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MECHANISM OF NON-STATIONARY
PIEZOPHOTOCONDUCTIVITY SPECTRUM
FORMATION IN LAYERED CRYSTALS

Changes in the structure of electron states in layered crystals caused by a shear deformation of
layers under the action of an external low-frequency modulated pressure have been analyzed. It
is shown that the strain generates a superstructure with a period in the direction perpendicular
to the layers, being a multiple of the layer thickness. The interaction of electrons with the
strain-perturbed potential gives rise to the appearance of regularly located gaps in the energy
dependence on the wave vector and results in a redistribution of electrons over the band states
by means of Umklapp processes. A balance equation for the population of states is proposed, and
its dynamics is analyzed. The non-stationary component of the interband absorption coefficient
is estimated. The spectrum of this component is shown to have a band-like character, with the
harmonic at the modulation frequency being shifted in phase with respect to the pressure phase
by an angle depending on the light quantum energy.
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1. Introduction

The mechanical stress created by an external action
in a semiconductor gives rise to certain changes in
the structure of electron states. As a result, the stress
can manifest itself in specific electron phenomena and
properties as a modulating factor. Such phenomena
include, in particular, piezophotoconductivity, a com-
ponent of the semiconductor conductivity emerging
owing to the mutual action of light and a mechanical
stress on the electron subsystem and proportional to
the product of the light intensity and the mechanical
stress [1].

Experimental researches of piezophotoconductiv-
ity in semiconductors with a layered structure [2—4],
when the specimens were subjected to the light irra-
diation with a constant intensity and a low-frequency
deformation, revealed a number of nontrivial proper-
ties, which were typical of this combined conductiv-
ity. In particular, in the interval of light frequencies
where interband transitions were realized, the spectra
of a harmonic component with the frequency equal
to the modulation one had an oscillatory character,
which manifested itself in a regular arrangement—in
the whole spectral range—of narrow spectral inter-
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vals where an enhanced piezophotoconductivity took
place. In addition, the dependence of a piezophoto-
conductivity phase shift with respect to the phase of a
modulating pressure on the light quantum energy was
revealed. The magnitude of this shift could reach a
value of /2. In Fig. 1, the spectra of the piezophoto-
conductivity of IngSes crystals and the relative phase
shift [2] are shown, which illustrate the typical prop-
erties of piezophotoconductivity spectra inherent to
layered crystals.

The overall evaluation of the piezophotoconductiv-
ity properties and the features in the structure of rel-
evant spectra testifies that they cannot be associated
exclusively with the stationary structure of semicon-
ductor bands. It is evident that the crucial role in the
formation of those spectra is played by the processes
of generation and recombination of nonequilibrium
charge carriers, when light and a mechanical stress
jointly affect the electron subsystem of a semicon-
ductor. Regarding this mutual action as a factor
that gives rise to a combined perturbation of elec-
tron states and corresponding interband transitions,
we would like to emphasize a substantial role of the
mechanical stress in the dynamics of generation and
recombination. This work is aimed at evaluating the
possible changes in the structure of semiconductor
electron states induced by deformation and, on this
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Fig. 1. Piezophotoconductivity amplitude (1) and phase shift
(2) spectra for IngSe3 crystal [2]

basis, at proposing a mechanism of spectrum forma-
tion for the non-stationary component of the inter-
band absorption coefficient.

2. Layer Shear Deformation.
Perturbation Potential

As a result of the anisotropy of chemical bond forces,
there emerge specific structural formations in the
structure of layered crystals, which look like lay-
ers with residual mechanisms of interaction between
them. Considering the layered crystals as a system
of weakly coupled plane nanostructures, we confine
the deformation model of those crystals to that, in
which the layers approach one another and shift with
respect to one another without substantial changes in
their structure. Such a deformation leaves the lattice
periodicity in the layer plane (the xy-plane) intact,
but brings about considerable variations of the period
in the direction normal to the layer plane (the z-axis).

Let the period of the crystal lattice in the non-
deformed state be equal to d? in the z-direction and
coincide with the layer thickness. Owing to the pres-
sure action, the adjacent layers become relatively
shifted without changing the distance between them.
Let the shift [,, occurs along an arbitrary direction in
the layer plane, and I,, < dg,, where d, is the lattice
period in this direction. In this case, the projection
of the lattice period d, on the normal to the layers
changes and equals the period d? times the number
of layers, n, within the period d,,

d. = d’n. (1)
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If the ratio dl“’ is not integer, the number n = N dl‘”’,

where N is the least integer, for which its prodt;ct
with dl””y is an integer number. Hence, owing to the
deformation of a layered crystal, which occurs as a
relative shift of the layers, there emerges a specific
superstructure with the period in the direction nor-
mal to the layer plane equal to d,. The value of this
lattice period is a discrete function of the relative shift
between the layers, and its minimum variation equals
the layer thickness.

The shear deformation of the layers, by changing
their equilibrium positions in the undeformed crys-
tal, induces corresponding variations in the electron
potential [5, 6]. Bearing in mind the layer structure
invariance in the course of this deformation, let us
present the potential in the deformed crystal as an
imposition of a certain perturbation on the potential
of the undeformed crystal. This perturbation arises
owing to the deformation-governed spatial redistrib-
ution of atoms along the normal to the layer plane.
Hence, it is periodic with the period d, and depends
on the coordinate z.

In the case of a deformation under the combined
action of external factors—in particular, a constant
squeezing of the specimen together with a modulated
harmonic pressure of a small amplitude—the perturb-
ing potential is a function of the coordinates and the
time. Accordingly, the period of the corresponding
perturbation d, has a harmonic component with the
modulation frequency, and it is a periodic discrete
function of the time. In this case, the average time
interval, within which the period d, remains constant,
is equal to the time interval, within which it increases
by d?; hence, it depends on the modulation frequency.

The perturbation potential induced by the mechan-
ical stress and existing in the form of the field periodic
in space and time creates conditions for the electron
diffraction and can be an effective scattering factor
giving rise to definite variations in the energy band
structure and in the electron redistribution over the
band states. Let us consider those variations as vir-
tual, i.e. as transient at band-to-band transitions,
and evaluate their role in the formation of intrinsic
light absorption spectra.

3. Modulation of Electron State
Structure by Layer Shear Deformation

The relative shift of the layers owing to the resid-
ual character of the interaction between them cannot
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induce substantial mechanical stresses in the crystal
and, therefore, cannot considerably affect the struc-
ture of electron states [6,7]. Taking this circumstance
into account, let us analyze possible changes in the
structure of electron states and in their population
occurring owing to the layer shear deformation in-
duced by the combined low-frequency harmonic pres-
sure. Our consideration is confined to the simplest
model of bands in the undeformed crystal, in which
the parabolic dispersion law is obeyed.

Since the crystal dimensions remain constant in the
course of the layer shear deformation, let us present
the perturbation potential as a difference between the
potentials in the deformed and undeformed crystals.
The main property of this perturbation is its peri-
odic dependence on the coordinate z, with the pe-
riod equal to d,. Changes in the structure of elec-
tron states in the undeformed crystal follow from the
interaction between electrons and the periodic one-
dimensional perturbation potential generated by the
layer shift. On the basis of the results obtained from
direct calculations of matrix elements for perturba-
tions induced by constant external pressures, a con-
clusion can be drawn that the shear deformation of
layers practically does not affect the band structure,
eo(k), in the undeformed crystal. The main changes
concern some separate states, the wave vectors of
which have the k, component multiple of the ratio
m/d,. As a result of the degeneration of those states,
the dispersion dependence of the energy on the k.-
component of the wave vector with the magnitude

kz = dlg = kg (g = 07172?37 "')’ (2)

has discontinuities,
e(k) = eo(k) £ [Vg| bk .k, » (3)

where Vj is the amplitude of the potential Fourier ex-
pansion, and Jy, x, is the Kronecker symbol. Hence,
the shear deformation of layers brings about the ap-
pearance of specific critical points in the energy band
structure, whose positions can be controlled by an
external force.

If the deformation is induced by an external force
which has a harmonic component with a low fre-
quency 2 and a relatively small amplitude [y, the
vector magnitude ¢ has two components,

q = qs + qosin(Q1), (4)
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where g5 = Z—’J L go=2rlo and I, is the relative

Ay’ do d,
shift between theylayers inducgd by the constant pres-
sure. Taking this circumstance into account, let us
analyze the population dynamics of the given energy
level as a result of the shear deformation of layers
invoked by a low-frequency harmonic pressure. We
suppose that a parabolic dispersion law is obeyed in
this band, and the Brillouin zone is a cube with the
side 2Ky = 3—’5.

The redistribution of electrons over the band states
results directly from their interaction with the pe-
riodic one-dimensional perturbation is characterized
by the wave vector with a single component different
from zero and is equal to 3—”. Owing to this inter-
action and in accordance with the quasimomentum
conservation law, the component k, of the electron
wave vector changes, so that the normal or Umk-
lapp scattering processes are realized. The latter are
known to be an effective factor in the establishment
of a quasiequilibrium state in the electron subsystem
and can invoke the redistribution of electrons over the
energy states.

Consider the dynamics of the population on a com-
pletely filled isoenergy surface of radius k, which is
realized in the case of the scattering by a perturba-
tion potential with the wave vector ¢ that provides
the emergence of Umklapp processes. The number
of electrons with the given inverse vector ¢, which
leave this surface, is proportional to the area of a
segment with the height k& — y. The vector mag-
nitude, x = Ky — ¢, is equal to the smallest k.-
component of the wave vector, which undergoes the
Umklapp process. The reduction in the population on
the considered isoenergy surface is partially compen-
sated by transitions of electrons onto it from other en-
ergy states. The number of such transitions, which is
regulated by the principle of correspondence and the
quasimomentum conservation law, provides a certain
population S; on the considered isoenergy surface

S =2n((n—k)* = (n— k) x

x\V/n?+x% =20k — k(k — x)], (5)

where n = 2Ky — q. At the given ¢- and Kj-values,
the transitions are completely compensated on the
isoenergy surface with the radius k = /2. Accord-
ingly, the Umklapp processes result in the population
growth for all surfaces with the radii k¥ > 7n/2, and
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Fig. 2. Dependences of the relative population change of a
spherical isoenergy surface on the wave vector for g5 = = 0.8
(1), 0.65 (2), 0.5 (3), and 0.65 (4)

S@)

0.05 -

-0.05 -

d Sk, 9

03F

02f 3

L P L Il L L L L Il L L 1 L L L L L I I L 1 1 L 1 L 1 1 t
\%QX§E7/%§i§7L\7 30
b

Fig. 3. Time dependences of the relative population change
(a) and its time derivative (b) for ¢s = 0.8 (1), 0.7 (2), 0.6
(3), and 0.5 (4)
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the balance between their populations is determined
by similar expressions,

52:27r[(17—k) (n—k—x)—k2+k\/m}~
(6)

The relative change of the state population on a
spherical isoenergy surface with an arbitrary radius
k as a result of Umklapp processes is described by
the equation

S(k,t) = 2%{[772 —(2n—x)k+ (k—n) x

><\/772+X2—277k}@(k—x)[1 —O(k —n/2)]+
+[n2—xn—(2n—><)k+kv2nk+x2—n2}x
<6(k— /21 - 0(k ~ ko] (7

where the Heaviside functions ©(k) are used to con-
fine the corresponding intervals of wave vectors. In
Fig. 2, the dependences of the relative change of the
isoenergy surface population on the wave vector mag-
nitude are exhibited for some ¢s-values.

Hence, the Umklapp processes result in the estab-
lishment of a certain balance between the populations
of electron states on the isoenergy surfaces, which is
determined by their radii k. In this case, the rela-
tive change in the population of isoenergy surfaces
depends on the time and, as follows from expression
(7), is a complicated periodic function of this quan-
tity. A specific form of this dependence is determined
by the ratio between the radius of the spherical isoen-
ergy surface and the amplitude of the vector ¢. In
Fig. 3, the time dependences of the relative popula-
tions on various isoenergy surfaces and their deriv-
atives with respect to the time are depicted for the
given amplitudes of the harmonic component of the
vector qq.

4. Non-Stationary Component
of the Interband Absorption Coefficient

Now let us proceed to the evaluation of the spectrum
for the non-stationary component of the interband
light absorption coefficient, which arises owing to the
low-frequency shear deformation of layers. We will
confine the consideration to a simple band structure
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in the undeformed crystal, which is not crucial for
this evaluation, and neglect the intensity of inverse
interband transitions. A direct origin of changes in
the coefficient of interband light absorption in the un-
deformed crystal under the conditions concerned is
the emergence of specific critical points in the band
structure and the redistribution of electrons over the
states of those bands. These variations, which are
associated with the mechanical stress arising in the
crystal as a result of the shift of layers and which are
realized in the form of consecutive short pulses, are
considered here as virtual ones [8], i.e. transient at
interband transitions.

In the framework of the model proposed, the num-
ber of interband transitions occurring per unit time is
a result of two processes: quantum-mechanical tran-
sitions of valence electrons at a constant rate and a
slow classical process, which governs a time variation
in the number of electrons capable of such transitions.
Accordingly, taking the structure of S(k,t) into ac-
count, the coefficient of light absorption «(w,t) at
the frequency w can be written down in the form

0S(k, )

a(w,t) = C/Wo(kz) [1 + S(k,t) + At; p

Jon
(8)

where Wy (k) is the probability of interband transi-
tions, At; are time intervals within which S(k,t) # 0,
and C is a constant.

The non-stationary component of the absorption
coefficient,

aS(k, t)

ot div (9)

as(w,t) = C/Wo(k) {S(k,t) + Aty
has a rather complicated time dependence, which is
associated with the presence of the time-dependent
term [S (k,t) + Ati%} substantially affecting its
dependence on the light quantum energy. From the
viewpoint of practical interest, the harmonic com-

ponents of the function ag(w,t), in particular, the
structure of their spectra, are of value. By expand-
ing the time-dependent term [S(k, t) + Ati%} in
the Fourier series, we obtain expressions for the am-
plitudes of orthogonal components of the harmonic
with the frequency 2.

As follows from the structure of the time-dependent
factor, the amplitude of the in-phase component
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Zs(k) does not depend on the rate of population vari-
ation and, accordingly, can be presented as a sum of
integrals Zg, (k),

(10)

Omi
_ %Z / S(k, 0) sin(6) d6,

1
Ooi

where the limits 6p; and 6,,; determine intervals
within the range [0,27], in which the quantity
S(k,t) # 0 and has a corresponding functional depen-
dence on the time for the given wave vector k. The
amplitude of the harmonic shifted by #/2 is calcu-
lated as the average value of corresponding integrals,

Omi

29 /851;9)

0o;

cos(6) do, (11)

where 6;(k) is the corresponding angle within the
given integration limits. In view of the following
equality, which is valid in the considered integration
limits,

Omi Omi
Q/S(k‘,@)sin(ﬂ) dé = / % cos(6) df, (12)

901' 9075

let us write down Z,5(k) in the form
k)= 00;(k)Zai(k)

Notice that, owing to the irrationality of some terms
in the integrands, integrals (10) and (11) include
terms in the form of elliptic integrals [9].

The integration of expression (9) making allowance
for the dependence of the quantities Z,(k) and Z,s(k)
on the wave vector and the type of optical transitions
allows the Q-harmonic of the non-stationary absorp-
tion coefficient to be presented in the form

(13)

a(w) = a(wy) sin(Qt + ), (14)

L(hw—By—2V,), tanp = 2225 and B,
is the energy gap width. Hence, the structure of the
spectrum of the non-stationary absorption coefficient
component is formed by the corresponding changes
in the energy band structure of the undeformed crys-
tal and the Umklapp processes connected with the
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shear deformation of layers. Concerning the struc-
ture of this component, the non-trivial dependence of
the phase shift on the energy of light quanta, p(w),
has primary importance. In essence, the energy de-
pendence of the phase shift on the quantum energy,
i (w), reflects a complicated dynamics of the energy
level population, which the Umklapp processes are
responsible for.

Hence, the spectral structure of the orthogonal
components of the a;(w) harmonic— the in-phase,
al(wy), and phase-shifted, a!l(w,), ones—stems from
the functional dependence of the amplitude af(w)
and the phase j(w,) on the quantum energy. By
presenting them in the form

oy = adcos(p), oy = afsin(p),

(15)
we note that this relation between the spectra of
orthogonal components was obtained experimentally
for the in-phase and phase-shifted components of the
piezophotoconductivity in IngSes crystals [3].

5. Conclusion

The model proposed for the formation of the spec-
trum of the non-stationary absorption coefficient
component is based on a comparison between the
electron band structures in deformed and undeformed
crystals. The shear deformation of layers is supposed
to be a crucial factor giving rise to certain changes in
the structure of electron states. Its action is equiva-
lent to a variation of the lattice period along the nor-
mal to the layer plane. Modifications induced by me-
chanical stresses in the electron state structure of lay-
ered crystals are insignificant, being blocked by fun-
damental electronic properties of the crystal. Those
modifications, which manifest themselves in the form
of jumps in the dispersion dependence of the energy
on the wave vector, the k,-component of which is a
multiple of the ratio 7/d,, reveal themselves as spe-
cial points in the combined density of states. Accord-
ingly, they can be explicitly observed in the structure
of interband absorption spectra; first of all for such
crystals, in which the layer stacks have rather a large
thickness. The experimental identification of those
features demands that techniques similar to modu-
lation spectroscopy [10, 11] should be applied. The
researches of piezophotoconductivity, as an analog
of the modulation spectroscopy of photoconductivity,
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cover a wide scope of physical processes and, there-
fore, may turn out an effective method of investiga-
tion dealing with the electronic properties of layered
semiconductors.
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MEXAHI3M ®OPMVYBAHH{ CIIEKTPIB
HECTAIIIOHAPHOI I’€30®O0TOIIPOBIIHOCTI
ITAPYBATUX KPVCTAJIIB

Peszmowme

IIpoanasizoBaHo 3MiHH y CTPYKTYPi €JI€KTPOHHUX CTaHIB IIa-
pyBaTHX KPHUCTAJIB, sIKi 3yMOBJeH] medopMaliero 3cyBy Ia-
PiB, IO 3iMCHIOETHCA MOYIBOBAHUM HU3BKOIO YaCTOTOIO 30B-
HimHiM TrcKOM. [lokazaHo, Mo Taka JgedopMallist MPUBOIUTH
10 BUHUKHEHHSI HAJICTPYKTYPH, HEPIOM sIKOT y HAIIPSIMKY, HOD-
MaJIbHOMY JIO IJIOIIMHY IIAPiB, PiBHUI I[IJTOMYy YHCJIy TOBIIUH
mapy. BeranosiieHo, 1110 B3a€MO/Iisi €JIeKTPOHIB 3 jgedopMartiii-
HO 30ypPEHUM ITOTEHIaJIOM IIPUBOJAUTD JI0 BUHUKHEHHS PO3pHU-
BiB y AucnepciiiHiil 3aj1e2KHOCTi eHepril BiJi XBUIIBOBOTO BEKTO-
pa, fki perynaspHO poswimeni mo #oro Besmumui. ITokaszaro,
110 151 B3AE€MO/IisI CIIPUYNHIOE II€PEPO3IIOIJ €JIEKTPOHIB 10 CTa~
HaX y 30HAX, KU peali3yeThCs IPOIeCaMy IIePeKUIaHHs. 3a-
[IPOIIOHOBAHO PIBHSHHS OaJIaHCY 3aCeJIEHOCTI CTaHiB, IpoaHa-
jgizoBaHo foro nuaamiky. IIpoBeneno omninky HecrarioHapHOI
cKJ1a0Bo1 KoedilienTa MiK30HHOrO ToriauHaHHs. [lokasano,
IO CIEKTP IIi€l CKJIaJ0BOI Ma€ CMyracTHil xapakrep, a ¢dasa
rapMOHIKM MOJIYJISIIIHHOT 9aCcTOTH 3MileHa BifiHOCHO da3u Tu-
CKy Ha BEJIMYMHY KyTa, SKU{ 3aJIe2KUTh BiJl eHepril KBaHTa
cBiTiIa.
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