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THE QUANTUM ANALYSIS OF A NONDEGENERATE
THREE-LEVEL LASER WITH SPONTANEOUS EMISSION
AND NOISELESS VACUUM RESERVOIR

The analysis of quantum properties of the cavity light produced by a coherently driven nonde-
generate three-level laser possessing an open cavity and coupled to a two-mode vacuum reservoir
is presented. The normal ordering of noise operators associated with the vacuum reservoir is
considered. Applying the solutions of the equations of evolution for the expectation values of
the atomic operators and the quantum Langevin equations for the cavity mode operators, the
squeezing properties, entanglement amplification, and the normalized second-order correlation
function of the cavity radiation are described. The three-level laser generates squeezed light un-
der certain conditions, with maximum intracavity squeezing being 50% below the vacuum-state
level. Moreover, it is found that the presence of spontaneous emission increases the quadra-
ture squeezing and entanglement and decreses the mean photon number of the two-mode cavity
radiation.
K e yw o r d s: operator dynamics, quadrature squeezing, second-order correlations, photon
entanglement.

1. Introduction
Entanglement is one of the fundamental tools for
the quantum information processing and communica-
tion protocols. The generation and manipulation of
the entanglement has attracted a great deal of in-
terest with wide applications in quantum teleporta-
tion, quantum dense coding, quantum computation,
quantum error correction, and quantum cryptogra-
phy [1–5]. Recently, the much attention is given to
the generation of a continuous-variable entanglement
to manipulate the discrete counterparts and quan-
tum bits and to perform the quantum information
processing. In general, the degree of entanglement de-
creases, when it interacts with the environment. But,
the quantum information processing efficiency highly
depends on the degree of entanglement. Therefore,
it is necessary to generate strongly entangled states
which can survive under the external noise.

In general, due to the strong correlation between
the cavity modes, a two-mode squeezed state violates
certain classical inequalities and then can be used in
preparing the Einstein–Podolsky–Rosen (EPR)-type
entanglement [6]. The steady state entanglement in
a nondegenerate three-level laser has been studied,
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when the atomic coherence is induced by initially
preparing atoms in a coherent superposition of the
top an bottom levels [7–13] and when the top and
bottom levels of three-level atoms injected into a cav-
ity are coupled by coherent light [14–21]. Moreover,
Fesseha studied the quantum properties of the light
emitted by three-level atoms available in a closed cav-
ity and pumped to the top level at a constant rate
by means of the electron bombardment [22]. Further-
more, he considered the quantum properties of the
light generated by a two-level laser in which the two-
level atoms available in a closed cavity are pumped
to the upper level by means of the electron bombard-
ment [23, 24].

In this paper, we study the squeezing and entan-
glement properties of the light generated by a coher-
ently driven nondegenerate three-level laser possess-
ing an open cavity and coupled to a two-mode vac-
uum reservoir via a single-port mirror. In order to
carry out our calculation, we put the noise opera-
tors associated with the vacuum reservoir in the nor-
mal order. First, we will obtain the master equation
and the quantum Langevin equations for the cavity
mode operators. Then, employing the master equa-
tion and the large-time approximation scheme, we
obtain the equations of evolution of the expectation
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values of atomic operators. Moreover, we will deter-
mine the solutions of the equations of evolution of
the expectation values of the atomic operators and
the quantum Langevin equations for cavity mode op-
erators. Applying the resulting solutions, we obtain
the mean photon number, quadrature squeezing, and
entanglement. Furthermore, applying the same solu-
tions, we also obtain the normalized second-order cor-
relation function for the two-mode light.

2. Master Equation

Here, 𝑁 nondegenerate three-level atoms in the cas-
cade configuration are available in an open cav-
ity. The top, intermediate, and bottom levels of the
three-level atom are denoted by |𝑎⟩𝑘, |𝑏⟩𝑘, and |𝑐⟩𝑘,
respectively. When the atom makes a transition from
the level |𝑎⟩𝑘 to |𝑏⟩𝑘 and from the levels |𝑏⟩𝑘 to |𝑐⟩𝑘,
two photons with different frequencies are emitted. It
is assumed that the cavity mode 𝑎 is at resonance
with the transition |𝑎⟩𝑘 → |𝑏⟩𝑘, and the cavity mode
𝑏 is at resonance with the transition |𝑏⟩𝑘 → |𝑐⟩𝑘, with
top and bottom levels of the three-level atom coupled
by coherent light. The interaction of a nondegenerate
three-level atom with the coherent light and with the
light modes 𝑎 and 𝑏 can be described by the Hamil-
tonian

𝐻̂ = 𝑖𝑔
[︁
𝜎̂†𝑘
𝑎 𝑎̂− 𝑎̂†𝜎̂𝑘

𝑎 + 𝜎̂†𝑘
𝑏 𝑏̂− 𝑏̂†𝜎̂𝑘

𝑏

]︁
+

+
𝑖Ω

2

[︀
𝜎̂†𝑘
𝑐 − 𝜎̂𝑘

𝑐

]︀
, (1)

where 𝑔 is the coupling constant between the atom
and cavity mode 𝑎 or 𝑏, and 𝑎̂ and 𝑏̂ are the an-
nihilation operators for light modes 𝑎 and 𝑏. Here,
Ω = 2𝜀𝜆, in which 𝜀 considered to be real and con-
stant, is the amplitude of the driving coherent light,
and 𝜆 is the coupling constant between the driving co-
herent light and the three-level atom. We also define
that 𝜎̂𝑘

𝑎 = |𝑏⟩𝑘 𝑘⟨𝑎|, 𝜎̂𝑘
𝑏 = |𝑐⟩𝑘 𝑘⟨𝑏|, and𝜎̂𝑘

𝑐 = |𝑐⟩𝑘 𝑘⟨𝑎|
are lowering atomic operators. Following the proce-
dure described in [24], the master equation for a co-
herently driven nondegenerate three-level atom, be-
ing in an open cavity and coupled to a two-mode vac-
uum reservoir, is found to be
𝑑

𝑑𝑡
𝜌(𝑡) = 𝑔

[︁
𝜎̂†𝑘
𝑎 𝑎̂𝜌− 𝑎̂†𝜎̂𝑘

𝑎𝜌+ 𝜎̂†𝑘
𝑏 𝑏̂𝜌− 𝑏̂†𝜎̂𝑘

𝑏 𝜌− 𝜌𝜎̂†𝑘
𝑎 𝑎̂+

+ 𝜌𝑎̂†𝜎̂𝑘
𝑎 − 𝜌𝜎̂†𝑘

𝑏 𝑏̂+ 𝜌𝑏̂†𝜎̂𝑘
𝑏

]︁
+

Ω

2

[︁
𝜎̂†𝑘
𝑐 𝜌− 𝜎̂𝑘

𝑐 𝜌+

+ 𝜌𝜎̂†𝑘
𝑐 − 𝜌𝜎̂𝑘

𝑐

]︁
+

𝛾

2

[︁
2𝜎̂𝑘

𝑏 𝜌𝜎̂
†𝑘
𝑏 − 𝜎̂†𝑘

𝑏 𝜎̂𝑘
𝑏 𝜌− 𝜌𝜎̂†𝑘

𝑏 𝜎̂𝑘
𝑏

]︁
+

+
𝛾

2

[︁
2𝜎̂𝑘

𝑐 𝜌𝜎̂
†𝑘
𝑐 − 𝜎̂†𝑘

𝑐 𝜎̂𝑘
𝑐 𝜌− 𝜌𝜎̂†𝑘

𝑐 𝜎̂𝑘
𝑐

]︁
, (2)

where 𝛾 is the spontaneous emission decay constant.
Due to the normal ordering of the noise operators

associated with the vacuum reservoir, the noise op-
erators will not have any effect on the dynamics of
the cavity mode operators [22–24]. Therefore, with
the help of expression (1), one can drop the noise op-
erators and write the quantum Langevin equations
as

𝑑𝑎̂

𝑑𝑡
= −𝜅

2
𝑎̂− 𝑔𝜎̂𝑘

𝑎 , (3)

𝑑𝑏̂

𝑑𝑡
= −𝜅

2
𝑏̂− 𝑔𝜎̂𝑘

𝑏 . (4)

where 𝜅 is the cavity damping constant.

3. Equations of Evolution
of Atomic Oprators

Employing the relation 𝑑
𝑑𝑡 ⟨𝐴⟩ = 𝑇𝑟

(︁
𝑑𝜌
𝑑𝑡𝐴

)︁
along with

result (2), one can readily establish that

𝑑

𝑑𝑡
⟨𝜎̂𝑘

𝑎⟩ = 𝑔(⟨𝜂𝑘𝑏 𝑎̂⟩−⟨𝜂𝑘𝑎 𝑎̂⟩+ ⟨𝑏̂†𝜎̂𝑘
𝑐 ⟩)+

Ω

2
⟨𝜎̂†𝑘

𝑏 ⟩−𝛾⟨𝜎̂𝑘
𝑎⟩,

(5)

𝑑

𝑑𝑡
⟨𝜎̂𝑘

𝑏 ⟩ = 𝑔(⟨𝜂𝑘𝑐 𝑏̂⟩−⟨𝑎̂†𝜎̂𝑘
𝑐 ⟩−⟨𝜂𝑘𝑏 𝑏̂⟩)−

Ω

2
⟨𝜎̂†𝑘

𝑎 ⟩− 𝛾

2
⟨𝜎̂𝑘

𝑎⟩,

(6)

𝑑

𝑑𝑡
⟨𝜎̂𝑘

𝑐 ⟩ = 𝑔(⟨𝜎̂𝑘
𝑏 𝑎̂⟩− ⟨𝜎̂𝑘

𝑎 𝑏̂⟩)−
𝛾

2
⟨𝜎̂𝑘

𝑐 ⟩+
Ω

2

[︀
⟨𝜂𝑘𝑐 ⟩− ⟨𝜂𝑘𝑎⟩

]︀
,

(7)

𝑑

𝑑𝑡
⟨𝜂𝑘𝑎⟩ = 𝑔(⟨𝜎̂†𝑘

𝑎 𝑎̂⟩+⟨𝑎̂†𝜎̂𝑘
𝑎⟩)−𝛾⟨𝜂𝑘𝑎⟩+

Ω

2

[︀
⟨𝜎̂𝑘

𝑐 ⟩+⟨𝜎̂†𝑘
𝑐 ⟩

]︀
,

(8)

𝑑

𝑑𝑡
⟨𝜂𝑘𝑏 ⟩ = 𝑔(⟨𝜎̂†

𝑏 𝑏̂⟩− ⟨𝜎̂†𝑘
𝑎 𝑎̂⟩− ⟨𝑎̂†𝜎̂𝑘

𝑎⟩+ ⟨𝑏̂†𝜎̂𝑘
𝑏 ⟩)−𝛾⟨𝜂𝑘𝑏 ⟩,

(9)

where 𝜂𝑘𝑎= |𝑎⟩𝑘 𝑘⟨𝑎|, 𝜂𝑘𝑏 = |𝑏⟩𝑘 𝑘⟨𝑏|, and 𝜂𝑘𝑐 = |𝑐⟩𝑘 𝑘⟨𝑐|.
We note that expressions (5)–(9) are nonlinear cou-

pled differential equations. Therefore, it is not pos-
sible to obtain exact solutions. Then, employing the
large-time approximation scheme for Eqs. (3) and (4),
we obtain

𝑎̂ = −2𝑔

𝜅
𝜎̂𝑘
𝑎 , (10)
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𝑏̂ = −2𝑔

𝜅
𝜎̂𝑘
𝑏 . (11)

Now, introducing Eqs. (10) and (11) into (5)–(9) and
summing over 𝑁 three-level atoms, we get

𝑑

𝑑𝑡
⟨𝑚̂𝑎⟩ = −(𝛾 + 𝛾𝑐)⟨𝑚̂𝑎⟩+

Ω

2
⟨𝑚̂†

𝑏⟩, (12)

𝑑

𝑑𝑡
⟨𝑚̂𝑏⟩ = −1

2
(𝛾 + 𝛾𝑐)⟨𝑚̂𝑏⟩ −

Ω

2
⟨𝑚̂†

𝑎⟩, (13)

𝑑

𝑑𝑡
⟨𝑚̂𝑐⟩ = −1

2
(𝛾 + 𝛾𝑐)⟨𝑚̂𝑐⟩+

Ω

2

[︀
⟨𝑁̂𝑐⟩ − ⟨𝑁̂𝑎⟩

]︀
, (14)

𝑑

𝑑𝑡
⟨𝑁̂𝑎⟩ = −(𝛾 + 𝛾𝑐)⟨𝑁̂𝑎⟩+

Ω

2

[︀
⟨𝑚̂𝑐⟩+ ⟨𝑚̂†

𝑐⟩
]︀
, (15)

𝑑

𝑑𝑡
⟨𝑁̂𝑏⟩ = −(𝛾 + 𝛾𝑐)⟨𝑁̂𝑏⟩+ 𝛾𝑐⟨𝑁̂𝑎⟩, (16)

in which 𝛾𝑐 = 4𝑔2

𝜅 is the stimulated emission de-
cay constant, 𝑚̂𝑎 =

∑︀𝑁
𝑘=1 𝜎̂

𝑘
𝑎 , 𝑚̂𝑏 =

∑︀𝑁
𝑘=1 𝜎̂

𝑘
𝑏 ,

𝑚̂𝑐 =
∑︀𝑁

𝑘=1 𝜎̂
𝑘
𝑐 , 𝑁̂𝑎 =

∑︀𝑁
𝑘=1 𝜂

𝑘
𝑎 , 𝑁̂𝑏 =

∑︀𝑁
𝑘=1 𝜂

𝑘
𝑏 ,

𝑁̂𝑐 =
∑︀𝑁

𝑘=1 𝜂
𝑘
𝑐 , with the operators 𝑁̂𝑎, 𝑁̂𝑏, and 𝑁̂𝑐

representing the number of atoms in the top, inter-
mediate, and bottom levels, respectively. In addition,
employing the completeness relation 𝐼 = 𝜂𝑘𝑎+𝜂𝑘𝑏 +𝜂𝑘𝑐 ,
we get

⟨𝑁̂𝑎⟩+ ⟨𝑁̂𝑏⟩+ ⟨𝑁̂𝑐⟩ = 𝑁. (17)

Furthermore, using the definition and setting

𝜎̂𝑘
𝑎 = |𝑏⟩⟨𝑎| (18)

for any 𝑘, we have

𝑚̂𝑎 = 𝑁 |𝑏⟩⟨𝑎|. (19)

One can find, following the same procedure described
above, that 𝑚̂𝑏 = 𝑁 |𝑐⟩⟨𝑏|, 𝑚̂𝑐 = 𝑁 |𝑐⟩⟨𝑎|, 𝑁̂𝑎 =
= 𝑁 |𝑎⟩⟨𝑎|, 𝑁̂𝑏 = 𝑁 |𝑏⟩⟨𝑏|, 𝑁̂𝑐 = 𝑁 |𝑐⟩⟨𝑐|. Moreover,
using the definition 𝑚̂ = 𝑚̂𝑎 + 𝑚̂𝑏 and taking this
result into account, we observe that 𝑚̂†𝑚̂ = 𝑁(𝑁̂𝑎 +
+ 𝑁̂𝑏), 𝑚̂𝑚̂† = 𝑁(𝑁̂𝑏 + 𝑁̂𝑐), and 𝑚̂2 = 𝑁𝑚̂𝑐. For 𝑁
three-level atoms, Eqs. (3) and (4) can be rewritten as

𝑑𝑎̂

𝑑𝑡
= −𝜅

2
𝑎̂+ 𝜆

′
𝑚̂𝑎, (20)

𝑑𝑏̂

𝑑𝑡
= −𝜅

2
𝑏̂+ 𝜆

′′
𝑚̂𝑏, (21)

where 𝜆
′

and 𝜆
′′

are constants whose values remain
to be determined. Furthermore, using Eqs. (10) and

(11) and summing over all atoms, we obtain the com-
mutation relations of the cavity mode operators:

[𝑎̂, 𝑎̂†] =
𝛾𝑐
𝜅

[︀
𝑁̂𝑏 − 𝑁̂𝑎

]︀
, (22)

[𝑏̂, 𝑏̂†] =
𝛾𝑐
𝜅

[︀
𝑁̂𝑐 − 𝑁̂𝑏

]︀
. (23)

Here, [𝑎̂, 𝑎̂†]=
∑︀𝑁

𝑘=1[𝑎̂, 𝑎̂
†]𝑘, and [𝑏̂, 𝑏̂†]=

∑︀𝑁
𝑘=1[𝑏̂, 𝑏̂

†]𝑘
stand for the commutators 𝑎̂ and 𝑎̂†, and 𝑏̂ and 𝑏̂†. On
the other hand, employing the steady-state solutions
of (20) and (21), one can easily verify that

[𝑎̂, 𝑎̂†] = 𝑁

(︂
2𝜆

′

𝜅

)︂2(︂
𝑁̂𝑏 − 𝑁̂𝑎

)︂
, (24)

[𝑏̂, 𝑏̂†] = 𝑁

(︂
2𝜆

′′

𝜅

)︂2(︂
𝑁̂𝑐 − 𝑁̂𝑏

)︂
. (25)

Thus, the inspection of Eqs. (22) and(23) with (24)
and (25) shows that

𝜆
′
= 𝜆

′′
= ± 𝑔√

𝑁
. (26)

Hence in view of this result, Eqs. (24) and (25) can
be rewritten as

𝑑𝑎̂

𝑑𝑡
= −𝜅

2
𝑎̂+

𝑔√
𝑁

𝑚̂𝑎, (27)

𝑑𝑏̂

𝑑𝑡
= −𝜅

2
𝑏̂+

𝑔√
𝑁

𝑚̂𝑏. (28)

Now, adding Eqs. (22) and (23) and summing (27)
and (28), we get

[𝑐, 𝑐†] =
𝛾𝑐
𝜅

[︀
𝑁̂𝑐 − 𝑁̂𝑎

]︀
, (29)

𝑑𝑐

𝑑𝑡
= −𝜅

2
𝑐+

𝑔√
𝑁

𝑚̂, (30)

where 𝑐 = 𝑎̂+ 𝑏̂.
Furthermore, applying the large-time approxima-

tion scheme to Eqs. (12) and (13), one can obtain
⟨𝑚̂𝑎(𝑡)⟩ = ⟨𝑚̂𝑏(𝑡)⟩ = 0. Hence, the steady-state so-
lutions of the expectation values of the cavity mode
operators described in Eqs. (27), (28), and (30) are
found to be ⟨𝑎̂(𝑡)⟩𝑠𝑠 = ⟨𝑏̂(𝑡)⟩𝑠𝑠 = ⟨𝑎̂(𝑡)⟩𝑠𝑠 = 0. The-
refore, in view of the linear equations described by
expressions (27), (28), and (30) with the correspond-
ing solutions, we claim that 𝑎̂(𝑡), 𝑏̂(𝑡), and 𝑐(𝑡) are
Gaussian variables with zero means.
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Fig. 1. Plots of the mean photon number versus Ω for 𝛾𝑐 = 0.4, 𝜅 = 0.8, 𝑁 = 50, and for
different values of 𝛾

In addition, the steady-state solutions of the atomic
operators are found to be

⟨𝑁̂𝑎⟩𝑠𝑠 =
[︂

(𝛾𝑐 + 𝛾)Ω2

(𝛾𝑐 + 𝛾)3 + (3𝛾𝑐 + 2𝛾)Ω2

]︂
𝑁, (31)

⟨𝑁̂𝑏⟩𝑠𝑠 =
[︂

Ω2𝛾𝑐
(𝛾𝑐 + 𝛾)3 + (3𝛾𝑐 + 2𝛾)Ω2

]︂
𝑁, (32)

⟨𝑁̂𝑐⟩𝑠𝑠 =
[︂

(𝛾𝑐 + 𝛾)3 +Ω2(𝛾𝑐 + 𝛾)

(𝛾𝑐 + 𝛾)3 + (3𝛾𝑐 + 2𝛾)Ω2

]︂
𝑁, (33)

⟨𝑚̂𝑐⟩𝑠𝑠 =
[︂

Ω(𝛾𝑐 + 𝛾)2

(𝛾𝑐 + 𝛾)3 + (3𝛾𝑐 + 2𝛾)Ω2

]︂
𝑁. (34)

Initially (when Ω = 0), all the atoms are on the lower
level (⟨𝑁̂𝑐⟩𝑠𝑠 = 𝑁), while the number of atoms on the
top and intermediate levels are zero.

4. Mean Photon Number

To learn about the brightness of the generated light,
it is necessary to study the mean number of photon
pairs describing the two-mode cavity radiation that
can be defined as

𝑛̄ = ⟨𝑐†𝑐⟩, (35)

where 𝑐 is the annihilation operator of the two-
mode cavity. Employing the steady-state solution of
Eq. (30), it can be found to be

𝑛̄ =
𝛾𝑐
𝑘

[︁
⟨𝑁̂𝑎⟩𝑠𝑠 + ⟨𝑁̂𝑏⟩𝑠𝑠

]︁
. (36)

With the aid of Eqs. (31) and (32), one can readily
show that

𝑛̄ =
(︁𝛾𝑐
𝑘
𝑁
)︁[︂

Ω2(2𝛾𝑐 + 𝛾)

(𝛾𝑐 + 𝛾)3 + (3𝛾𝑐 + 2𝛾)Ω2

]︂
. (37)

In the case where the spontaneous emission is absent,

𝑛̄ =
𝛾𝑐
𝜅
𝑁

[︂
2Ω2

𝛾2
𝑐 + 3Ω2

]︂
. (38)

It is not difficult to see for Ω ≫ 𝛾𝑐 that

𝑛̄ =
2𝛾𝑐
3𝜅

𝑁. (39)

From Fig. 1, one can clearly see the mean photon
number for the two-mode cavity light in the presence
(when 𝛾 ̸= 0) and in the absence of the spontaneous
emission (when 𝛾 = 0). Moreover, it is found that
the mean photon number of the two-mode light in-
creases with Ω in both cases. This indicates, on the
other hand, that the mean photon number of the two-
mode light beam is greater when 𝛾 = 0, than when
𝛾 ̸= 0. Therefore, the presence of the spontaneous
emission decreases the mean photon number.

5. Quadrature Fluctuations

In this section, the quadrature variance and quadra-
ture squeezing of the two-mode light in the cavity
produced by a two-mode three-level cascade laser is
analyzed.
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Fig. 2. Plots of (Δ𝑐−)2 versus Ω for 𝛾𝑐 = 0.4, 𝑘 = 0.8, 𝑁 = 50 and for different values of 𝛾

5.1. Quadrature variance

The squeezing properties of the two-mode cavity light
are described by two quadrature operators

𝑐+ = 𝑐† + 𝑐, (40)

𝑐− = 𝑖(𝑐† − 𝑐), (41)

where 𝑐 = 𝑎̂ + 𝑏̂. ,Making use of the well-known defi-
nition of the variance of an operator, the variances of
the quadrature operators (40) and (41) are found to
have the form

(Δ𝑐±)
2 = ⟨𝑐𝑐†⟩+ ⟨𝑐†𝑐⟩ ± ⟨𝑐2⟩ ± ⟨𝑐†2⟩ ∓ ⟨𝑐⟩2 ∓

∓⟨𝑐†⟩2 − 2⟨𝑐⟩⟨𝑐†⟩. (42)

With the aid of the steady-state solution of Eq. (30),
one can easily establish that

(Δ𝑐±)
2 =

𝛾𝑐
𝑘

[︀
𝑁 + ⟨𝑁̂𝑏⟩𝑠𝑠 ± 2⟨𝑚̂𝑐⟩𝑠𝑠

]︀
. (43)

This yields

(Δ𝑐±)
2 =

𝛾𝑐
𝑘
𝑁

[︂
(𝛾𝑐 + 𝛾)3 + (4𝛾𝑐 + 2𝛾)Ω2

(𝛾𝑐 + 𝛾)3 + (3𝛾𝑐 + 2𝛾)Ω2

]︂
±

± 2Ω(𝛾𝑐 + 𝛾)2

(𝛾𝑐 + 𝛾)3 + (3𝛾𝑐 + 2𝛾)Ω2

]︂
. (44)

For 𝛾 = 0, the quadrature variances take the form

(Δ𝑐±)
2 =

𝛾𝑐
𝑘
𝑁

[︂
4Ω2 + 𝛾2

𝑐 ± 2Ω𝛾𝑐
𝛾2
𝑐 + 3Ω2

]︂
. (45)

For Ω ≫ 𝛾𝑐,

(Δ𝑐±)
2 =

4𝛾𝑐
3𝑘

𝑁 = 2𝑛̄, (46)

where 𝑛̄ is given by Eq. (39). It can be seen that ex-
pression (46) represents the normally ordered quadra-
ture variance for chaotic light. Moreover, in the case
where the driving coherent light is absent, one can
see that

(Δ𝑐+)
2
𝑣 = (Δ𝑐−)

2
𝑣 =

𝛾𝑐
𝑘
𝑁, (47)

which is the normally ordered quadrature variance of
the two-mode cavity light in the vacuum state. It is
also observed that the uncertainties in the plus and
minus quadratures are equal and satisfy the minimum
uncertainty relation.

5.2. Quadrature squeezing

The quadrature squeezing of the two-mode cavity
light relative to the quadrature variance of the two-
mode vacuum light can be defined as

𝑆 =
(Δ𝑐±)

2
𝑣 − (Δ𝑐−)

2

(Δ𝑐±)2𝑣
, (48)

where (Δ𝑐±)
2
𝑣 is the quadrature variance in the vac-

uum state given by Eq. (47). Taking Eqs. (44), (47),
and (48) into account yields

𝑆 =
2Ω(𝛾𝑐 + 𝛾)2 − Ω2𝛾𝑐

(𝛾𝑐 + 𝛾)3 + (3𝛾𝑐 + 2𝛾)Ω2
. (49)
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Fig. 3. Plots of the quadrature squeezing versus Ω for 𝛾𝑐 = 0.4 and for different values of 𝛾

Fig. 4. Plot of the Δ𝑢̂2 +Δ𝑣2 of the two-mode cavity light at the steady-state versus Ω for
𝛾𝑐 = 0.4, 𝜅 = 0.8, 𝑁 = 50, and for different values of 𝛾

We observe that, in Eq. (49), the quadrature squeez-
ing of the cavity light is independent of the number
of photons.

It is indicated in Fig. 4 that the squeezing exhibits
in a different manner from the two-mode cavity ra-
diation, for values of Ω between 0 and 1, with dif-
ferent degrees of squeezing. Moreover, it is possible
to realize that the degree of squeezing increases with
the spontaneous emission decay constant, 𝛾. We have
found the 50% degree of squeezing for 𝛾 = 0.2 and
𝛾𝑐 = 0.4. This occurs, when the three-level laser is
operating at Ω = 0.3. Hence, one can observe that a
light produced by a nondegenerate three-level laser
can exhibit the equal degree of squeezing as com-
pared, for example, with the light generated by a

three-level laser in which the three-level atoms avail-
able in a closed cavity are pumped to the top level by
means of the electron bombardment [10, 24].

6. Entanglement Properties
of the Two-Mode Light

The quantum entanglement between the two cav-
ity modes 𝑎 and 𝑏 proposed by Duan–Giedke–Cirac–
Zoller (DGCZ) in [25], where the sufficient condition
for entangled quantum states is given. According to
DGCZ, a quantum state of the system is said to be
entangled, if the sum of the variances of the EPR-like
quadrature operators, 𝑢̂ and 𝑣, satisfies the inequality

(Δ𝑢̂)2 + (Δ𝑣)2 < 2𝑁, (50)
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where

𝑢̂ = 𝑥̂𝑎 − 𝑥̂𝑏, 𝑣 = 𝑝𝑎 + 𝑝𝑏, (51)

with 𝑥̂𝑎 = (𝑎̂† + 𝑎̂)/
√
2, 𝑥̂𝑏 = (𝑏̂† + 𝑏̂)/

√
2, 𝑝𝑎 =

𝑖(𝑎̂†− 𝑎̂)/
√
2, 𝑝𝑏 = 𝑖(𝑏̂†− 𝑏̂)/

√
2 being the quadrature

operators for modes 𝑎̂ and 𝑏̂.
Taking (51) into account, Eq. (50) yields

Δ𝑢̂2 +Δ𝑣2 = 2
𝛾𝑐
𝜅
[𝑁 + ⟨𝑁̂𝑏⟩𝑠𝑠 − ⟨𝑚̂𝑐⟩𝑠𝑠]. (52)

Thus, in view of equation (52) together with (43), the
sum of the variances of 𝑢̂ and 𝑣 can be expressed as

Δ𝑢̂2 +Δ𝑣2 = 2Δ𝑐2−, (53)

where Δ𝑐2− is given by (43). One can readily see from
this result that the degree of entanglement is directly
proportional to the degree of squeezing of the two-
mode light.

One can immediately notice that this particular
entanglement measure is directly related the two-
mode squeezing. This direct relationship shows that,
whenever there is a two-mode squeezing in the sys-
tem, there will be entanglement in the system as
well. It is worth to note that the entanglement dis-
appears when the squeezing vanishes. This is due to
the fact that the entanglement is directly related to
the squeezing, as given by (43). It also follows that,
like the mean photon number and quadrature vari-
ance, the degree of entanglement depends on the
number of atoms. With the help of criterion (50), we
get that a significant entanglement occurs between
the states of the light generated in the cavity. This
is due to the strong correlation between the radia-
tion emitted, when the atoms decay from the up-
per energy level to the lower via the intermediate
level.

In the following, the sum of the variances of a pair
of EPR-type operators Δ𝑢̂2 +Δ𝑣2 is plotted against
the amplitude of the driving coherent light so that the
available entanglement is clearly evident for various
values of the spontaneous emission rate, 𝛾.

7. Normalized Second-Order
Correlation Functions

The second-order correlation function of the separate
mode, as well as for the superposition of the two

modes of the cavity radiation at equal time, can also
be investigated, by using [26, 27]:

𝑔
(2)
(𝑎,𝑏)(0) =

⟨𝑎̂†𝑎̂𝑏̂†𝑏̂⟩
⟨𝑎̂†𝑎̂⟩⟨𝑏̂†𝑏̂⟩

. (54)

Since 𝑎̂ and 𝑏̂ are Gaussian variables with vanishing
means, the normalized second-order correlation func-
tion for the two-mode light takes, at the steady-state,
the form

𝑔
(2)
(𝑎,𝑏)(0) = 1 +

⟨𝑏̂𝑎̂⟩⟨𝑎̂†𝑏̂†⟩
⟨𝑎̂†𝑎̂⟩⟨𝑏̂†𝑏̂⟩

. (55)

It then follows that

𝑔
(2)
(𝑎,𝑏)(0) = 1 +

⟨𝑚̂𝑐⟩2𝑠𝑠
⟨𝑁̂𝑎⟩𝑠𝑠⟨𝑁̂𝑏⟩𝑠𝑠

. (56)

In view of (31), (32), and (34), we obtain

𝑔
(2)
(𝑎,𝑏)(0) = 1 +

(𝛾𝑐 + 𝛾)3

𝛾𝑐Ω2
. (57)

It can be seen from this result that the second-order
correlation function of the two-mode light does not
depend on the number of atoms.

Figure 5 shows that the second-order correlation
function for the two-mode light versus Ω in the pres-
ence (𝛾 ̸= 0) and absence (𝛾 = 0) of the spontaneous
emission. One can see from this figure that 𝑔

(2)
(𝑎,𝑏)(0)

decreases, as Ω increases in both cases. It can be ob-
served from the same figure that the second-order
correlation function vanishes for Ω < 0.05. Moreover,
the effect of the spontaneous emission increases the
second-order correlation function.

Now, it is essential to calculate the second-order
correlation function for the individual mode to have
an insight for the previous result. To this end, the
second-order correlation function for mode 𝑎 is given
by

𝑔
(2)
(𝑎,𝑎)(0) =

⟨: 𝑛̂𝑎𝑛̂𝑎 :⟩
⟨𝑛̂𝑎⟩2

, (58)

where :: represent normal ordering and 𝑛̂𝑎 = 𝑎̂†𝑎̂ is
the photon number operator for mode 𝑎. Since 𝑎̂ is a
Gaussian variable with vanishing mean, one can easily
verify that

𝑔
(2)
(𝑎,𝑎)(0) = 2. (59)
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Fig. 5. Plot of the 𝑔
(2)
(𝑎,𝑏)

(0) of the two-mode cavity light versus Ω for 𝛾𝑐 = 0.4 and for
different values of 𝛾

Fig. 6. Plot of the 𝐽(𝑛̂𝑎,𝑛̂𝑏)
of the two-mode cavity light at the steady-state versus Ω for

𝛾𝑐 = 0.4, 𝜅 = 0.8, 𝑁 = 50, and for different values of 𝛾

Similarly, the second-order correlation function for
mode 𝑏 is found to be

𝑔
(2)
(𝑏,𝑏)(0) = 2. (60)

From expressions (59) and (60), we get the second-
order correlation function for light in a chaotic
state. So, the cavity modes 𝑎 and 𝑏 are separately
in a chaotic or thermal state.

Furthermore, in order to quantify the correlation
between the two modes, we introduce the linear cor-
relation coefficient in terms of a covariance as [28]

𝐽(𝑛̂𝑎,𝑛̂𝑏) =
cov(𝑛̂𝑎, 𝑛̂𝑏)√︀
Δ𝑛̂2

𝑎

√︀
Δ𝑛̂2

𝑏

, (61)

where Δ𝑛̂2
𝑎 and Δ𝑛̂2

𝑏 are the variances of the pho-
ton number for modes 𝑎 and 𝑏, respectively. So, the
covariance of the photon numbers is defined by

cov(𝑛̂𝑎, 𝑛̂𝑏) = ⟨𝑛̂𝑎𝑛̂𝑏⟩ − ⟨𝑛̂𝑎⟩⟨𝑛̂𝑏⟩. (62)

One can easily verify, using the fact that 𝑎̂ and 𝑏̂ are
Gaussian variables, in the steady state that

cov(𝑛̂𝑎, 𝑛̂𝑏) = ⟨𝑏̂𝑎̂⟩𝑠𝑠⟨𝑎̂†𝑏̂†⟩𝑠𝑠. (63)

Since the cavity modes are separately in a chaotic
state, the variances of the photon numbers obey the
relation for a chaotic state, Δ𝑛̂2

𝑎 = ⟨𝑛̂𝑎⟩ + ⟨𝑛̂𝑎⟩2 and
Δ𝑛̂2

𝑏 = ⟨𝑛̂𝑏⟩+⟨𝑛̂𝑏⟩2. Accounting for this fact and (63),
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the correlation function can be rewritten as

𝐽(𝑛̂𝑎,𝑛̂𝑏) =
⟨𝑏̂𝑎̂⟩𝑠𝑠⟨𝑎̂†𝑏̂†⟩𝑠𝑠√︀

⟨𝑛̂𝑎⟩𝑠𝑠 + ⟨𝑛̂𝑎⟩2𝑠𝑠
√︀
⟨𝑛̂𝑏⟩𝑠𝑠 + ⟨𝑛̂𝑏⟩2𝑠𝑠

. (64)

In Fig. 6, the linear correlation coefficient versus
the amplitude of the driving coherent light, Ω, is plot-
ted. It is also found from this figure that, for Ω very
close to 0, the intermode correlation would be signif-
icantly large, since the mean photon number of the
light in mode 𝑏 is very close to zero, when almost all
atoms initially occupy in the lower level. Moreover,
similar to the second-order correlation function, the
plots in Fig. 6 show that the linear correlation coeffi-
cient vanishes, when Ω < 0.05.

8. Conclusion

In conclusion, the squeezing and entanglement prop-
erties of a non-degenerate three-level laser driven by
coherent light and coupled to a two-mode vacuum
reservoir via a single-port mirror, whose open cav-
ity contains 𝑁 non-degenerate three-level atoms, are
thoroughly analyzed. We have carried out the anal-
ysis by putting the noise operators associated with
the vacuum reservoir in the normal order and by
considering the interaction of the three-level atoms
with the vacuum reservoir outside the cavity. The
master equation and the quantum Langevin equa-
tions for the cavity light are obtained. Applying these
equations, the equations of evolution of the cavity
mode and the atomic operators are solved. Making
use of the steady-state solutions of atomic and cavity
mode operators, the quadrature variance, quadrature
squeezing, and entanglement for the two-mode cav-
ity light, at the steady state, are determined. In ad-
dition, the normalized second-order correlation func-
tion is obtained for the individual mode, as well as
for the superposition of the two modes. Finally, the
linear correlation coefficient between the two modes
is obtained.

The analysis showed that the intracavity quadra-
ture squeezing is enhanced due to the spontaneous
emission. It is found that the squeezing and entangle-
ment in the two-mode light are directly related. As
a result, an increase in the degree of squeezing di-
rectly leads to an increase in the degree of entan-
glement and vice versa. This shows that, whenever
there is squeezing in the two-mode light, there ex-
ists an entanglement in the system. In addition, it

is shown that the photons in the laser cavity are
highly correlated and the degree of photon num-
ber correlation increases with the spontaneous emis-
sion decay constant, 𝛾. Therefore, the presence of the
spontaneous emission leads to an increase in the de-
gree of entanglement, squeezing, and photon number
correlation.
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Т. Абебе

КВАНТОВИЙ АНАЛIЗ НЕВИРОДЖЕНОГО
ТРИРIВНЕВОГО ЛАЗЕРА ЗI СПОНТАННИМ
ВИПРОМIНЮВАННЯМ I ВАКУУМНИМ
РЕЗЕРВУАРОМ ЗА ВIДСУТНIСТЮ ШУМУ

Р е з ю м е

Аналiзуються квантовi властивостi свiтла резонатора вiд
когерентно збудженого невиродженого трирiвневого лазе-
ра з вiдкритим резонатором. Лазер взаємодiє з двомодовим
вакуумним резервуаром, для якого враховується нормаль-
не впорядкування операторiв шуму. З використанням кван-
тових рiвнянь Ланжевена для операторiв мод резонатора i
рiшень еволюцiйних рiвнянь для очiкуваних величин атом-
них операторiв описанi властивостi стиснення, посилення
змiшування i нормалiзована другого порядку кореляцiйна
функцiя випромiнювання резонатора. За певних умов три-
рiвневий лазер генерує стисле свiтло з максимальним сти-
сненням у резонаторi рiвним 50% нижче рiвня вакуумного
стану. Виявлено, що присутнiсть спонтанного випромiню-
вання пiдсилює квадратурне стиснення i переплутування i
зменшує середнє число фотонiв, випромiнюваних двомодо-
вим резервуаром.
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