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PHENOMENOLOGICAL THEORY
OF RELAXATION IN TWO-SUBLATTICE FERRITEPACS 75.50Gg

The dissipative function of a two-sublattice ferrite was constructed. The relaxation times for
the acoustic and optical branches of spin waves are calculated, as well as the relaxation times
for the magnetization and antiferromagnetism vectors. The process of antiferromagnetism
vector relaxation is shown to be the quickest one. The corresponding relaxation time is gov-
erned by the exchange relaxation constant and, due to the exchange interactions between atoms
in the sublattices, becomes shorter owing to the dynamics of the antiferromagnetism vector.
The process of ferrite magnetization relaxation is the slowest one. In the exchange approx-
imation, the magnetization relaxation time tends to infinity, as the length of magnetization
non-uniformities grows. The results obtained are compared with the experimental data on the
relaxation phenomenon in GdFeCo alloy of rare-earth and transition metals.
K e yw o r d s: dissipative function of two-sublattice ferrite, relaxation times for the magneti-
zation, relaxation times for the antiferromagnetism vector.

1. Introduction

There are a lot of trends in modern electronics and
computer engineering concerning the application of
magnetic materials, with the creation of systems for
the data recording in computers remaining the most
challenging task among them. The tendency of the
further development involves the creation of devices
characterized by a higher record density and a per-
formance as fast as possible. In this domain, the
optical normal record technique actually has no al-
ternative, especially if modern femtosecond lasers are
used. However, the problems aimed at the increase
of the data record density can be solved by engag-
ing exclusively the optical methods (near-field radia-
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tion systems, the application of laser emission in the
violet spectral range). At the same time, the prob-
lem of information record and read-out rates in mag-
netic memory systems and the problem of information
processing demand that fundamental problems in the
dynamic physics of magnetism should be tackled.

In recent years, there emerged a new and promis-
ing direction in the physics of magnetism, which is
based on a capability to manipulate the magnetiza-
tion of magnets with the help of femtosecond laser
pulses (see review [1]). This direction was coined
as femtomagnetism [2], and many interesting results
were obtained in its framework. The first experi-
ments carried out using simple ferromagnetic metals
demonstrated that the heating of metallic ferromag-
nets with a laser pulse gave rise to a rapid (within
several picoseconds) change of the material magne-
tization [3]. Afterward, a possibility of non-thermal
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excitation of spin oscillations in transparent magnets
with the use of the inverse Faraday effect was marked
[4], which determined the basic direction of progress
in femtomagnetism for years [1]. So, if laser pulses
with a duration of an order of 100 fs are used, os-
cillations with frequencies of up to terahertz range
can be excited, which exceeds the magnetic resonance
frequency inherent to uniaxial and rhombic antiferro-
magnets [5, 6]. This method allowed not only spin
oscillations in both magnets with weak magnetism
(like orthoferrites [7] or iron borate [8]) and pure an-
tiferromagnets of the nickel-oxide type [9, 10] to be
generated, but also nonlinear motion modes of the
spin-reorientation type to be realized [11].

However, it turned out soon that the capabilities
of thermal femtomagnetic effects were still not ex-
hausted. Recently, an ultrafast (within several pi-
coseconds) change in the directions of sublattice mag-
netizations was revealed for ferrimagnets (namely, al-
loy GdFeCo of rare-earth and transition metals) un-
der the action of a laser pulse shorter than 100 fs [12].
The result of work [12], being typical of ferrimagnets
only, turned out unexpected and rather unordinary.
It was found that the reorientation effect has no re-
lation to the light polarization. At the same time, it
is associated only with an extremely short-term but
strong specimen heating, when the maximum tem-
perature exceeds the Curie point TC [12] (see also a
new approach to this problem based on the analysis
of electronic processes running at the laser excitation
of the metal [13]). The effect was detected for con-
tinuous films and microparticles [14], nanoparticles
[15], and materials with and without the compensa-
tion point [14]. The microscopic origin of the reori-
entation effect is still not quite clear. It was only
found that a change of the absolute values of sublat-
tice magnetic moments S1 = |S1| and S2 = |S2| plays
a substantial role in the effect formation [14, 16]. In
other words, the purely longitudinal evolution of mag-
netic moments in the sublattices is essential for the
effect description. The longitudinal dynamics of this
kind is absent, in principle, in the case of the classical
Landau–Lifshits equation [17], because, even if stan-
dard relaxation terms of the Landau–Lifshits–Gilbert
type [17, 18] are taken into account, those equations
preserve the absolute value of magnetization.

Earlier, one of the authors of this work showed that
the longitudinal evolution of spins naturally arises
while constructing the general scenario of the magne-

tization dynamics in ferro- [19] and antiferromagnets
[20]. In this case, the direct influence of the exchange
interaction on the spin evolution plays a specific role.
Bearing in mind the symmetry of the exchange in-
teraction, it cannot give rise to the variation of the
total system spin. As a result, the contribution of this
interaction to the standard transverse spin dynamics
dominates only in the case where the standard rela-
tivistic relaxation is weak [21]. The phenomenologi-
cal concept of exchange relaxation proposed in works
[19, 20] turned out the most adequate tool for the de-
scription of the ultrafast spin dynamics, and it was
used in works [16] to qualitatively describe experi-
mental data. However, the absence of any progress
in this approach with respect to ferrimagnets con-
strains the development of the quantitative descrip-
tion of longitudinal remagnetization effects.

This work is devoted to the derivation of the effec-
tive motion equations and the dissipative function for
a two-sublattice ferrite, as well as to the analysis of
various relaxation processes in this magnet on the ba-
sis of the obtained function. For ferrimagnets, various
relaxation processes are of interest: the longitudinal
relaxation (the relaxation of the magnetization,
M = S1 + S2, and antiferromagnetism, L = S1 − S2,
vector lengths) and the transverse one (it determines
the damping of magnons in two branches). We
demonstrate that, in contrast to the ferromagnet
case, purely exchange processes of uniform relaxation
described by a single universal constant Λ are
possible. The fastest of them is the process of length
relaxation for the antiferromagnetism vector. We
show that this relaxation stems from the exchange
interaction between the ferrite sublattices, and it
is strengthened by the exchange interactions in the
sublattices. The total magnetization of a ferrite
relaxes much more slowly and, similarly to the case
of a simple ferromagnet, is described by non-uniform
exchange interactions and relativistic interactions.
We also calculated the damping times for the optical
and acoustic branches of spin waves in the ferrite.
The damping decrement for the optical mode is deter-
mined by the same exchange constant Λ as the relax-
ation time of the antiferromagnetism vector length.

2. Quasiequilibrium
Thermodynamic Potential of a Ferrite

Let us proceed from the following expressions for the
quasiequilibrium thermodynamic potential of a two-
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sublattice ferrite:

W = We,u + We2 + Wa. (2.1)

It includes the energy of the uniform exchange inter-
action

We,u =
J11

4
(
S2

1 − S2
01

)2
+

J22

4
(
S2

2 − S2
02

)2
+J12S1S2,

the energy of the non-uniform exchange interaction

We2 =
α11

2
(OS1)

2 +
α22

2
(OS2)

2
,

and the energy of the uniaxial anisotropy

Wa = −1
2
(K11S

2
1,z + K22S

2
2,z).

The coefficients J11 and J22 determine the exchange
interaction intensities in the first and second sublat-
tices, respectively, and the parameter J12 describes
the interaction between the sublattices. The uniaxial
anisotropy with the constants of magnetic anisotropy
K11 > 0 and K22 > 0 is assumed to take place
in the sublattices, the easy axis is chosen to be di-
rected along the z-axis, and αii are the constants of
the non-uniform exchange interaction. In effect, the
contribution to the thermodynamic potential associ-
ated with the exchange interaction in a sublattice is
written down in the form of the Landau expansion,
and the quantities S01 and S02 determine the equi-
librium spin values at the given temperature, when
the interaction between the sublattices is not taken
into consideration. The relations between the con-
stants that enter the energy expression are given by
the inequalities (J11, J22, J12)� K11 ∼ K22.

Knowing the quasiequilibrium thermodynamic po-
tential, we can find the ground state of the ferrite
and its corresponding magnetization. These quanti-
ties are determined by the formulas

K11S̄1 + J11S̄1X + S̄2J12 = 0,

K22S̄2 + S̄1J12 + S̄2Y J22 = 0,
(2.2)

where the following notation is introduced:

X ≡ S2
01 − S̄2

1 , Y ≡ S2
02 − S̄2

2 , (2.3)

and the quantities S̄1 and −S̄2 (S̄1 > 0 and S̄2 > 0)
stand for the magnitudes of sublattice magnetic mo-
ments in the ground state (since J12 > 0, the sublat-
tice spins are antiparallel, and their averaged values
S̄1 and S̄2 are directed “upward” and “downward”, re-
spectively). For the sake of definiteness, let us put
S̄1 > S̄2.

3. Spin Dynamics
and Dissipative Function of a Ferrite

In order to calculate the processes of spin-wave relax-
ation and damping, let us proceed from the Landau–
Lifshits equations for spins in the sublattices,

∂S1

∂t
= [S1,H1] + R1,

∂S2

∂t
= [S2,H2] + R2, (3.1)

where

H1 = −∂W

∂S1
,H2 = −∂W

∂S2

are effective fields in the sublattices, and R1 and R2

are dissipative terms. In the spirit of works [19, 20],
the dissipative terms can be written down in terms
of the dissipative function variations with respect to
the corresponding effective field,

R1 =
∂q

∂H1
,R2 =

∂q

∂H2
. (3.2)

Following the idea proposed by one of the authors
(see work [19]), the dissipative function is constructed
as a quadratic function of the effective magnetic fields
and taking into account that it should be invariant
with respect to the symmetry transformations of the
ferrite. Those requirements allow us to determine the
structure of every term associated with that or an-
other interaction. It is easy to see that this structure
looks like

q = qe
u + qr

u + qr
u,3 + qe

n,u. (3.3)

Here, the first term describes the contribution of the
uniform exchange interaction,

2qe
u = R1H1 + R2H2 = Λ(H1 −H2)2, (3.4)

which basically does not exist for ferromagnets. The
meaning of other terms is the same as for ferromag-
nets, the terms qr

u,z and qr
u are determined by the

specific purely uniaxial or rhombic anisotropy,

2qr
u,z = Λz(H2

1,z + H2
2,z);

2qr
u = Λr

1(H
2
1,x + H2

1,y) + Λr
2(H

2
2,x + H2

2,y),
(3.5)

and the term qe
n,u,

2qe
n,u = λe

11(OH1)2 + λe
22(OH2)2,
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describes the contribution of the non-uniform ex-
change. For a linear spin wave with the wave vector
k, we have

2qe
n,u = k2(λ1H2

1 + λ2H2
2).

Here, we confined the consideration to the simplest
formulas for the dissipative function. For instance, we
did not write down invariants of the types H1,xH2,x,
H1,zH2,z, and so on. Their account does not change
final results, but makes the formulas for relativistic
contributions to the damping much more cumber-
some, whereas our main task is to analyze the uni-
form exchange contribution, which is unique for the
ferrimagnet.

4. Conservation Law
for Total Ferrite Magnetization

The exchange symmetry of the spin dynamics means
that the quasiequilibrium potential of a ferrite does
not change at uniform rotations of its magnetization
and antiferromagnetism vectors. This type of sym-
metry brings about the conservation law for the total
magnetization of the magnet. Using the equations
of motion (3.1) under the condition Wa = 0, it is
easy to get convinced that the differential form of the
conservation law for the ferrite in the pure exchange
approximation looks like

∂(S1 + S2)
∂t

+
∂(Πdyn

k + Πdis
k )

∂xk
= 0, (4.1)

where the vectors in the spin and coordinate spaces
are transformed independently. The dynamic and dis-
sipative parts of the magnetization flux are

Πdyn
k = α11[S1,

∂S1

∂xk
] + α22[S2,

∂S2

∂xk 2

] (4.2)

and

Πdis
k = λe

11

∂H1

∂xk
+ λe

22

∂H2

∂xk
, (4.3)

respectively. It is important to emphasize that
only the non-uniform exchange makes contribution to
Πdis

k , and this contribution is in fact the same as that
for a ferromagnet. The uniform exchange dissipation
characterized by the constant Λ and inherent only to
a ferrimagnet does not change the form of Πdis

k . In the
case of uniaxial anisotropy, only the symmetry with

respect to uniform rotations around the anisotropy
axis takes place, and only the z-projection of the total
moment, S1,z +S2,z, is preserved. The corresponding
differential form of the conservation law for the ferrite
looks like

∂(S1,z + S2,z)
∂t

+
∂(Πdyn

k + Πdis
k )

∂xk
= 0, (4.4)

where the dynamic and dissipative parts of the mag-
netization flux are equal to Πdyn

k = (ez,Π
dyn
k ) and

Πdis
k = (ez,Πdis

k ), respectively, and ez is the unit vec-
tor along the z-axis.

5. Linearized Equations of Motion

In order to calculate the spectra and the damping
constants, let us proceed from the linearized Landau–
Lifshits equations of motion making allowance for the
dissipative terms (3.1)–(3.3). We write down the
vectors S1 and S2 as follows: S1 = S̄1ez + s1 and
S2 = −S̄2ez + s2. Let us first analyze the equations
obtained by linearizing the equation of motion with
respect to s1,2 and by neglecting the dissipation. It is
convenient to consider the sum and the difference of
the equations for the additives s1,2 in the form of their
components along the axes. The sums of linearized
equations for the components s1 and s2 obtained tak-
ing into account that the time dependence of small de-
viations is exponential and has the form of a simple
wave with the wave vector k, i.e. s1,2 ∝ exp(kx−iωt),
look like

(I) iωs1,x − S̄1(K11 + k2α11)s1,y + iωs2,x

+S̄2(K22 + k2α22)s2,y = 0,

(II) S̄1(K11 + k2α11)s1,x + iωs1,y− (5.1)

−S̄2(K22 + k2α22)s2,x + iωs2,y = 0,

(III) iω(s1,z + s2,z) = 0.

Three more equations are obtained from difference
of the equations for s1 and s2,

(IV) iωs1,x − S̄1(K11 + k2α11)s1,y − iωs2,x−

−S̄2(K22 + k2α22)s2,y = 0,

(V) S̄1(K11 + k2α11)s1,x + iωs1,y+ (5.2)

+S̄2(K22 + k2α22)s2,x − iωs2,y = 0,

(VI) iω(s1,z − s2,z) = 0.
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We now pay attention to that the exposed system of
six equations can be split into three independent pairs
of equations for the quantities (s1,x − is1,y) = s

(−)
1 ,

(s2,x − is2,y) = s
(−)
2 , (s1,x + is1,y) = s

(+)
1 , (s2,x +

+ is2,y) = s
(+)
2 , s1,z, and s2,z. The first two pairs

are obtained as linear combinations of Eqs. (5.1) and
(5.2), namely,

IV + iV → s
(−)
1 (−ω + S̄1K11 + k2S̄1α11)+

+s
(−)
2 (ω + S̄2K22 + k2S̄2α22) = 0, (5.3a)

I− iII→ is
(−)
1 (ω − S̄1K11 − k2S̄1α11)+

+s
(−)
2 (ω + S̄2K22 + k2S̄2α22)) = 0, (5.3b)

and

IV − iV → s
(+)
1 (ω + S̄1K11 + k2S̄1α11)+

+s
(+)
2 (−ω + S̄2K22 + k2S̄2α22) = 0, (5.4a)

I + iII = is
(+)
1 (ω + S̄1K11 + k2S̄1α11)+

+s
(+)
2 (ω − S̄2K22 − k2S̄2α22) = 0. (5.4b)

Equations III and VI for the pair s1,z and s2,z re-
main the same. This circumstance is not incidental
but results from the crystal symmetry. If a uniax-
ial crystal is rotated by an angle ϕ around its sym-
metry axis, the quantities s

(+)
1 and s

(+)
2 are trans-

formed according to the law
(
s
(+)
1 , s

(+)
2

)
∝ exp(iϕ),

and the quantities s
(−)
1 and s

(−)
2 according to the law(

s
(−)
1 , s

(−)
2

)
∝ exp(−iϕ), whereas the quantities s1,z

and s2,z remain invariant. The same reasons are valid
for the relaxation terms as well, because they were
also constructed in accordance with the crystal sym-
metry.

6. Spin-Wave
Spectra and Damping Constants

The linearized system of equations describes four
types of characteristic motions in the spin system
of the ferrimagnet. Two of them are purely dissipa-
tive; they govern the relaxation of the z-projections
of the total spin and the antiferromagnetism vector.
The two others have finite frequencies; they describe
the frequencies of characteristic spin waves. We omit
the stage of simple but cumbersome calculations and
present only the results obtained for the spin-wave
spectra and damping constants, and the relaxation
times.

6.1. Acoustic spin waves

The frequency Ω1 and the damping constant Γ1 of an
acoustic spin wave are determined by the formula

ωacous = Ω1 − iΓ1, (6.1)

where

Ω1 = g
(S̄2

1K11 + S̄2
2K22 + k2(S̄2

1α11 + S̄2
2α22))

S̄1 − S̄2
,

Γ1 =
Ω1(k2S̄2λm + k2S̄1λs + S̄2Λr

1 + S̄2Λr
2))

2Ω2S̄1S̄2
.

(6.2)

6.2. Optical waves

For the optical waves, we obtain

ωopt = Ω2 − iΓ2, (6.3)

where

Ω2 = g
1

(S̄1 − S̄2)
[S̄1S̄2(K11 + k2α11+

+K22 + k2α22) + (S̄1 − S̄2)2J12] ≈ (S̄1 − S̄2)J12,

Γ2 = Λ
(S̄1 − S̄2)Ω2

S̄1S̄2
≈ ΛJ12

(S̄1 − S̄2)2

S̄1S̄2
, (6.4)

6.3. Longitudinal relaxation

The damping of the components Mz = S1,z + S2,z

and Lz = S1,z − S2,z is determined by the purely
imaginary characteristic frequencies of the equations.
It takes place according to the laws

Lz = S̄1 + S̄2 + δL(0) exp(−ΓLt),

Mz = S̄1 − S̄2 + δM(0) exp(−ΓM t),
(6.5)

where δL(0) and δM(0) are the initial deviations of
the lengths of the antiferromagnetism and total spin
vectors from their equilibrium values, which are as-
sumed small. The damping constants are determined
from the formulas

ΓL = 2Λ(S̄2
1J11 + S̄2

2J22) + ΛJ12
(S̄1 − S̄2)2

S̄1S̄2
,

ΓM =
4S̄2

1 S̄2
2k2J11J22λm

S̄2
1J11 + S̄2

2J22
.

(6.6)
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7. Discussion of the Results Obtained

From formulas (6.2), it follows that, in the isotropic
approximation where K11 = K22 = 0 and Λr

1 =
= Λr

2 = 0, the frequencies and the damping constants
acquire their well-known values, namely, Ω1 ≈ αk2

and Γ1 ≈ k4, obtained by Bloch [22] and Dyson
[23] (see also work [24]) for a simple ferromagnet in
the framework of microscopic theory; they also fol-
low from the consistent phenomenological theory of
exchange relaxation developed for ferromagnets [19].
The conclusion about an abnormally slow relaxation
of acoustic waves is associated with the application of
the isotropic approximation and the manifestation of
the degenerate ground state in ferrites. One should
recall that, in the isotropic state, the energies of all
uniform states of a ferromagnet with an arbitrary
orientation of the magnetization vector are identical.
Just this circumstance manifests itself in the temporal
behavior of the acoustic-spin-wave damping at k → 0,
i.e. τ ∝ (1/k4) → ∞. For the total spin relaxation,
the result is also identical to that for a ferromagnet
(see the microscopic analysis in [24] and the phenom-
enological consideration in [19]). The magnetization
vector relaxation is stronger due to the exchange in-
teraction (see Eq. (6.6)), but it is determined now
by the constant of the non-uniform exchange inter-
action. Generally speaking, those two results are ex-
pectable; the current opinion consists in that the low-
frequency dynamics for a ferrite far from the compen-
sation point is not sensitive to the sublattice struc-
ture, being the same as that for the ferromagnet (a
vicinity of the compensation point, where S̄1 → S̄2,
requires a special consideration [25], which goes be-
yond the scope of this work). Therefore, we do not
discuss those quantities below.

The optical frequency is determined by the integral
of the exchange interaction between the ferrite sublat-
tices, J12. We attract attention to that the damping
of optical spin waves is large and determined by the
uniform exchange relaxation constant Λ. This result
corresponds to that obtained at microscopic calcu-
lations, in which the multiplier (S̄1 − S̄2)2 and the
temperature dependence Γ ∝ T 4 are always obtained
in the framework of various models [26, 27]. It is im-
portant to emphasize that the indicated features are
inherent to considerably different systems, namely, to
iron-yttrium ferrite garnet, in which two sublattices
are formed by iron atoms and demonstrate a substan-

tial exchange interaction [26], and to gadolinium fer-
rite garnet, where the exchange interaction between
gadolinium atoms is negligibly low [27]. Therefore,
we may expect that Λ ∝ T 4, which is of interest to
verify experimentally.

Hence, the analysis of formulas (6.2)–(6.6) for the
relaxation constants testifies that the relaxation of
the antiferromagnetism vector is the fastest process,
the relaxation of optical spin waves is slower, the
process of magnetization vector relaxation is even
slower, and the relaxation of acoustic spin waves is
the slowest process. The most interesting are the re-
sults of calculation for the relaxation of the antiferro-
magnetism vector L. From formulas (6.5) and (6.6),
one can see that the relaxation of the vector L length
is accelerated by the intra-sublattice exchange inte-
grals J11 and J22. On the other hand, it depends on
the exchange relaxation constant Λ. Just this circum-
stance gives rise to a variation of the magnetization
sign and the corresponding effects, which were ob-
served in works [12, 14]. The system rapidly develops
along the curve S1 + S2 = const and finds itself in
a strongly equilibrium state (see the corresponding
qualitative analysis in work [16]). Of specific impor-
tance is the fact that both the damping of optical spin
waves and the relaxation of the antiferromagnetism
vector length L are governed by the same constant
Λ. This allows one, firstly, to determine this constant
from independent measurements and, secondly, to use
the known methods of microscopic calculations for the
magnon damping in order to estimate the relaxation
time for the antiferromagnetism vector length l.
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of the Presidium of the National Academy of Sciences
of Ukraine and the Russian Foundation for Basic Re-
search. Some results of this work were reported at the
international conference “Functional materials” [28].

1. A. Kirilyuk, A.V. Kimel, and Th. Rasing, Rev. Mod. Phys.
82, 2731 (2010).

2. J.-Y. Bigot, M. Vomir, and E. Beaurepaire, Nature Phys.
5, 515 (2009).

3. E. Beaurepaire, J.-C. Merle, A. Daunois, and J.-Y. Bigot,
Phys. Rev. Lett. 76, 4250 (1996).

4. L.P. Pitaevskii, Sov. Phys. JETP 12, 1008 (1961)
5. E.A. Turov, A.V. Kolchanov, V.V. Menshenin, I.F. Mir-

saev, and V.V. Nikolaev, Symmetry and Physical Prop-
erties of Antiferromagnets (Fizmatlit, Moscow, 2001) (in
Russian).

1154 ISSN 2071-0194. Ukr. J. Phys. 2013. Vol. 58, No. 12



Phenomenological Theory of Relaxation in Two-Sublattice Ferrite

6. V.G. Bar’yakhtar, B.A. Ivanov, and M.V. Chetkin,
Usp. Fiz. Nauk 146, 417 (1985); V.G. Baryakhtar,
M.V. Chetkin, B.A. Ivanov, and S.N. Gadetskii, Dynamics
of Topological Magnetic Solitons. Experiment and Theory
(Springer, Berlin, 1994); B.A. Ivanov, Fiz. Nizk. Temp. 31,
841 (2005).

7. A V. Kimel, A. Kirilyuk, A. Tsvetkov, R.V. Pisarev, and
Th. Rasing, Nature 429, 850 (2004); A.V. Kimel, A. Kir-
ilyuk, P.A. Usachev, R.V. Pisarev, A.M. Balbashov, and
Th. Rasing, Nature 435, 655 (2005); R. Iida, T. Satoh,
T. Shimura, K. Kuroda, B.A. Ivanov, Y. Tokunaga, and
Y. Tokura, Phys. Rev. B 84, 064402 (2011).

8. A.M. Kalashnikova, A.V. Kimel, R.V. Pisarev, V.N. Grid-
nev, A. Kirilyuk, and Th. Rasing, Phys. Rev. Lett. 99,
167205 (2007).

9. A.Yu. Galkin and B.A. Ivanov, Pis’ma Zh. Eksp. Teor. Fiz.
88, 286 (2008).

10. T. Satoh, S.-J. Cho, R. Iida, T. Shimura, K. Kuroda,
H. Ueda, Y. Ueda, B.A. Ivanov, F. Nori, and M. Fiebig,
Phys. Rev. Lett. 105, 077402 (2010).

11. A.V. Kimel, B.A. Ivanov, R.V. Pisarev, P.A. Usachev,
A. Kirilyuk, and Th. Rasing, Nature Phys. 5, 570 (2009).

12. I. Radu, K. Vahaplar, C. Stamm, T. Kachel, N. Pon-
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ФЕНОМЕНОЛОГIЧНА ТЕОРIЯ
РЕЛАКСАЦIЇ У ДВОПIДҐРАТКОВОМУ ФЕРИТI

Р е з ю м е

Побудовано дисипативну функцiю двопiдґраткового фери-
ту. Обчисленi часи релаксацiї акустичної та оптичної гiлок
спiнових хвиль. Обчислено часи релаксацiї намагнiченостi
i вектора антиферомагнетизму фериту. Показано, що най-
бiльш швидким є процес релаксацiї вектора антиферома-
гнетизму. Час релаксацiї цiєї величини визначається обмiн-
ною релаксацiйною сталою i обмiнно посилено за рахунок
динамiки вектора антиферомагнетизму обмiнними взаємо-
дiями мiж атомами подґраток. Найбiльш повiльним про-
цесом є процес релаксацiї намагнiченостi фериту. В обмiн-
ному наближеннi час релаксацiї намагнiченостi прагне до
нескiнченностi при зростаннi довжини неоднорiдностей на-
магнiченостi. Проведено зiставлення з експериментальними
даними щодо явища релаксацiї в сплавi рiдкiсноземельних
i перехiдних металiв GdFeCo.
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