resonance in the frame-
work of the nuclear shell model to be considerably
simplified and, at least, an alternative to the known
interpretation of this phenomenon in the Migdal–
Goldhaber–Teller theory [32] to be proposed.

Of keen interest at the modern stage of researches
is the study and the interpretation of Coulomb res-
onances and their interaction with quasireal photons
from the viewpoint of the influence of those phenom-
ena on the dynamics of the knockout reaction of 𝑥-
nucleons (protons [𝐴(𝑒, 𝑒′𝑝)𝐴−1;𝑥 = 𝑝] and neutrons
[𝐴(𝑒, 𝑒′𝑛)𝐴−1;𝑥 = 𝑛]) from different shells of atomic
nuclei at the inelastic high-energy electron scatter-
ing by nuclei [18,29–31]. Nevertheless, we should note
that, despite the indicated local progress in the the-
ory of the phenomenon concerned, the properties of
Coulomb resonances and their probable influence on
the course of various nuclear processes still remain a
poorly studied area both in the theoretical physics in
general and in the theoretical and experimental nu-
clear physics in particular.

Unlike Coulomb resonances, quasireal photons are
an exclusively quantum electrodynamic phenomenon
(Feynman’s diagram technique), which accompanies
the processes of inelastic scattering of relativistic elec-
trons by hadrons. For this reason, quasireal photons
can interact, e.g., with the aforesaid Coulomb res-
onances only in the processes of inelastic scatter-
ing of charged leptons (electrons, positrons, muons)
by atomic nuclei. Note also that, in the quantum-
mechanical aspect, the properties of quasireal pho-
tons emitted by electrons near an atomic nucleus are
rather similar to those of real photons. That is why
the processes of inelastic electron scattering by atomic
nuclei at extremely small angles (𝜃′ ≪ 𝑚𝜔

𝜀𝜀′ ) can be
efficiently used to study the giant dipole resonance
phenomenon [9, 18, 19, 23, 29, 31].

It is worth to note that the role of Coulomb reso-
nances in the theoretical nuclear physics, as well as in
the general theoretical physics, is not reduced to the
emergence of a peak in the cross-sections of inelastic
high-energy electron scattering by nuclei. Coulomb
resonances are an inherent attribute of the nuclear
shell model since the moment of their appearance
there, as well as a substantial extension of this
model to the continuous spectrum [30,31]. Therefore,
they can affect the theoretical interpretation and the
course of a lot of various nuclear processes. At the
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same time, the inelastic scattering of high-energy elec-
trons by nuclei is only one of the most convenient
platforms for the illustration of specific peculiarities
(both theoretical and experimental) of the aforemen-
tioned Coulomb resonances.

3. Coulomb and Centrifugal
Resonances in the 𝑗𝑗-Shell Model
of Atomic Nuclei

It is well known that, among nuclear shell models, it
is undoubtedly the shell model with 𝑗𝑗-coupling that
describes the experiment rather successfully. For this
reason, let us briefly consider the issue concerning the
determination of the basic characteristics of Coulomb
resonances in the shell model with 𝑗𝑗-coupling 6.

First of all, we note that the calculations of qua-
sidiscrete nuclear spectra in the shell models with 𝐿𝑆-
and 𝑗𝑗-coupling are almost identical. They are car-
ried out with the use of the following procedures in
the case of 𝑗𝑗-coupling [18, 19, 30]. At the first stage,
we solve the radial Schrödinger equation

𝑑2𝑍𝐾𝑙𝑗(𝑟)

𝑑𝑟2
+ [2𝑚(𝐸 − 𝑉𝑥𝑙𝑗(𝑟))]𝑍𝐾𝑙𝑗(𝑟) = 0, (23)

where the spin-orbit interaction of a nucleon in the
atomic nucleus is taken into account. The potential
energy 𝑉𝑥𝑙𝑗(𝑟) in Eq. (23) is a sum of four terms,

𝑉𝑥𝑙𝑗(𝑟) = 𝑉𝑥𝑊𝑆(𝑟) + 𝑉𝐶(𝑟) +
𝑙(𝑙 + 1)

2𝑀𝑟2
+ 𝑉𝑙𝑠(𝑟),

where
𝑉𝑥𝑊𝑆(𝑟)= − 𝑉0𝐴𝑥

1 + exp

(︂
𝑟 −𝑅

𝑎

)︂ ≈

≈ − 𝑉0𝐴𝑥Θ(𝑏− 𝑟)

1 + exp

(︂
𝑟 −𝑅

𝑎

)︂ , (𝑉0𝐴𝑥 ≡ 𝑉0𝑥 > 0), (24)

𝑉𝐶(𝑟) =

[︂
(𝑍 − 1)𝑒2

𝑅

(︂
3

2
− 𝑟2

2𝑅2

)︂
Θ(𝑅− 𝑟)+

+
(𝑍 − 1)𝑒2

𝑟
Θ(𝑟 −𝑅)

]︂
; (25)

𝑉𝑙𝑠(𝑟) = 𝜆
[︀
(𝑙 + 𝑗 *

𝑙 − 1)×
× (𝑙 + 𝑗 *

𝑙 + 1)− 𝑙(𝑙 + 1)
]︀2𝑑𝑉𝑥𝑊𝑆

𝑑(𝑟2)
. (26)

6 The 𝐿𝑆-coupling is a variant of the 𝑗𝑗-coupling in the case
where the spin-orbit forces can be neglected (the parameter
𝜆 governing the magnitude of spin-orbit forces equals zero:
𝜆 = 0 in Eq. (26)).

In formulas (24)–(26), the following notation is used:

Θ(𝑥) = (1− 𝛿𝑥0)
𝑥+ |𝑥|
2𝑥

+
1

2
𝛿𝑥0

is the Heaviside unit step function; 𝑏 ≈ 𝑟0
3
√
𝐴+ 18𝑎;

𝑉0𝐴𝑥, 𝑎, and 𝑅 = 𝑟0
3
√
𝐴 are the parameters of shell

potential in the Woods–Saxon form;

𝑗 *
𝑙 = (𝑗 +

1

2
− 𝑙) =

⎧⎪⎨⎪⎩
1, 𝑗 = 𝑙 +

1

2
;

0, 𝑗 = 𝑙 − 1

2
;

(27)

is the quantum number of the mutual spin and orbital
moment orientation: 𝑗 *

𝑙 = 1, if the spin and the or-
bital moment are parallel to each other (l ↑↑ s), and
0, if they are antiparallel (l ↑↓ s).

At the next stage, we match the internal and exter-
nal (asymptotic) solutions of the radial Schrödinger
equation (23) and determine the energy 𝐸𝑥𝑁𝐿 and
other basic characteristics (𝛾𝑥𝑁𝐿 and 𝐴𝑥𝑁𝐿) of
Coulomb (and centrifugal, i.e. neutron) resonances,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(︂
𝑑𝑍𝐾[𝑟]𝐿𝐽(𝑟)

𝑑𝑟

)︂
𝑍𝐾[𝑟]𝐿𝐽(𝑟)

⃒⃒⃒⃒
⃒⃒⃒⃒
𝑟=𝑏

=

(︂
𝑑𝐺 𝐿(𝜂,𝐾[𝑟]𝑟)

𝑑𝑟

)︂
𝐺 𝐿(𝜂,𝐾[𝑟]𝑟)

⃒⃒⃒⃒
⃒⃒⃒⃒
𝑟=𝑏

;

𝛾 𝑟
𝑁𝐿𝐽

2
=

𝑤𝐿𝐽
𝐹𝑍(𝐸)(︂

𝑑𝑤𝐿𝐽
𝐺𝑍(𝐸)

𝑑𝐸

)︂
⃒⃒⃒⃒
⃒⃒⃒⃒
𝐸=𝐸 𝑟

𝑁𝐿𝐽

;

𝐴
(−)
𝑁𝐿𝐽(𝐸

𝑟
𝑁𝐿𝐽) =

−𝑖
𝑤𝐿𝐽

𝐹𝑍(𝐸
𝑟
𝑁𝐿𝐽)

;

(28)

Those equalities comprise the initial formulas for
the determination of basic characteristics (𝐸 𝑟

𝑁𝐿𝐽 ,
𝛾 𝑟
𝑁𝐿𝐽 , and 𝐴

(−)
𝑁𝐿𝐽) of Coulomb and centrifugal reso-

nances in the nuclear shell model with 𝑗𝑗-coupling. A
new quantity introduced in Eq. (28), 𝑤𝑥

𝐹𝑍 , is the
Wronskian of the functions 𝐹𝑥(𝑟) and 𝑍𝑥(𝑟), i.e.

𝑤𝑥
𝐹𝑍 =

𝑑𝐹𝑥(𝑟)

𝑑𝑟
𝑍𝑥(𝑟)−

𝑑𝑍𝑥(𝑟)

𝑑𝑟
𝐹𝑥(𝑟). (29)

In Tables 1 to 3, the parameters of the quasidis-
crete spectra of the 119Sn atomic nucleus obtained
in the 𝑗𝑗- (𝜆 = 0.25 fm2) and 𝐿𝑆-shell models are
listed. The corresponding calculations were carried
out for the following parameters of the Woods–Saxon
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Table 1. Basic physical parameters
[𝐸𝑥𝑁𝐿𝐽* (MeV), 𝛾𝑥𝑁𝐿𝐽* , and 𝐴𝑥𝑁𝐿𝐽* ]
of quasidiscrete spectra (Coulomb and centrifugal
resonances) of 119Sn nucleus (𝑉0𝑝 = 58.6 MeV,
𝑉0𝑛 = 44.8 MeV, and 𝜆 = 0.25 fm2) calculated
taking the spin-orbit interaction into account

𝑥𝑁𝐿𝐽* 𝐸𝑥𝑁𝐿𝐽 𝐴𝑥𝑁𝐿𝐽 𝐴𝑥𝑛𝑙𝑗 𝛾𝑥𝑁𝐿𝐽

n150 0.4569 1.762× 103 0.6351 8.003× 10−7

n161 3.800 33.40 0.631 6.358× 10−3

p231 3.824 1.600× 102 0.526 1.927× 10−4

p150 3.865 3.344× 103 0.665 7.079× 10−7

p311 5.938 4.321 0.403 0.2

p161 6.321 4.248× 102 0.667 5.658× 10−5

p230 6.931 9.620 0.491 6.308× 10−2

n160 10.13 3.957 0.592 0.675

n171 12.27 4.421 0.601 0.612

p160 14.66 11.12 0.638 0.116

p171 15.49 14.58 0.651 0.072

p181 24.86 4.911 0.632 0.773

Table 2. Basic physical parameters
[𝐸𝑥𝑁𝐿𝐽 (MeV), 𝛾𝑥𝑁𝐿𝐽 (MeV), and 𝐴𝑥𝑁𝐿𝐽 ]

of quasidiscrete spectra (Coulomb and centrifugal
resonances) of 119Sn nucleus (𝑉0𝑝 = 62 MeV

and 𝑉0𝑛 = 50 MeV) calculated for the absence
of spin-orbit interaction (the 𝐿𝑆-coupling, 𝜆 = 0.0)

xNL 𝐸𝑥𝑁𝐿 𝐴𝑥𝑁𝐿 𝐴𝑥𝑛𝑙 𝛾𝑥𝑁𝐿

𝑝𝑛𝑙 = 𝑝15 𝐸𝑝15 = −2.263 ... ... ...

p23 2.941 891.23 0.5323 5.58× 10−6

n16 3.534 46.511 0.6388 3.23× 10−3

p31 4.525 13.642 0.4316 1.95× 10−2

p16 7.918 147.73 0.6655 5.20× 10−4

n17 13.15 4.2047 0.6024 0.703
p17 18.25 8.6780 0.6375 0.212

shell potential: (𝑉0𝑝 = 58.6 MeV, 𝑉0𝑛 = 44.8 MeV)
and (𝑉0𝑝 = 62.0 MeV, 𝑉0𝑛 = 50.0 MeV). The re-
sults of similar calculations are systematized in Ta-
bles 4 and 5 for the case of the heavier atomic nu-
cleus, 181Ta 7. Brief conclusions that result from the
comparison of results in the quoted tables are as fol-
lows. As the depth of shell potential increases, the

7 In all tables presented in this work, the energy quantities
𝐸𝑥𝑁𝐿𝐽* and 𝛾𝑥𝑁𝐿𝐽* are expressed in terms of megaelec-
tronvolts, 𝐴𝑥𝑁𝐿𝐽* is a dimensionless quantity, and the am-
plitude 𝐴𝑥𝑛𝑙𝑗 is expressed in terms of the fm−2 units.

Table 3. Basic physical parameters
[𝐸𝑥𝑁𝐿𝐽 (MeV), 𝛾𝑥𝑁𝐿𝐽 (MeV), and 𝐴𝑥𝑁𝐿𝐽 ]

of quasidiscrete spectra (Coulomb and centrifugal
resonances) of 119Sn nucleus (𝑉0𝑝 = 58.6 MeV

and 𝑉0𝑛 = 44.8 MeV) calculated for the absence
of spin-orbit interaction (the 𝐿𝑆-coupling, 𝜆 = 0.0)

𝑁𝐿𝑥 𝐸𝑥𝑁𝐿 𝐴𝑥𝑁𝐿 𝐴𝑥𝑛𝑙 𝛾𝑥𝑁𝐿

15p 0.4677 4.143× 1013 0.6648 1.605× 10−27

23n 0.5941 9.756 0.4414 1.4239× 10−2

23p 5.161 33.37 0.5128 4.892× 10−3

31p 6.263 3.616 0.3971 0.2893
16n 6.768 8.374 0.6050 0.1252
16p 10.29 40.17 0.6534 7.741× 10−3

17p 20.27 5.779 0.6225 0.4850

quasidiscrete spectrum of the nucleus becomes, as
a rule, somewhat more powerful. This phenomenon
manifests itself more pronouncedly in the case of the
𝑗𝑗-shell model.

Note that the main conclusions of this work de-
pend on the accuracy of numerical calculations in the
applied software programs. It is desirable to moni-
tor, in that or another way, all program units used
in numerical calculations. Here are some examples of
such a monitoring. At a certain stage of numerical
calculations, when Coulomb resonances of small ener-
gies were studied, there emerged a necessity to deter-
mine the characteristics of proton quasidiscrete states
in order to improve the calculation accuracy for the
Coulomb functions. It is rather simple to enhance the
capabilities of algorithms proposed for this procedure
in work [38]. However, it is impossible to check the
accuracy of the results obtained in the framework of
this procedure on the basis of the results tabulated
in work [38]. To be convinced of the efficiency of the
used algorithms, the following empirical trick was ap-
plied. For the Coulomb functions calculated with the
use of the advanced technique, the Wronskian

𝑊 (𝐹,𝐺) = 𝐹 ′(𝜌, 𝜂)𝐺(𝜌, 𝜂)−𝐺′(𝜌, 𝜂)𝐹 (𝜌, 𝜂) = 1± 𝛿

(30)

was determined. For “typical” values of parameters
𝜌 and 𝜂 (1 . (𝜌, 𝜂) . 10), the calculation error
equaled 𝛿 / 10−14÷10−13. For “nontypical” param-
eter values (𝜌 . 1 and 𝜂 ∼ 100), the calculation
error substantially grew to 𝛿 / 10−10÷10−9. The
result obtained in such a manner testifies, without
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additional researches, to the relative efficiency of the
applied technique.

Here is another example. It is clear that the ef-
ficiency of a calculation procedure considerably de-
pends on the successful application of the Numerov
method to the solution of radial Schrödinger equa-
tions of type (23). However, even after an acquain-
tance with the analyses, as much detailed as possible,
concerning the application of this method to the solu-
tion of the quantum-mechanical radial equations [12],
the authors still have a wide opportunity to take the
initiative, while interpreting those or other specific
issues of this application. First of all, this remark is
valid for the application of the Numerov method in
the interval 𝑟 ≪ 𝑟0. To be convinced of the efficiency
of the applied numerical methods, while obtaining the
starting solution of the radial Schrödinger equations,
one can use the following trick, as an example. It
is well known that the eigenvalues of the Sturm–
Liouville problem in the case of Legendre or Gegen-
bauer polynomials can be determined theoretically
rather easily [14]. For instance, the Sturm–Liouville
problem for the Gegenbauer polynomials is defined
by the differential equation

1

sin2 𝛼

𝑑

𝑑𝛼
sin2 𝛼

𝑑𝑈

𝑑𝛼
+

[︂
𝜀− 𝑙(𝑙 + 1)

sin2 𝛼

]︂
𝑈(𝛼) = 0. (31)

At small values of variable 𝛼, this equation is almost
identical to the radial Schrödinger equation [14]. The
solution of problem (31) is known: 𝜀 = 𝑁(𝑁 + 2)
[14]. Reproducing this solution with the help of nu-
merical calculations taking advantage of the proce-
dures elaborated by us for the solution of Eq. (31)
(𝜀 = 𝑁(𝑁 + 2) ± 𝛿) and evaluating the accuracy of
the obtained solution (|𝛿| 6 10−10), we may be con-
vinced of the relative efficiency of the engaged pro-
gramming techniques to apply the Numerov method
to the solution of the radial Schrödinger equation.

Comparing the data quoted above, we should point
out, first of all, a substantial growth in the number
of quasidiscrete states (as well as the bound states
of nucleons) in the case of the 𝑗𝑗-shell model (in
comparison with the 𝐿𝑆-shell model, see Tables 1
and 4). In practice, this fact gives rise to a consider-
able increase in the number of resonance points in the
dependence of 𝜎(𝜔, 𝜃′) on the transferred energy 𝜔.
The latter circumstance brings about additional and
often not ordinary technological difficulties even in
the case of medium atomic nuclei. Considering the al-

Table 4. Basic physical parameters
of quasidiscrete spectra (Coulomb and centrifugal
resonances) of 181Ta nucleus (𝑉0𝑝 = 62 MeV,
𝑉0𝑛 = 50 MeV, and 𝜆 = 0.25 fm2) calculated
taking into account the spin-orbit interaction

NLJ*x 𝐸𝑥𝑁𝐿𝐽 𝐴𝑥𝑁𝐿𝐽 𝐴𝑥𝑛𝑙𝑗 𝛾𝑥𝑁𝐿𝐽

321n −1.585 ... ... ...
401n −0.8508 ... ... ...
311p −0.2144 ... ... ...
230p −9.719× 10−2 ... ... ...
310p 1.250 3.573× 108 0.4785 1.828× 10−17

251n 3.187 5.504 0.4670 0.1204
171p 3.695 6.429× 105 0.6716 1.912× 10−11

241p 4.033 4.355× 103 0.5447 2.863× 10−7

160p 4.698 3.301× 104 0.6669 8.062× 10−9

181n 5.141 97.08 0.6528 9.3460× 10−4

170n 6.421 22.20 0.6361 1.9010× 10−2

321p 7.545 10.67 0.4445 4.3796× 10−2

240p 9.064 21.67 0.5200 1.5825× 10−2

320p 9.734 3.665 0.4166 0.3845
181p 11.67 241.6 0.6743 2.426× 10−4

251p 11.69 9.652 0.5124 8.861× 10−2

191n 13.26 10.44 0.6356 0.1242
170p 14.83 41.76 0.6620 8.823× 10−3

180n 16.34 4.163 0.6123 0.8211
191p 19.99 26.50 0.6691 2.602× 10−2

1(10)1n 21.62 4.618 0.6235 0.8224
180p 25.40 7.352 0.6414 0.3607

1(10)1p 28.59 9.253 0.6572 0.2478

Table 5. Quasidiscrete spectrum (Coulomb
and centrifugal resonances: 𝐸𝑥𝑁𝐿, 𝐴𝑥𝑁𝐿, 𝛾𝑥𝑁𝐿)
of 181Ta nucleus. The Woods–Saxon potential
parameters: 𝑉0𝑝 = 59.222 MeV

and 𝑉0𝑛 = 52.3405 MeV (the 𝐿𝑆-coupling)

NLx 𝐸𝑥𝑁𝐿 𝐴𝑥𝑁𝐿 𝐴𝑥𝑛𝑙 𝛾𝑥𝑁𝐿

17n 6.701× 10−3 2.5988× 1011 0.6509 4.6801× 10−24

23p 2.296× 10−2 2.5128× 1097 0.5420 6.4260× 10−196

31p 2.339 8.3725× 104 0.4730 4.4478× 10−10

16p 2.590 8.0588× 106 0.6572 9.7548× 10−14

25n 3.931 3.8596 0.4533 0.2603
24p 8.190 31.96 0.5201 6.9120× 10−3

18n 9.070 16.92 0.6325 3.8514× 10−2

17p 11.30 1.312× 102 0.6553 7.6379× 10−4

19n 18.24 4.540 0.6077 0.7211
18p 20.34 13.14 0.6387 9.7596× 10−2
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most complete absence of detailed experimental data
in the given domain of researches and the preliminary
character of calculations in this work, further con-
clusions should be made, and qualitative researches
should be carried out in the framework of the sim-
plified shell model with 𝐿𝑆-coupling. Note that, in
this case, the main components of theoretical conclu-
sions in this work will not undergo substantial modi-
fications. Another important conclusion is expedient
to be drawn: discrete and quasidiscrete energy lev-
els are interchangeable, when the potential param-
eters in the shell model are varied. In other words,
a quasidiscrete level (or its part emerging when this
level is split) can transform sometimes into a bound
state even at relatively small, almost unobservable,
and even insignificant variations of the potential pa-
rameters. Vice versa, for the opposite change of the
shell potential parameters, the bound state of a nu-
cleon in the atomic nucleus can transform into a qua-
sidiscrete state of this nucleon in the atomic nucleus.

As an example, let us consider a change of the sta-
tus of the quasidiscrete level 𝑝15. In the case 𝑉0𝑝 =
= 58.6 MeV (see Table 3), level 𝑝15 is a low-lying res-
onance state of the nucleus 119Sn. At the same time,
in the case 𝑉0𝑝 = 62 MeV, state 𝑝15 is a bound pro-
ton state of the same nucleus with the binding energy
𝜀𝑝15 = −2.263 MeV indicated in Table 2. Similar
examples for Coulomb and centrifugal neutron reso-
nances can be given as many as is desired.

Note again that even almost indiscernible modi-
fications in the shell potential parameters turn out
sometimes sufficient for a high-lying discrete level
or a low-lying quasidiscrete level to change its sta-
tus. Such quantum-mechanical states (discrete and
quasidiscrete ones) obtained at arbitrary modifica-
tions of the potential in the shell model will be re-
ferred to as cognate.

The indicated factor changing the status of the shell
energy level turns out, in this case, a crucial provoking
issue that evidently verifies and explicitly declares the
common origin of discrete and quasidiscrete spectra
of atomic nuclei in the framework of the nuclear shell
model. Below, the shell model together with a set of
quasidiscrete energy levels will be referred to as the
extended shell model of atomic nuclei.

In connection with the aforementioned possibility
for the levels in the discrete and quasidiscrete spec-
tra to change their status as the potential parame-
ters vary and in order to correctly interpret the ex-

perimental results (e.g., to specify the parameters of
the Woods–Saxon potential), the comparison of cross-
sections at the inelastic high-energy electron scat-
tering by nuclei accompanied by the excitation of
cognate levels in the discrete and quasidiscrete spec-
tra becomes of vital importance in the nuclear shell
model. For the sake of such a comparison, the tables
calculated for the quasidiscrete spectra of nuclei in-
clude the basic and auxiliary information about the
amplitudes 𝐴𝑥𝑁𝐿and 𝐴𝑥𝑛𝑙 of the wave functions for
the low-lying quasidiscrete and high-lying bound cog-
nate (with the same quantum numbers 𝑁𝐿) states
(practically, at the same parameters of the shell po-
tential), which was taken from works [6,30]. The am-
plitudes were normalized according to the formulas

𝐴𝑥𝑁𝐿 =
𝑅𝐾𝐿(𝑟1𝑚)

|𝑖[𝐹𝐿(𝐾𝑏)𝑅′
𝐾𝐿(𝑏)− 𝐹 ′

𝐿(𝐾𝑏)𝑅𝐾𝐿(𝑏)]|
; (32)

𝐴𝑥𝑛𝑙 =
𝑅𝑛𝑙(𝑟1𝑚)

∞∫︀
0

[𝑅𝑛𝑙(𝑟)]2𝑟2𝑑𝑟

; (33)

where 𝑟1𝑚 is a point, where the functions 𝑅𝐾𝐿(𝑟) and
𝑅𝑛𝑙(𝑟) have the first maximum. Note that the propor-
tionality between the radial components 𝑅𝐾𝐿(𝑟) and
𝑅𝑛𝑙(𝑟) takes place in this case with a high accuracy
at any point 𝑟, where 𝑅𝑛𝑙(𝑟) ̸= 0:

𝑅𝐾𝐿(𝑟)

𝑅𝑛𝐿(𝑟)
≈ |𝐴𝑥𝑁𝐿|

|𝐴𝑥𝑛𝑙|
≈

≈

√︃
𝑏∫︀
0

[𝑅𝑛𝑙(𝑟)]2𝑟2𝑑𝑟

|𝑖[𝐹𝐿(𝐾𝑏)𝑅′
𝐾𝐿(𝑏)− 𝐹 ′

𝐿(𝐾𝑏)𝑅𝐾𝐿(𝑏)]|
, 𝑟 . 𝑟0.

(34)

With the help of the information given above, it is
easy to find the ratio between the excitation cross-
sections of a high-lying discrete state of the atomic
nucleus, 𝜎𝑢

𝑛𝑥𝑙𝑥→𝑛𝑙𝑙
[3], and a low-lying (cognate) qua-

sidiscrete state, 𝜎𝑢
𝑛𝑥𝑙𝑥→𝑁𝐿𝐿 (here, 𝑛𝑙 = 𝑁𝐿 and

𝑙 = 𝐿).
Hence, the facts presented above testify that the

shell model of a nucleus can be appended by the qua-
sidiscrete spectrum of this nucleus, i.e. the limits of
nuclear shells can be expanded with the help of spe-
cific one-particle states of nucleons in the interval of
positive energies. Note that the potential parameters
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𝑟0 and 𝑎 were constant in all calculations of this work:
𝑟0 = 1.24 fm and 𝑎 = 0.55 fm. It will also be recalled
that the quantum numbers 𝐸𝑥𝑁𝐿, 𝛾𝑥𝑁𝐿, and 𝐴𝑥𝑁𝐿

of nucleon states in the quasidiscrete spectrum of the
atomic nucleus are approximate. An exact quantum
number of the problem is the momentum vector for
the knocked out proton, K𝑝.

At last, the data in Table 6 illustrate, rather com-
pletely, the dependences of the basic characteris-
tics of the Coulomb resonance with the quantum
numbers 𝑝𝑁𝐿 = 𝑝15 on the parameter 𝑉0𝑝 in the
Woods–Saxon potential 𝑉𝑝𝑊𝑆(𝑟). It follows that, in
some regions, the variation of this parameter in the
sixth (!) digit of mantissa – e.g., 0.5920222 × 102 →
→ 0.5920200 × 102 – results in a relatively insignif-
icant growth of the Coulomb resonance energy, but
simultaneously its half-width becomes six (!) orders
of magnitude larger.

4. Inelastic High-Energy Electron
Scattering at Large Scattering Angles

In this work, we analyze and compare the excita-
tion cross-sections of nuclear Coulomb resonances,
when electrons are scattered at large (𝜃′ = 60∘)
and small (𝜃′ = 10−12 deg) angles. The excitation
cross-sections of Coulomb (protons) and centrifugal
(neutrons) resonances at the inelastic electron scat-
tering at the angle 𝜃′ = 60∘ are quoted in Tab-
les 7 and 8, whereas Table 9 contains the excitation
cross-sections of Coulomb (only protons) resonances
for the inelastic scattering of electrons at the angle
𝜃′ = 10−12 deg ≪ 𝑚𝜔

𝜀𝜀′ .
To illustrate each of the statements made above, let

us consider, e.g., the scattering of high-energy elec-
trons (𝜀 = 500 MeV and 𝜃′ = 60∘) [11] by the atomic
nucleus 119

50 Sn. The parameters of the Woods–Saxon
potential were so chosen that 50 protons and 69 neu-
trons of this nucleus could be effectively arranged in
the bound states calculated with the use of the chosen
shell potential 8.

8 Note that the choice of parameters for the Woods–Saxon po-
tential on the basis of experimental data of the same type is
an ambiguous operation. Using the results of separate physi-
cal experiments, we can only indicate often the limits, within
which the shell potential parameters change. In these and all
further calculations, the parameters of the Woods–Saxon po-
tential were constant: 𝑎 = 0.55 fm and 𝑟0 = 1.24 fm. The
required variations in the structure of nuclear spectra were
made by changing the parameter 𝑉0𝑥.

Table 6. Dependence of the basic
parameters (𝐸𝑥𝑁𝐿, 𝐴𝑥𝑁𝐿, 𝛾𝑥𝑁𝐿) of the resonance
15𝑝 of the 199Sn nucleus on the energy 𝐸𝑥𝑁𝐿

of a quasidiscrete level of this Coulomb resonance
(or the shell potential depth 𝑉0𝑝)

xnl 𝐸𝑝15 𝐴𝑝15 𝐴𝑝15 𝛾𝑝15 𝑉0𝑝

p15 4.178×10−3 1.828×10161 0.6660 9.881×10−324 59.20242
p15 4.193×10−3 9.151×10160 0.6660 2.964×10−323 59.20240
p15 4.270×10−3 3.043×10159 0.6660 2.853×10−320 59.20230
p15 4.332×10−3 2.135×10158 0.6660 5.839×10−318 59.20222
p15 4.501×10−3 1.901×10155 0.6660 7.503×10−312 59.20200
p15 5.272×10−3 2.106×10143 0.6660 6.616×10−288 59.20100
p15 5.349×10−3 1.872×10142 0.6660 8.434×10−286 59.20090
p15 5.658×10−3 1.928×10138 0.6660 8.184×10−278 59.20050
p15 6.005×10−3 1.485×10134 0.6660 1.420×10−269 59.20005
p15 3.687×10−2 9.993×1052 0.6659 7.770×10−107 59.16000
p15 5.228×10−2 9.959×1034 0.6658 3.426×10−89 59.14000
p15 6.770×10−2 4.364×1038 0.6658 5.518×10−78 59.12000
p15 0.5444 3.102×1012 0.6646 3.087×10−25 58.50000
p15 0.9274 1.403×1009 0.6657 1.962×10−18 58.00000
p15 1.690 1.900×1006 0.6614 1.436×10−12 57.00000
p15 2.822 2.436×1004 0.6579 1.117×10−8 55.50000

It is also worth noting that the quasidiscrete levels
with the energy close to the energy 𝑉𝐶 of the nu-
clear Coulomb barrier have rather a wide halfwidth
𝛾𝑥𝑁𝐿. An example of such a quasidiscrete state is
the state with the quantum numbers 𝑥𝑁𝐿 = 𝑝17.
Although the inequality 𝛾𝑥𝑁𝐿 ≪ 𝐸𝑥𝑁𝐿 still holds
true for such states, the strong inequality 𝛾𝑥𝑁𝐿 ≪
≪ △𝐸𝑠 ≪ 𝜔𝑥𝑛𝑙→𝑥𝑁𝐿 is no more satisfied. There-
fore, the accuracy of calculations carried out by for-
mula (22) for such emerging high-lying quasidiscrete
levels becomes considerably lower. For example, the
specific excitation cross-sections of such resonances
calculated with the use of the same formula (22)
turn out overestimated. Hence, calculations for such
quasidiscrete states have a preliminary evaluating
character.

Looking through the specific excitation cross-
section values for Coulomb and centrifugal resonances
at the electron scattering by the large angle 𝜃′ =
= 60∘ presented in Tables 7 and 8, attention is at-
tracted to their small magnitudes and an insignif-
icant growth for protons and neutrons in external
shells, as well as to a similar insignificant growth
of the specific excitation cross-sections of resonances
with the resonance quantum number 𝐿 at a con-
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Table 7. Specific excitation cross-sections 𝜎𝑢𝑟
𝑝𝑛𝑙→𝑝𝑁𝐿 (in nb/sr units) of proton Coulomb

resonances at the inelastic electron scattering by the 119Sn nucleus at the angle 𝜃′ = 60∘. The depth parameter
of the Woods–Saxon potential, 𝑉0𝑝 = 58.6 MeV. The energy of bombarding electrons 𝜀 = 500 MeV

𝜎𝑢𝑟
𝑝𝑛𝑙→𝑝𝑁𝐿

Quantum numbers 𝑝𝑁𝐿 of Coulomb

[𝑝𝑛𝑙] ↓ 15 23 31 16 17

10 4.770× 10−3 7.591× 10−3 4.3712× 10−3 5.1680× 10−3 0.1063
11 1.194× 10−2 1.259× 10−2 3.1082× 10−3 0.1324 0.4333
12 0.1120 0.1574 0.0690 0.4047 0.9243
20 0.1948 0.3064 0.1381 0.3564 0.3925
13 0.3379 0.3628 0.1374 0.8411 1.4070
21 0.3815 0.7533 0.4227 0.3730 0.4695
14 0.6688 0.4884 0.0942 1.2521 1.7340

Table 8. Specific excitation cross-sections 𝜎𝑢𝑟
𝑛𝑙(𝑛)→𝑁𝐿(𝑛)

(in nb/sr units)
of neutron (centrifugal) resonances, the excitation energies of those centrifugal resonances (in MeV units),
and the integral scattering cross-sections 𝜎

𝑖(𝑛)
[𝑟]

(in nb/sr units) at the inelastic electron scattering by the 119Sn

nucleus at the angle 𝜃′ = 60∘. The depth parameter of the Woods–Saxon potential, 𝑉0𝑝 = 44.8 MeV.
The notation [𝑟] ≡ 𝑛𝑙(𝑛) → 𝑁𝐿(𝑛) is used. The energy of bombarding electrons 𝜀 = 500 MeV

Bound states
Specific cross-sections of neutron 𝑁𝐿𝑛-resonances (nb/sr), the excitation energies
of those resonances 𝜔[[𝑟] (MeV), the integral scattering cross-sections 𝜎𝑖𝑛

[[𝑟]
(nb/sr)

nl(n) 23𝑛 𝜔𝑛𝑙(𝑛)→23𝑛 16𝑛 𝜔𝑛𝑙(𝑛)→16𝑛 𝜎
𝑖(𝑑)
[𝑟]

(nb/sr) 𝜎
𝑖(0)
[𝑟]

(nb/sr)

10 4.133× 10−4 39.70 9.222× 10−4 45.88 27.44 29.67
11 1.488× 10−3 34.17 1.895× 10−2 40.35 27.57 29.70
12 1.910× 10−2 27.55 6.366× 10−2 33.72 27.73 29.86
20 3.923× 10−2 25.23 6.326× 10−2 31.41 27.80 29.89
13 4.971× 10−2 20.01 0.141 26.18 27.83 30.13
21 0.107 16.69 7.870× 10−2 22.86 27.81 30.40
14 7.377× 10−2 11.71 0.223 17.88 28.18 30.17
22 0.141 8.01 0.109 14.18 27.94 29.95
30 0.150 6.93 1.099× 10−2 13.10 28.17 29.71

stant quantum number 𝑁 ≡ 𝑁𝐿. Let us also pay
attention to the almost constant integral scattering
cross-section calculated with regard for the rescatter-
ing in the final state (Table 8, column 5) and in the
plane-wave approximation (column 6) in the case of
the neutron knockout from all neutron shells of the
119Sn nucleus. In other words, under the conditions
of the analyzed kinematics, the integral scattering
ability of a nucleon (both a proton [30] and a neu-
tron) practically does not depend on the quantum
numbers of the shell, in which the nuclear nucleon
moves.

Note also that, at large angles of the inelastic
high-energy electron scattering, the specific excita-
tion cross-sections of protons and neutrons are of the
same order of magnitude. The theory predicts that
one may not omit the neutron component of nuclei in
experiments on the inelastic scattering of high-energy
electrons at large angles. However, the same theory
demonstrates that, at the inelastic scattering of elec-
trons at extremely small angles, the neutron compo-
nent of nuclei can be neglected. Some specific features
of the “0-0”-scattering of high-energy electrons by the
119Sn nucleus are considered in the next section.
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5. Inelastic Scattering of Electrons
at Extremely Small Angles. Giant Dipole
Resonance Phenomenon

To consider whether such a well-known phenomenon
in nuclear physics as the giant dipole resonance can
be interpreted in the framework of the nuclear shell
model, let us analyze the specific features of the in-
elastic scattering of electrons at extremely small an-
gles, 𝜃′ = 10−12 deg ≪ 𝑚𝜔

𝜀𝜀′ . First of all, we note
that, in order to calculate various cross-sections of
inelastic high-energy electron scattering by atomic
nuclei, we must be able to calculate the overlap in-
tegral [31]

𝐼(K,q, 𝑛𝑙𝑚) =

+∞∫︁∫︁∫︁
−∞

𝑑r𝜓
(−)*
K (r) exp(𝑖qr)𝜙𝑛𝑙𝑚(r). (35)

with a sufficient accuracy. In this work, we ap-
plied the following calculation procedure. Using the
standard expansions of the functions 𝜓

(−)*
K (r) and

exp(𝑖qr) in the series in spherical functions [31] and
the values of the integral of three spherical functions
[36], we can write down

𝐼(K,q, 𝑛𝑙𝑚) = (4𝜋)2 ×

×
𝑙𝑘=∞∑︁
𝑙𝑘=0

𝑚𝑘=+𝑙𝑘∑︁
𝑚𝑘=−𝑙𝑘

𝑙𝑞=∞∑︁
𝑙𝑞=0

𝑚𝑞=+𝑙𝑞∑︁
𝑚𝑞=−𝑙𝑞

√︃
(2𝑙𝑞 + 1)(2𝑙 + 1)

4𝜋(2𝑙𝑘 + 1)
×

× (𝑖)𝑙𝑞+𝑙𝑘(−1)𝑙𝑘⟨𝑙𝑞0 𝑙0|𝑙𝑘0⟩⟨𝑙𝑞0 𝑙𝑚|𝑙𝑘𝑚⟩×

×𝐵𝑙𝑘𝑙𝑞 (𝐾, 𝑞, 𝑛𝑙)𝑌
𝑙𝑘*
𝑚

(︂
K

𝐾

)︂
𝑌 𝑙𝑞
𝑚

(︂
q

𝑞

)︂
, (36)

where

𝐵𝑙𝑘𝑙𝑞 (𝐾, 𝑞, 𝑛𝑙) =

𝑏∫︁
0

[𝑅𝐾𝑙𝑘(𝑟)𝑗𝑙𝑞 (𝑞𝑟)𝑅𝑛𝑙(𝑟)𝑟
2𝑑𝑟]/

/
[︀
(𝐺𝑙𝑘(𝐾𝑏)𝑅

′
𝑙𝑘
(𝑏)−𝐺′

𝑙𝑘
(𝐾𝑏)𝑅𝑙𝑘(𝑏))]+

+ 𝑖(𝐹𝑙𝑘(𝐾𝑏)𝑅
′
𝑙𝑘
(𝑏)− 𝐹 ′

𝑙𝑘
(𝐾𝑏)𝑅𝑙𝑘(𝑏)

]︀
. (37)

Using the known formula of the theory of spherical
functions [36],

𝑌 𝑙
𝑚(𝜈)

⃒⃒
𝜈‖e𝑧

= 𝛿𝑚0

√︂
(2𝑙 + 1)

4𝜋
, (38)

and the properties of Clebsch–Gordan coefficients
[36], equality (36) can be presented in the coordinate
system, where 𝑒𝑧‖q, in the form

𝐼(K, 𝑞, 𝑛𝑙𝑚) = (4𝜋)

𝑙𝑘=∞∑︁
𝑙𝑘=0

𝑘=𝑙∑︁
𝑘=0

(2𝑙𝑞 + 1)×

×
√︃

(2𝑙 + 1)

(2𝑙𝑘 + 1)
(𝑖)𝑙𝑞+𝑙𝑘(−1)𝑙𝑘⟨(𝑙𝑘 − 𝑙 + 2𝑘)0 𝑙0|𝑙𝑘0⟩×

× ⟨(𝑙𝑘 − 𝑙+ 2𝑘)0 𝑙𝑚|𝑙𝑘𝑚⟩𝐵𝑙𝑘𝑙𝑞 (𝐾, 𝑞, 𝑛𝑙)𝑌
𝑙𝑘*
𝑚 (𝜈k) (39)

where

𝜈𝑘 =

(︂
K

𝐾

)︂
. (40)

At last, the function 𝐺𝑥𝑁𝐿(q,K) describing the
perturbed distribution of nucleons over the momenta
and defined in Eq. (8) can be expressed in the form 9

𝐺𝑥𝑛𝑙(q,K) =
1

(2𝑙 + 1)(2𝜋)3
×

×
𝑚=𝑙∑︁
𝑚=−𝑙

⃒⃒⃒⃒∫︁ (︁
𝜓
(−)*
K (r) exp(𝑖qr)𝜙𝑥𝑛𝑙𝑚(r)

)︁
𝑑3r

⃒⃒⃒⃒2
=

=
2

𝜋

𝑚=𝑙∑︁
𝑚=−𝑙

⃒⃒⃒⃒
⃒
𝑙𝑘=𝐿max∑︁

𝑙𝑘=0

𝑘=𝑙∑︁
𝑘=0

(2𝑙𝑞 + 1)

√︃
1

(2𝑙𝑘 + 1)
×

9 The following remark can be made concerning the numerical
results of this work. The calculations of basic components
that determine the cross-section of inelastic electron scatter-
ing by the atomic nucleus (the function of the perturbed dis-
tribution 𝐺𝑥𝑛𝑙(𝑘, 𝑘

′,𝐾) and the function 𝑃 (𝑘, 𝑘′)) are rather
simple to be checked: the calculations of those functions
can be subjected to a direct and independent mathematical
verification [31]. While calculating the cross-section of high-
energy electron scattering by nuclei, the most unexpected
turned out the fact that a possible error of calculations was
highly probable to be hidden in rather simple calculations of
simple multipliers entering formula (2) for the cross-section
of nuclear electro-disintegration (for instance, this is function
𝑆𝑥(𝑘, 𝑘′,𝐾) defined in Eq. (6)). The verification of the dis-
cussed calculations with the help of a calculator is, as a rule,
inefficient: the author reproduced (not without the calcula-
tor help) the same errors that were made, when program-
ming the problem. Considering the importance of specific
calculations for the comparison of the obtained theoretical
results with experimental data, the reproduction of calcu-
lation results obtained by different scientific groups, which
used independently created software programs, should be re-
garded as the most reliable means in this case.
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Table 9. Specific excitation cross-sections 𝜎𝑢𝑟
𝑛𝑙(𝑛)→𝑁𝐿(𝑛)

of proton Coulomb resonances
at the inelastic electron scattering by the 119Sn nucleus at the angle 𝜃′ = 10−12 deg ≪ 𝑚𝜔

𝜀𝜀′ . The depth
parameter of the Woods–Saxon potential 𝑉0𝑝 = 58.6 MeV. The energy of bombarding electrons 𝜀 = 500 MeV

[𝑝𝑛𝑙] ↓ [𝑝𝑁𝐿→] 15 23 13 16 17

10 2.721× 10−6 8.558× 10−4 3.7342× 10−5 5.4054× 10−7 6.4525× 10−6

11 1.186× 10−4 7.352× 10−3 6.6438× 10−3 1.2378× 10−5 1.2662× 10−4

12 5.630× 10−3 2.505× 10−2 2.9398× 10−3 2.8603× 10−4 4.0838× 10−4

20 1.865× 10−7 6.661× 10−3 2.5291× 10−2 1.1900× 10−5 5.7686× 10−4

13 0.298 0.203 1.3172× 10−2 9.9552× 10−3 1.1255× 10−3

21 1.703× 10−6 0.241 0.2899 8.6609× 10−5 1.0697× 10−3

14 29.83 2.5605 3.6267× 10−3 0.4062 1.9780× 10−2

× (𝑖)𝑙𝑞+𝑙𝑘(−1)𝑙𝑘⟨(𝑙𝑘 − 𝑙 + 2𝑘)0 𝑙0|𝑙𝑘0⟩×

× ⟨(𝑙𝑘 − 𝑙 + 2𝑘)0 𝑙𝑚|𝑙𝑘𝑚⟩×

×𝐵𝑙𝑘𝑙𝑞 (𝐾, 𝑞, 𝑛𝑙) 𝑌
𝑙𝑘*
𝑚 (𝜈k)

⃒⃒2
. (41)

The experiment [10] shows that the cross-section
of inelastic high-energy electron scattering by nuclei
substantially grows for all atomic nuclei without ex-
ceptions if the angle of the inelastic electron scatter-
ing decreases. The theoretical calculations [8, 9] in-
terpret the experiment [10] invariantly, if the scatter-
ing angle of electrons diminishes substantially. Since
there exists a certain probability of and even an ur-
gent necessity in the extension of experimental re-
searches dealing with the inelastic scattering of elec-
trons to the region of small and extremely small scat-
tering angles, the authors developed the method of
calculation for such angles (𝜃′ . 10−10 deg), and the
corresponding preliminary calculations were carried
out [31].

While comparing the obtained results, first of all,
we focus attention on a nontrivial difference be-
tween the measurement units (nanobarn/steradian
at 𝜃′ = 60∘ and barns at 𝜃′ = 10−12 deg) 10

used to measure identical quantities (the excitation
cross-sections of Coulomb resonances) in two above-
specified variants of electron scattering. By the way,
it is the function 𝑃 (k,k′) determined in Eq. (7) that

10 The difference between measurement units for specific cross-
sections is insignificant in this case, because the specific
cross-sections that are measured in the nb/sr units can be
easily transformed into the simple nb units for the known
experimental geometry (we suppose that △Ωexper ≪ 1).

is almost completely responsible for the indicated
difference.

Another unordinary and undoubtedly established
difference (see Table 9) consists in the evident domi-
nation of the excitation (owing to dipole transitions)
cross-sections of Coulomb resonances over the cross-
sections associated with transitions of higher multi-
polarities when electrons are inelastically scattered at
extremely small angles (𝜃′ ≪ 1). In other words, the
transition multipolarity plays a leading role in this
case (𝜃′ ≪ 1). Note also that, in this case, all the
responsibility for the phenomenon concerned belongs
to another function, namely, 𝐺𝑥𝑛𝑙(q,K), defined in
equality (8). It is also worth noting that the result
mentioned above does not depend on the error in the
coefficient in front of the product of functions 𝑃 (k,k′)
and 𝐺𝑥𝑛𝑙(q,K).

Note that it is the unordinary magnitudes of ex-
citation cross-sections of Coulomb resonances (tens
and hundreds of barns for the analyzed scattering
kinematics) that determine the nontrivial capabilities
for those resonances to considerably affect the flow of
the electro-disintegration processes of atomic nuclei
at the inelastic high-energy electron scattering. Note
also that the determination of the potential parame-
ters in the extended shell and other models of atomic
nuclei substantially depends not least on the capabil-
ities of corresponding nuclear experiments.

Using empirical formulas for the mean free path
of an electron in the atomic nucleus, we may as-
sert that a relativistic electron, when moving, e.g.,
in the atomic nucleus 119Sn, penetrates through its
center rather freely. From Table 9, it follows that
the cross-sections of electro-disintegration of inter-
nal shells in 119Sn, i.e. the knockout of protons from
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the deep shells of this nucleus, are too small to con-
siderably change the trajectory at the recurrent in-
elastic electron scattering by a proton in an inter-
nal shell of 119Sn. The result of the collision between
a relativistic electron and one of 10 protons of the
𝑝1𝑓 -shell (in our model, 𝑥𝑛𝑙 = 𝑝14) can be the
only exception to this statement in the framework
of the applied shell model. The theory predicts that
the probability of such a collision is extremely high,
because the excitation cross-section of the Coulomb
𝑝1𝐺-resonance has an improbably huge (as in the case
of electromagnetic interaction) value: tens and even
hundreds of barns. There is no doubt that this non-
trivial result has to manifest itself in various aspects
of the theory of inelastic high-energy electron scatter-
ing by nuclei.

The result obtained above also serves a basis for
the evident interpretation of the giant dipole reso-
nance phenomenon just in the framework of the nu-
clear shell model. At least, no doubt arises concern-
ing the qualitatively (and even quantitatively) cor-
rect interpretation of a decrease in the giant dipole
resonance energy as the atomic weight of a chemi-
cal element grows. Note, for example, that the exci-
tation energy 𝜔[𝑟] of Coulomb resonances in the nu-
clear shell model decreases from about 20 MeV in the
12C nucleus to about 7 MeV in the 208Pb one. Note
once again that the physical (quantum-mechanical)
properties of quasireal (𝑞2𝜇 ≈ 0) and real (𝑞2𝜇 ≡ 0)
photons are almost identical in the atomic nuclear
region.

Hence, the theory of inelastic high-energy electron
scattering by nuclei points to another alternative ap-
proach in the interpretation of the giant dipole reso-
nance phenomenon and correctly reproduces the well-
known experimental data associated with this electro-
nuclear phenomenon at the qualitative level. Note
also that, as follows from this statement, in order to
experimentally study the giant dipole resonance phe-
nomenon in the framework of the nuclear shell model,
the processes of inelastic high-energy electron scatter-
ing at small and extremely small angles can be used
as well.
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КУЛОНIВСЬКI РЕЗОНАНСИ,
КВАЗIРЕАЛЬНI ФОТОНИ I ФЕНОМЕН
ДИПОЛЬНОГО ГIГАНТСЬКОГО РЕЗОНАНСУ

Р е з ю м е

В рамках оболонкової моделi ядер вивченi рiзноманiтнi
аспекти впливу квазiреальних фотонiв та кулонiвських ре-
зонансiв на динамiку електродезiнтеграцiї ядер при непру-
жному розсiяннi електронiв високих енергiй. Деякi особли-
востi чисельних методiв, що використовуються для вивчен-
ня перерiзiв електророзщеплення атомних ядер електрона-
ми високих енергiй, також представленi в данiй роботi.
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