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SYMMETRIC LAUE DIFFRACTION

OF SPHERICAL NEUTRON WAVES

IN ABSORBING CRYSTALS

Well-known Kato’s theory of the Laue diffraction of spherical z-ray waves is generalized to the
case of the neutron diffraction in strongly absorbing crystals, by considering both the potential
and resonant scatterings of neutrons by nuclei. The saddle-point method is applied for the
estimation of angular integrals, being more adequate in the case of strongly absorbing crystals
than the stationary-phase approzimation used by Kato. It is found that the distributions of the
intensities of diffracted and refracted beams along the basis of the Borrmann triangle strongly
depend on the deviation of the neutron energy from the nuclear resonant level.
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1. Introduction

The diffraction of x-rays, Mdssbauer or synchrotron
radiation, and neutrons is widely used in numer-
ous studies of the crystal structure and other ap-
plications. Well-known are the works of Kagan and
Afanas’ev, who developed the dynamical scattering
theory of Mdssbauer rays [1] and neutrons [2]. They
predicted the suppression effect for reactions and
inelastic channels during the diffraction in perfect
crystals, which was completely confirmed experimen-
tally. In particular, the suppression of the (n,~) re-
action has been observed by Shilshtein et al. [3, 4]
in experiments on the neutron diffraction in a CdS
crystal with the neutron energy close to the resonant
energy Ey = 0.178 eV of '3Cd. This suppression ef-
fect is similar to the effect of anomalous absorption
of x-rays in crystals (Borrmann effect) [5-8].

In [1, 2], the electromagnetic waves and neutrons
were described by plane waves. At the same time, in
typical experiments on the Laue diffraction, the in-
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cident waves first pass a narrow slit and only after-
ward penetrate the crystal (see Fig. 1). In this case,
the incident waves are characterized by some aperture
and should be described already by a wave packet. In
addition, both the transmitting and diffracted waves
inside the crystal travel within the region confined
by a triangle called Borrmann’s triangle [6-8]. Kato
[9-12] developed a theory for such diffraction in the
approximation of spherical waves, by assuming that
the angular spreading of incident x-ray waves exceeds
significantly the small diffraction interval of the or-
der of several seconds of arc. The distribution of the
diffracted beam intensity along the base of the Bor-
rmann triangle manifests a fringe structure caused by
the interference of two waves, transmitting inside the
crystal with different wave vectors. Just their interfer-
ence provides the familiar Pendellésung oscillations of
the intensity [5-8]. Shull [13-15] used the Kato’s the-
ory to interpret the results of his subtle experiments
on the Laue diffraction of neutrons in perfect crystals
of silicon and germanium. Measuring the fringe pat-
terns of the diffracted neutron beam, he determined,
with high precision, the coherent scattering lengths of
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neutrons by the nuclei of silicon [13] and germanium
[15]. It is worth noting also works [16, 17| concerned
with the Laue diffraction of neutrons at the Bragg
angle close to 7/2, which open new perspectives in
the neutron optics.

In Kato’s theory, the integrals over the glancing an-
gle, which describe the x-ray wave packet inside the
crystal, are estimated with the aid of the stationary-
phase method (see also [7]) applicable only in the
case of extremely weakly absorbing crystals. Here,
we study the symmetric Laue diffraction of spheri-
cal neutron waves in crystals with nuclei having low-
lying resonant levels (e.g., ''3Cd). In this case of
strongly absorbing crystals, we have done estimations
by means of the saddle-point method, being more
general than the stationary-phase one. Some pecu-
liarities of the symmetric Laue diffraction of spher-
ical Mossbauer waves in perfect crystals were already
analyzed in [18]. Both coherent Rayleigh and res-
onant scatterings of y-quanta by Mdssbauer nuclei
have been taken there into consideration.

2. Basic Formulas

Let the incident neutron as t — —oo be described by
the initial wave packet

Wi (£, ) = / i f (r)eimr iR, (1)

where the wave vector k, energy E = h?x?/2m, and
m is the neutron mass. For brevity, we omit the spin
factor, which is not changed in the coherent scattering
by a nonmagnetic crystal with unpolarized nuclei.

We choose the coordinate frame z, y, z having
the origin on the face crystal surface in the middle of
the collimating slit with the axis z perpendicular to
the crystal surface and directed inside the crystal and
the axis y along the slit. We consider here the sym-
metric Laue diffraction, when the axis z is parallel to
the reflecting planes. We suppose that all the incident
neutrons propagate along the plane x, z perpendicu-
larly to the slit, so that their wave vectors expressed
in the spherical coordinates x, 8 with ¢ = 0 are given
by

Kk =K(0) ={ksinb, 0, xkcos0}. (2)

In addition, we assume that the incident neutron
beam is directed at the Bragg angle #g with respect to
reflecting planes and has Gaussian spreading over the
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Fig. 1. Scheme of the symmetric Laue diffraction of a spheri-
cal neutron wave

angle . Then the wave function (1) may be rewrit-
ten as

Uin(r,t) = /Ge(E)\IliE(r)e_iEt/th (3)
0

where G.(F) characterizes the energy distributions
of incident neutrons, and the function Wi%(r), which
describes neutrons with fixed energy E, is given by

T (r) = / dOG . (0)e™ . (4)

Let the angular distribution be

B 1 o (A0)?
Gult) = e { =T o)
where
A =05 — 0 (6)

is a deviation from the Bragg angle 65,
o? = ((A0)?) (7

determines a mean-square deviation of 6 from 6g. Let
o be much less than unity. This enables us to spread
the integration limits over 6 from —oo to co. At
the same time, we suppose that o exceeds signifi-
cantly the angular range, where the diffraction pro-
ceeds. This assumption allows us to use the spherical-
wave approximation introduced by Kato, i.e., to re-
place the distribution G,(6) by a constant. We put it
equal to unity.
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We shall consider the neutron wave scattering by
atomic nuclei of the crystal. For simplicity, we do not
touch upon the magnetic crystals, in which the neu-
tron scattering by electrons is also significant [19].
In addition, the nuclei are assumed to be unpolar-
ized. All this allows us to omit the neutron spin wave
function [19]. Then the coherent scattering of neu-
trons by a single elementary cell of the crystal from
the state with the wave vector k to k' is determined
by the amplitude

F(k,k") = Zeiprﬂ(n, k'), (8)

where Q = k — K’ is the scattering vector, the radius-
vector p; defines the position of the jth atom within
the elementary cell, f;(k, k) is the coherent scatter-
ing amplitude of low-energy neutrons by the jth nu-
cleus:

filr, k') = —a;e (D 4 fieo (s, k), (9)

where a; is the coherent scattering length of neutrons
by the jth nucleus, e"i(Q) is the square root of the
Debye—Waller factor, f;es(n, k') is the coherent reso-
nant scattering amplitude. In a vicinity of the isolated
resonance, it is given by

21, + 1\ T,
20, +1) 2k

f;es(nv'{‘l) =G (

y Z (exp[—ik'u;]) (n0} (1} (explik;]) (s} (o}
P E—Ey— Y, hws(n,, —nl) +i% )

(10)

where c; is the probability of finding the resonant iso-
tope in the jth site, I, and I. are the nuclear spins
in the ground and excited compound states, respec-
tively, Ey and I" are the energy and width of the res-
onant level, I',, is the partial neutron width, u; is
the displacement of the jth nucleus from the equi-
librium position, {n?} and {n.} are sets of phonon
numbers in the initial and final states of the crystal,
ws are the phonon frequencies, and the brackets (...)
denote averaging over the initial states of the crystal
lattice. The sum in Eq. (10) can be transformed to
the integral:

D7 () = —iemWalmlemWalw)
{nl}
176

" / %ei(Eon)t/hth/ZﬁthPj(t)7

(11)
0
where .
(t) =
210 Z OM;Nw,
X [yjsnse’ "t +yi(Rs + 1)e™""], (12)

M; is the mass of the jth atom, N is the number of
elementary cells, 71 is the average number of phonons
of the sth normal vibration with polarization v, and
i = (RV ) (R'V2,):

In the framework of the Debye model of a crystal
with one atom per the elementary cell, by ignoring
the anisotropy of vibrations, we can rewrite this ex-
pression as (see also [20])

Wmax

n_3 (PP) / 2
p;(t) = 27M(kB@D)3 hwdw X
0

% [ﬁweiwt 4 (T_Lw + 1)e—iwt]7 (]_3)

where p = hk and p’ = hx' are the initial and final
momenta of neutrons, ©p is the Debye temperature,
and whpax = kpOp/h is the maximal frequency of
phonons.

In the case of fast collisions, when Fuwmax/T < 1,
the expression (11) reduces to

e_Wj(Q)

()= —————.
{7% E — Ey +i%

(14)

3. The Wave Function

According to collision theory [21], every plane wave
ei"T of the wave packet (1) is scattered indepen-
dently of one another, giving rise to the wave function
1, (r). Respectively, the wave function of the neutron
born by the incident wave packet (4) in the approxi-

mation G,(0) ~ 1 takes the form

Up(r) = / A0 0 (). (15)

where the functions 1), )(r) are generated by the
plane waves ¢*(9)* In the two-wave case, the wave
vectors of the refracted and diffracted waves inside
the crystal are, respectively, k() and k;(0) = k(0) +

+hy, where h; denotes a reciprocal lattice vector.
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The components of the vectors k(6) and «(6) along
the face surface z = 0 coincide. Therefore, the vector
k,(0) can be written as

K, (0) = K, () + 0(0)n, Kki(8) = Ko(6) +hy,  (16)

where n is the unit vector along the axis z.
Then the wave function ¥g(r) at 0 < z < D, where
D is the crystal thickness, transforms to

Upr)= > v¥(r),

v=0,1
o (17)
v (r) = / B, (1),

with ¥, (9)(r) yielded by

’(/}n (0)(1‘) = Z CIEL) (e)ein,,(e)r+1'5L(9)z-

1=1,2

(18)

The amplitudes C' and the wave vectors k in the
two-wave case are determined by the algebraic equa-
tions [2]

(k%(0)/K%(0) — 1)Co = gooCo + go1Ch,

(19)
(k(8)/K2(0) = 1)C1 = g10Co + 91101,
where the dimensionless scattering matrix
47
Guv = HTUOF(K”"{“)’ p,v=0,1. (20)

Here, vy stands for the volume of the elementary cell,
the wave vectors kg = k(0p) and k1 = K¢ + h;.

The similar solutions of Egs. (19) given in [2] de-
pend on the angle

2[{,}11 —|—h§
o= —F"

2 , (21)

to be equal zero at the Bragg resonance. This angle
is related to A6 by [5]
o = 2sin(20p)Ad. (22)

It is convenient to introduce the deviation parameter

1
= —(a—ap), 23
n QM( 0) (23)
where the angular shift
Qo = g11 — Joo- (24)
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Then, for the parameter J,(), we find the expression

K T .
5(0) = o = (4 GOV, (25)
where
Yo = cos O (26)
and )
Ap = 200 (27)

R+/901910

means the Pendellésung distance in the case of weakly
absorbing crystals, when Bragg’s condition n = 0 is
exactly fulfilled (see also [7]).

The amplitudes of the waves in the symmetric ge-
ometry are

%%m=§6+ew¢§mg,

d%m=“4y@£yif1'
! 2 \9n 1+n2

The distribution of the neutron intensity over the
base of the Borrmann triangle is analyzed with the
aid of the scanning slit located on the rear surface and
also directed along the axis y. The position of such a
slit is determined by the reduced coordinate [6]

(28)

p = tane¢/ tan Op, (29)

where tane = z,/D, and ;s is the usual coordinate
of the scanning slit.

In addition, we expand the exponents of e+ (9)r in
Af. Keeping the linear terms and using relation (22),
we get

(30)

where Kk, = Kk, (0p). Inserting here (23), one gets fi-
nally

O By exp (RS (- phr e (31
L
where we introduced the designation
K2
B(p; z) = exp {24(1 - p)ao}. (32)
Yo

In the case of isotropic vibrations, when the angle
ag = 0, the function B(p;z) = 1.
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By substitution (18), (25), (28), and (31) into
Eq. (17), we find the integral representation for the
wave function behind the crystal:

v V. _KgooD
W (r) = B(p; D)2 oy {Z HZ?O } X

sin 20g
x / dn 3 CO eV S einr, (33)
oo v=1,2
where
7D
N=_"" 34
Ty (349
and
Su(n) = =i (IAl/An) [+ () VT0P]. (35)

For a crystal, whose thickness D > |Ap|/m, the
large number N allows us to estimate the integral
over 17 with the aid of the saddle-point method (see,
e.g., [22]). By equating the derivative S](n) to zero,
we find the saddle point for the (th wave:

() _ L p
Then the integration contour is displaced to the com-
plex plane n = n,. +1n;, where 7, and n; represent the
real and imaginary parts of n. This contour crosses
the tth saddle point along the line, which indicates
a steepest decent of the function S,(n). Along such
a line, Im S,(n) =const, and the function Re S,(n)
is maximal at the point ng. The line is declined with
respect to the real axis 7, at the angle

(36)

T 1
v, = 1‘:5 - iarg SZI(UO)»

where the second derivative of S,(n) at the saddle
point equals

(37)

AL

st = i1 (1) = g2y (39)

Inserting (38) into (37), we get that, along the base
of the Borrmann triangle at |p| < 1,

9, = (—1)L£ + argy/Ar.

Evaluating integral (33) with the aid of the saddle-
point method (see, e.g., [22]), we have

(39)

v . D
v (r) = B(p; D) exp (z“ﬁjl) x
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. 2 ) .
% Z C’S))eNS,,(no) m embezn,,)r7

40
P N7 (o) (40)

where the amplitudes C,SL) = Cl(,L) (n§) at the saddle
points are

s 1
Gy’ =5 +p),

—1) 1/2
CY) — ( 2) (910) 1 _pg.
go1

(41)

Then, substituting (38), (39), and (41) into (40),
we get the wave function of neutrons transmitted
through the crystal (z > D). We found that the re-
fracted neutrons are described by

1/2
o, ~ 1 A(p) 1+p
\I/E (p,r) - 5(1_1)2)1/4 1—p X

D 2A . . )
X exp (ing(,);o ) \/E |:ezz(l7) +efzz(p)} eiror (42)

and the diffracted ones by

Wy L A
\I]E (p,I‘) 9 (1 _p2)1/4
.KgooD \/m iz(p) _ ,—iz(p)| sikir
X exp (z 27, ) D [e € }6 , (43)
where
D ™
_ — 2
2(p) VI (44)
and
.Ao(p) _ B( ;D) .9019107
sin 20g
g10 L/2 (45)
i) = (22) a()
gdo1

The intensities of the monochromatic neutron

beams are determined by
15" () = v (i) (46)

For the refracted beam, we have

1Y (p)

_ |Ao(p)? ‘1+p‘2|AL|euD/VO «

7,/1_p2 1—p D
D D
X [simh2 (W\/l —pQ>—i—cosz(7T 1-p?2+ 77)],
gj, TL 4
(47)
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while, for the diffracted beam,

Ai(p)|* 2|A
10 p) = AL 2|

V1-p2 D
D D
X [Sinh2 <7T\/1 —p2> + cos? (W\/l —p?— W)]
gy, TL 4

e D/ «

Here, we introduced the notation

1 1 o1
7—74_177

AL T or (49)

and the absorption coefficient far from the Bragg con-
dition

w=rImgey = 04/v0, (50)

Oq = 47” Im F(k, k) is the absorption cross-section of
neutrons by an elementary cell.

The total intensities of the beams are obtained
by the averaging of (47) and (48) with the weight
Ge(B)?,

1@@=/m@wW¥%»
0

(51)

4. Conclusion

So, we have analyzed the symmetric Laue diffraction
of collimated neutron beams in perfect crystals con-
taining nuclei with low-lying resonant levels. In the
spherical-wave approximation of Kato, making esti-
mations by the saddle-point method, we have derived
Egs. (42) and (43) for the wave functions of the re-
fracted and diffracted neutrons, as well as Eqgs. (47)
and (48) for their intensities. The vicinity of the
point |p| = 1 should be excluded in these formu-
las, since, at the point |p| = 1, the second derivative
S/ (ng) = 0. In this case, the main idea of the saddle-
point method that the function Re{NS,(n)} is repre-
sented by a sharp peak along the line of the steepest
decent fails. Only such quick fall-down enables one
to apply the Laplace method of approximate integra-
tion [22].

Our equations (42) and (43) for the wave func-
tion of neutrons differ formally from those for x-rays
[7], only by the additional factor B(p; z). It depends
on the angular shift oy = ggo — g11, which vanishes
only in the case of isotropic vibrations of the crys-
tal lattice. Only then B(p;z) = 1. Another signifi-
cant difference of our formulas from those describing
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Fig. 2. Distribution of the intensity of the diffracted beam
IS)(p) over the base of the Borrmann triangle for presD = 20

the x-ray diffraction [7] is that the coherent scatter-
ing amplitudes of neutrons contain the resonant am-
plitude f;cs(n, k'), whose imaginary part in a vicin-
ity of the resonance is comparable with its imaginary
part. As a result, the anomalous absorption of waves
in both cases has different character (for details, see
1,2)).

In order to illustrate the role of the resonant scat-
tering, we have done numerical calculations in a sim-
plified case where the isotropic crystal lattice contains
one atom per unit cell, B(p;z) = 1, and the poten-
tial scattering can be neglected compared to the res-
onant one. The role of phonons is taken into account
by the factor e =" (@) of Eq. (14). For definiteness, we
took e 2W(Q) = (.8. In this approximation, the ab-
sorption coefficient depending on the resonance de-
tuning x = 2(F — Ey)/T can be written as

Mres
pz) =

= 52
1+ 22’ (52)

where fies iS the resonant value with k = k. At the
same time, the function (44) becomes

fires D e=V(@

270 (z+1)
The intensities of the diffracted and refracted
beams, calculated in units of e #rsP/7  ag functions
of the parameter p for different values of detuning of
the resonance z, are drawn in Figs. 2 and 3.
The neutrons pass the crystal mainly within the
Borrmann triangle. Outside it, the functions Ig/)(p)

2(p) = L=p?+ 1. (53)

rapidly fall down. We see here that the curves Ig)(p)
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Fig. 3. Distribution of the intensity of the refracted beam
Ig)) (p) over the base of the Borrmann triangle for pires D = 20

for the diffracted neutrons are symmetric with re-
spect to the reflection p — —p. Far from the reso-
nance, (x > 1), the intensity of the diffracted neu-
trons symmetrically increases near the margins of the
Borrmann triangle, while the curves I](EO) (p), which
describe the refracted beams, rapidly grow up near
the point p = 1 corresponding to direct passage of
neutrons through the crystal. In a close vicinity to
the resonance, (z =~ 0), the intensities Ig)(p) tend to
be concentrated at the center of the triangle, which
is similar to the situation with the x-ray diffrac-
tion [7]. Thus, we see the same effect as in the case
of x-rays. Namely, the energy in strongly absorbing
crystals floats along the reflecting planes (see also
[6]. Equations (47) and (48) contain both the smooth
term sinh?[(7D/o)/1 — p?] and the oscillating one
cos?[(7D/7r)\/1 — p? 4+ 7/4]. With a deviation from
the resonance, the last term begins to manifest it-
self. Specifically, the diffracted beam intensity S) (p)
at x = 3 is higher than that at x = 7. In addition,
the curve I](EO) (p) at = 1 attributes a large curva-
ture in a vicinity of p = 1 also due to the oscillating
term.
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CUMETPUYHA NUOPAKIIIA JIAVE
COEPUYHNX HENTPOHHUX XBUJIb
Y ITIOTVIMHAIOYNX KPUCTAJIAX

Pesmowme

Bigomy Teopito Karo nudpaxiii Jlaye cpepudnux peHTreHiB-
CLKHUX XBHJIb y3araJIbHEHO Ha BHMAJOK Audpaxnil HeHTPOHIB y
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CHJILHO IOIVIMHAIOUNX KPHUCTAJIaX, Oepy<u HO yBaru sIK IIOTEH-
miajbHe, TaK 1 pe30HAHCHE PO3CIAHHA HENTPOHIB siapamu. Jlis
OIIIHKM KYTOBHUX IHTerpaJiB 3aCTOCOBYETbCHA METOJ, IepeBaJlLy,
AKUHA € OB aleKBAaTHUH y BHUIAJKY CHJIBHO IIOIVIMHAIOYUUX
KPHUCTAaJIiB, Hi>K HaOJIMKEHHS CTAIloHApHOI (a3|, 1[0 BUKOPU-
croByBaJjiocsi Karo. BcranosiieHo, 110 pO31O/iJl iIHTEHCUBHOCTI
nudparoBaHuX i 3aJIOMJIEHHX IIy9KiB B3JOBXK OCHOBHU TPHKY-
THHKa BopMaHa CHIBHO 3a/1€2KUTh Bif Bigxuienus enepril nem-

TPOHIB BiJ| S€PHOTO PE30HAHCHOI'O PiBHS.
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