Comparison of Optical and Energy Characteristics of Excitons in Aqueous Solutions and Solid Films of Quantum Dots

Authors

  • N.V. Bondar Institute of Physics, Nat. Acad. of Sci. of Ukraine, Department of Nonlinear Optics
  • Yu.P. Piryatinski Institute of Physics, Nat. Acad. of Sci. of Ukraine, Department of Molecular Photoelectronics https://orcid.org/0000-0001-7225-8084
  • O.V. Tverdochlibova Institute of Physics, Nat. Acad. of Sci. of Ukraine, Department of Nonlinear Optics

DOI:

https://doi.org/10.15407/ujpe70.4.251

Keywords:

Stokes shift, quantum dot, excitation energy, exciton, ZnSe

Abstract

The results of studies of colloidal solutions of ultra-small ZnSe quantum dots (QDs) stabilized by short thioglycerol molecules and their dense films, which constitute the material basis of optoelectronic structures, are reported. A comparison of the results obtained for the solutions and the films makes it possible to better understand the transformation of corresponding optical characteristics during the transition from a system of non-interacting particles in the solution to a system with strong interaction between QDs. Delocalization of excitons and hybridization of their wave functions create a new set of QD energy states in the films, which govern the transport and optical properties of the latter. A substantial red shift between the absorption spectra of the solution and the film has been revealed, the nature of which is determined by strong interaction among the QDs. The researched dynamic characteristics showed that the time of the exciton excitation energy transfer in the films of ZnSe DQs with strong interaction can be subnanosecond (≈610 ps) and dominate over the time of internal exciton relaxation into in-gap, surface, and defect states of charge carriers.

References

1. J. Lihong, S.V. Kershaw, L. Yilin, H. Xiaodan, L. Yingying, A.L. Rogach, G. Mingyuan. Aqueous based semiconductor nanocrystals. Chem. Rev. 116, 10623 (2016).

https://doi.org/10.1021/acs.chemrev.6b00041

2. C.L. Bassani et al. Nanocrystal assemblies: current advances and open problems. ACS Nano 18, 14791 (2024).

https://doi.org/10.1021/acsnano.3c10201

3. N. Hildebrandt et al. Energy transfer with semiconductor quantum dot bioconjugates: a versatile platform for biosensing, energy harvesting, and other developing applications. Chem. Rev. 117, 536 (2017).

https://doi.org/10.1021/acs.chemrev.6b00030

4. D. Perera, R. Lorek et al. Photocatalytic activity of core/shell semiconductor nanocrystals featuring spatial separation of charges. J. Phys. Chem. C 116, 22786 (2012).

https://doi.org/10.1021/jp308921s

5. T. Mirkovic, E.E. Ostroumov, J.M. Anna, R. van Grondelle, G.D. Scholes. Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chem. Rev. 117, 249 (2017).

https://doi.org/10.1021/acs.chemrev.6b00002

6. G. Shi et al. The effect of water on colloidal quantum dot solar cells. Nat. Comm. 12, 4381 (2021).

7. L. Yun, K. Donghun, P.M. Owen, D. Zhitomirsky, J.C. Grossman. Origins of the stokes shift in PbS quantum dots: impact of polydispersity, ligands, and defects. ACS Nano 12, 2838 (2018).

https://doi.org/10.1021/acsnano.8b00132

8. Hua Li et al. Elucidating the mechanisms of the large stokes shift in isolated and coupled PbS quantum dots. J. Phys. Chem. C 128, 8732 (2024).

https://doi.org/10.1021/acs.jpcc.4c02008

9. M.V. Bondar, M.S. Brodyn, Y.P. Pyryatynskyi, N.A. Matveevska. Stationary spectroscopy and sub-nanosecond resonant energy transfer of exciton excitation of aqueous solutions and films of ZnSe nanocrystals. Ukr. J. Phys. 67, 544 (2022).

10. O. Voznyy et al. Origins of Stokes shift in PbS nanocrystals. Nano Lett. 17, 7191 (2017).

https://doi.org/10.1021/acs.nanolett.7b01843

11. M. C. Brennan, J.E. Herr, T.S. Nguyen-Beck, J. Zinna, S. Draguta, S. Rouvimov, J. Parkhill, M. Kuno. Origin of the size-dependent Stokes shift in CsPbBr3 perovskite nanocrystals J. Am. Chem. Soc. 139, 12201 (2017).

https://doi.org/10.1021/jacs.7b05683

12. Th.A. Klar, Th. Franzl, A.L. Rogach, J. Feldmann. Superefficient exciton funneling in layer-by-layer semiconductor nanocrystal structures. Adv. Mater. 17, 769 (2005).

https://doi.org/10.1002/adma.200401675

13. N.V. Bondar, M.S. Brodyn, N.A. Matveevskaya, T.G. Beynik. Efficient and sub-nanosecond resonance energy transfer in close-packed films of ZnSe quantum dots by steady-state and time-resolved spectroscopy. Superlatt. Microstruct. 130, 106382 (2020).

https://doi.org/10.1016/j.spmi.2019.106382

14. N.V. Bondar, Yu.P. Pyryatynsky. Arrays of size-dispersed ZnSe quantum dots as artificial antennas: role of quasicoherent regime and in-gap states of excitons for enhanced light harvesting and energy transfer. Curr. Appl. Phys. 48, 114 (2023).

https://doi.org/10.1016/j.cap.2023.01.007

15. J. Giblin, M. Kuno. Nanostructure absorption: a comparative study of nanowire and colloidal quantum dot absorption cross sections. J. Phys. Chem. Lett. 1, 3340 (2010).

https://doi.org/10.1021/jz1013104

16. Qiuyang Li, Kaifeng Wu, Haiming Zhu, Ye Yang, Sheng He, Tianquan Lian. Charge transfer from quantum-confined 0d, 1d, and 2d nanocrystals. Chem. Rev. 124, 5695 (2024).

https://doi.org/10.1021/acs.chemrev.3c00742

17. N.C. Anderson, M.P. Hendricks, J.J. Choi, J.S. Owen. Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: spectroscopic observation of facile metalcarboxylate displacement and binding. J. Am. Chem. Soc. 135, 18536 (2013).

https://doi.org/10.1021/ja4086758

18. S.F. Wuister, C. de Mello Donega, A. Meijerink. Influence of thiol capping on the exciton luminescence and decay kinetics of CdTe and CdSe quantum dots. J. Phys. Chem. B. 108, 17393 (2004).

https://doi.org/10.1021/jp047078c

19. J. Eilers, J. van Hest, A. Meijerink, C. de Mello Donega. Unravelling the size and temperature dependence of exciton lifetimes in colloidal ZnSe quantum dots. J. Phys. Chem. C. 118, 23313 (2014).

https://doi.org/10.1021/jp5038238

20. D.H. Nguyen, Sung Hun Kim, Joon Sue Lee, Dong Su Lee, Hong Seok Lee. Reaction-dependent optical behavior and theoretical perspectives of colloidal ZnSe quantum Dots. Sci. Rep. 14, 13982 (2024).

https://doi.org/10.1038/s41598-024-64995-5

21. R. Toufanian, Z. Xingjian, J.C. Kays, A.M. Saeboe, A.M. Dennis. Correlating ZnSe quantum dot absorption with particle size and concentration. Chem. Matt. 33, 7527 (2021).

https://doi.org/10.1021/acs.chemmater.1c02501

22. R. Yousefi, H.R. Azimi, M.R. Mahmoudian, W.J. Basirun. The effect of defect emissions on enhancement photocatalytic performance of ZnSe QDs and ZnSe/rGO nanocomposites. Appl. Surf. Sci. 435, 886 (2018).

https://doi.org/10.1016/j.apsusc.2017.11.183

23. Desong Guo et al. Doping of Mn2+ into aqueous ZnSe nanocrystals with pure dopant emission through a lightinduced electrostatic attraction and diffusion method. J. Phys. Chem. C. 125, 989 (2021).

https://doi.org/10.1021/acs.jpcc.0c09023

24. C.S. Ponseca, Jr., P. Chabera, J. Uhlig, P. Persson, V. Sundstr¨om. Ultrafast electron dynamics in solar energy conversion. Chem. Rev. 117, 10940 (2017).

https://doi.org/10.1021/acs.chemrev.6b00807

25. P.C. Sercel, Al.L. Efros, M. Rosen. Intrinsic gap states in semiconductor nanocrystals. Phys. Rev. Lett. 83, 2394 (1999).

https://doi.org/10.1103/PhysRevLett.83.2394

26. Y. Zhang, D. Zherebetskyy, N.D. Bronstein, S. Barja, L. Lichtenstein, A.P. Alivisatos, Lin-Wang Wang, M. Salmeron. Molecular oxygen-induced in-gap states in PbS quantum dots. ACS Nano 9, 10445 (2015).

https://doi.org/10.1021/acsnano.5b04677

27. Zaiping Zeng et al. Size engineering of trap effects in oxidized and hydroxylated ZnSe quantum dots. Nano Lett. 22, 3604 (2022).

https://doi.org/10.1021/acs.nanolett.2c00118

28. Zaiping Zeng et al. Bulk-like ZnSe quantum dots enabling efficient ultranarrow blue light-emitting diodes. Nano Lett. 21, 7252 (2021).

https://doi.org/10.1021/acs.nanolett.1c02284

29. M. Abdellah, K.J. Karki, N. Lenngren et al. Ultra longlived radiative trap states in CdSe quantum dots. J. Phys. Chem. C 118, 21682 (2014).

https://doi.org/10.1021/jp506536h

30. T. Hanrath. Colloidal nanocrystal quantum dot assemblies as artificial solids. J. Vac. Sci. Technol. A 30, 030802 (2013).

https://doi.org/10.1116/1.4705402

31. R.D. Harris, S.B. Homan et al. Electronic processes within quantum dot-molecule complexes. Chem. Rev. 116, 12865 (2016).

https://doi.org/10.1021/acs.chemrev.6b00102

32. W. Jaskolski, G.W. Brayany et al. Artificial molecules. Quant. Chem. 90, 1075 (2002).

https://doi.org/10.1002/qua.10331

33. N. Kholmicheva, P. Moroz, H. Eckard, G. Jensen, M. Zamkov. Energy transfer in quantum dot solids. ACS Energy Lett. 2, 154 (2017).

https://doi.org/10.1021/acsenergylett.6b00569

Published

2025-04-25

How to Cite

Bondar, N., Piryatinski, Y., & Tverdochlibova, O. (2025). Comparison of Optical and Energy Characteristics of Excitons in Aqueous Solutions and Solid Films of Quantum Dots. Ukrainian Journal of Physics, 70(4), 251. https://doi.org/10.15407/ujpe70.4.251

Issue

Section

Semiconductors and dielectrics

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 > >> 

You may also start an advanced similarity search for this article.