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SIMPLIFIED KINETIC MODEL
OF FLUX-DRIVEN PHASE TRANSITIONS
AND PATTERNS COMPETITION IN OPEN 2D SYSTEM

The regular solution approximation has a successful history of applications in the thermody-
namics and kinetics of decomposition in alloys, treated as closed systems. It provides a qual-
itatively proper description of all stages of spinodal and nucleation-mediated decomposition
for alloys under homogeneous external conditions without external fluxes. In this article, the
kinetic mean-field model for open (flux-driven) systems is extended by incorporating the diver-
gence of in- and out-fluxes into the master equations for occupation probabilities. The closest
experimental analog of this model is the pattern formation during the co-deposition of a binary
alloy under frozen bulk diffusion, but with reasonable surface diffusion, where the deposition
rate 𝑉 serves as the main external parameter. However, some peculiarities of the model may
also be useful for describing eutectic and off-eutectic crystallizations. Rate-dependent phase
𝑇 − 𝐶 diagrams are determined for the steady the states of such an open system. The rate-
dependent instability region is subdivided into three distinct steady-state morphologies: spots
(“gepard”-like), layers (“zebra”-like) – labyrinth or lamellae, and mixed patterns (a combina-
tion of “gepard” and “zebra”). This morphology map depends on the initial conditions, revealing
memory effects and hysteresis. This implies that, unlike the equilibrium state of a closed sys-
tem, which acts as an attractor for the evolution paths, the steady states of flux-driven systems
may not be attractors. Variations of the model, including Monte Carlo simulations, are also
discussed.
K e yw o r d s: open system, flux-driven transformation, spinodal decomposition, pattern for-
mation, rate-dependent phase diagram, hysteresis.

1. Introduction

To begin, let us define the terms “closed” and “open”
systems as used in this w0rk. A thermodynamic sys-
tem is referred to as “closed,” when it is subject to
homogeneous external conditions across its bound-
aries. This typically includes cases such as:

a) an isolated system,
b) a system with a fixed volume within a thermal

bath at a uniform temperature 𝑇 ,
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c) a system under a fixed homogeneous pressure
within a thermal bath at a uniform temperature 𝑇 .

In case (a), the system evolves toward the state
of maximum entropy; in case (b), toward the min-
imum Helmholtz free energy, 𝐹 = 𝑈 − 𝑇𝑆; and,
in case (c), toward the minimum Gibbs free energy,
𝐺 = 𝑈 − 𝑇𝑆 + 𝑝𝑉 . By contrast, a system is de-
scribed as “open,” if it experiences inflow and outflow
of matter and/or energy, typically driven by gradi-
ents in the electrochemical potential, temperature, or
stress. Such gradients cannot vanish over time due
to boundary conditions, such as hot and cold ends
of a system or opposite poles in an electrical cir-
cuit. While closed systems always progress toward an
equilibrium, open systems may reach a steady state,
exhibit oscillatory behavior, or even fail, but they do
not reach the equilibrium. Thermodynamics, phase
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transitions, driving forces, partition functions, prob-
ability distributions, and the final equilibrium states
of closed systems are well understood, although the
principles governing the choice of evolutionary paths
among multiple possibilities remain an open ques-
tion. Many general behaviors of closed systems can be
effectively studied using simple, fundamental models,
such as the Ising model. In contrast, open systems re-
main far less understood, despite intensive analysis,
particularly of non-equilibrium phase transitions [1].

An interesting approach was proposed by Mar-
tin, Bellon et al. for the modeling of open crystalline
systems under irradiation or severe plastic deforma-
tion (SPD) [2–4]. Martin et al. refer to such situ-
ations as “driven systems” and introduce the con-
cepts of ballistic jumps and effective temperature for
their description. Their approach is built on well-
known master equations for site occupancy proba-
bilities, which change over time due to atomic ex-
changes (jumps). They consider two types of jumps:
thermal (the usual transition probability of overcom-
ing a barrier due to thermal fluctuations) and ballistic
(athermal, depending on external energetic influences
rather than temperature):
𝜕𝑃𝑖

𝜕𝑡
=
∑︁
𝑗

(−𝑃𝑖𝑊𝑖;𝑗 + 𝑃𝑗𝑊𝑗;𝑖),

𝑊𝑗;𝑖=𝑊 th
𝑗;𝑖 +𝑊 bal

𝑗;𝑖 .

(1)

Our simplified model of open systems does not use
the concept of ballistic jumps, but, instead it, adopts
the idea of incoming atoms replacing existing ones
randomly at the free surface due to an external flux,
thereby “gradually transforming” surface atoms into
bulk atoms with zero mobility. To better understand
the general behaviors of open systems, we propose a
model as elementary as the Ising model. The Ising
model serves as a classic example for illustrating es-
sential thermodynamic and kinetic features of phase
transitions in closed systems [5]. In this work, we in-
troduce an “Ising-like” model that maintains similar
simplifications to study the principal features of open
systems, particularly their steady states. For this pur-
pose, we adopt Georges Martin’s modified approach,
based on master equations for site occupancy prob-
abilities. Martin first proposed a self-consistent non-
linear kinetic model for a quasi-1D system in 1990,
[6] later applied to thin-film nonlinear interdiffusion
across contact zones with pronounced diffusion asym-
metry, typically confined to a few atomic layers (Erde-

lyi, Beke et al. [7, 8]). Subsequently, we developed
a 3D model, [9–12] which has since formed the ba-
sis for a new software, SKMF (Stochastic Kinetic
Mean-Field, skmf.eu), for atomistic simulations of dif-
fusion-controlled transformations, including spinodal
decomposition, nucleation, ripening, reactive diffu-
sion, and phase competition. Recently, we applied the
2D version of SKMF to examine the pattern forma-
tion during the vapor co-deposition of binary alloys
[13]. Pattern formation on the mesoscopic scale dur-
ing the crystallization from liquid or vapor phases
is well-studied [14–19], yet the atomic-scale pattern
formation remains relatively underexplored [20]. In
our previous work, [13] we used a somewhat artificial
model, assuming that a new atomic (001) plane in the
FCC lattice is rapidly filled by incoming atoms. Af-
terward, atomic exchanges occur over a time 𝛿

𝑉 where
𝑉 is the deposition velocity, equal to the product
of deposition flux density and the atomic volume of
the solid phase, and 𝛿 is the interplanar spacing in
the deposition direction). Following this period, dif-
fusion within the “buried” atomic plane is considered
fully frozen.

2. Basic Model Assumptions

In this version of our model, we aim to create a time-
continuous framework that avoids stepwise kinetics
involving abrupt avalanches of atomic plane filling
followed by isolated diffusion within the plane. In-
stead, we introduce a “smeared” timescale in which
diffusion within the top surface layer and deposition
occur simultaneously. This approach allows us to use
a moving reference frame that travels with the top
surface at a constant velocity 𝑉 in the deposition di-
rection. In this moving frame, in addition to diffusion
fluxes along the plane (leading to partial decompo-
sition), there are two external fluxes perpendicular
to the top surface: an inflow 𝑉

Ω 𝐶dep (where Ω is
the atomic volume in the solid phase) and an out-
flow 𝑉

Ω 𝐶𝐴(𝑖, 𝑗, 𝑘 = 0), with 𝑘 = 0 indicating the top
plane and 𝑖, 𝑗 denoting specific lattice sites within it
(in an FCC lattice, 𝑖+𝑗+𝑘 is even). Both processes –
the diffusion along the top plane and the flux diver-
gence across it – are mathematically represented by
two terms on the right-hand side of Eq. (2), which
governs the site occupancy probabilities:

𝜕𝐶𝐴

𝜕𝑡
=

𝑍‖∑︁
𝑖=1

{︂
−𝐶𝐴(𝑖)𝐶𝐵(𝑖𝑛) Γ𝐴𝐵

(︁
𝐴(𝑖) ↔ 𝐵(𝑖𝑛)

)︁
+
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+𝐶𝐵(𝑖)𝐶𝐴(𝑖𝑛) Γ𝐴𝐵

(︁
𝐴(𝑖𝑛) ↔ 𝐵(𝑖)

)︁}︂
+

+
𝑉

𝛿

(︀
𝐶dep − 𝐶𝐴(𝑖)

)︀
. (2)

Analogic modification of diffusion equation for the
linear version of Cahn–Hilliard approach was dis-
cussed in [21].

Here, 𝐶𝐴(𝑖) actually represents 𝐶𝐴(𝑖, 𝑗, 𝑘 = 0) and
is the probability of site (𝑖, 𝑗) (𝑥 = 𝑎

2 𝑖, 𝑦 = 𝑎
2 𝑗) in

the top plane (𝑘 = 0) (𝑧 = 𝑎
20) being occupied by

species 𝐴. We consider only an FCC monocrystalline
lattice grown by the deposition in the ⟨001⟩ direction,
where 𝑖 + 𝑗 + 𝑘 is an even number. In our model,
atomic exchanges occur only between sites within the
same top plane (𝑘𝑛 = 0, 𝑖𝑛 + 𝑗𝑛 + 𝑘𝑛 – even). Ex-
change frequencies are determined by a Boltzmann-
like expression:

Γ𝐴𝐵

(︀
𝐴(𝑖) ↔ 𝐵(𝑖𝑛)

)︀
=

= 𝜈0 exp

[︂
−𝐸𝑠 − (𝐸𝐴(𝑖) + 𝐸𝐵(𝑖𝑛))

𝑘𝑇

]︂
, (3)

where
(︀
𝐸𝐴(𝑖) + 𝐸𝐵(𝑖𝑛)

)︀
=

(︀
𝐸𝐴(𝑖, 𝑗, 𝑘 = 0)+

+𝐸𝐵(𝑖𝑛, 𝑗𝑛, 𝑘𝑛 = 0)
)︀

is the interaction energy of
neighboring atoms before the exchange, and 𝐸𝑠 is the
saddle-point energy during the exchange (assumed
constant in the original Martin model and all its de-
velopments).

Energies are calculated in a mean-field approxima-
tion and include 𝑍‖ = 4 nearest neighbors from the
same top plane (𝑘 = 0) with indexes (𝑖 ± 1, 𝑗) and
(𝑖, 𝑗±1), as well as 𝑍⊥ = 4 nearest neighbors from the
plane below (𝑘 = 1, 𝑧 = −𝑎

21) with indies (𝑖 ± 1, 𝑗)
and (𝑖, 𝑗 ± 1)

𝐸𝐴(𝑖) =

𝑍‖+𝑍⊥∑︁
𝑖′=1

{︂
𝐶𝐴(𝑖

′)𝑉𝐴𝐴 + 𝐶𝐵(𝑖
′)𝑉𝐴𝐵

}︂
=

=
(︀
𝑍‖ + 𝑍⊥

)︀
𝑉𝐴𝐵 +

+
(︀
𝑉𝐴𝐴 − 𝑉𝐴𝐵

)︀ 𝑍‖+𝑍⊥∑︁
𝑖′=1

𝐶𝐴(𝑖
′), (4)

𝐸𝐵(𝑖𝑛) =

𝑍‖+𝑍⊥∑︁
𝑖𝑛′=1

{︂
𝐶𝐴(𝑖𝑛

′)𝑉𝐵𝐴 + 𝐶𝐵(𝑖𝑛
′)𝑉𝐵𝐵

}︂
=

=
(︀
𝑍‖ + 𝑍⊥

)︀
𝑉𝐵𝐵 +

+
(︀
𝑉𝐴𝐵 − 𝑉𝐴𝐴

)︀ 𝑍‖+𝑍⊥∑︁
𝑖𝑛′=1

𝐶𝐴(𝑖𝑛
′). (5)

For co-deposition of ⟨001⟩ planes of an FCC lattice,
the number of nearest neighbors within the top plane
(simultaneously the number of possible atomic ex-
changes) is 𝑍‖ = 4, while the number of nearest neigh-
bors in the preceding (subsurface) plane is 𝑍⊥ = 4.
“𝑖” and “𝑖𝑛” are two neighboring sites within the top
atomic plane, exchanging atoms. At a fixed “𝑖,” there
are 𝑍‖ = 4 possibilities for “𝑖𝑛”. “𝑖′” represents the
nearest interacting neighbors of site “𝑖”, and their
number is 𝑍 = 𝑍‖ + 𝑍⊥ = 8, similarly, “𝑖𝑛′” rep-
resents the nearest interacting neighbors of site “𝑖𝑛”,
and their number is also 𝑍 = 𝑍‖ + 𝑍⊥ = 8.

To simplify calculations, we postulate that the
probabilities in the subsurface plane 𝑘 = 1 are en-
tirely determined by their nearest neighbors in the
top plane 𝑘 = 0:

𝐶𝐴

(︀
𝑖, 𝑗, 𝑘 = 1

)︀
=

=
1

4

[︁
𝐶𝐴

(︀
𝑖+ 1, 𝑗, 𝑘 = 0

)︀
+ 𝐶𝐴

(︀
𝑖− 1, 𝑗, 𝑘 = 0

)︀
+

+𝐶𝐴

(︀
𝑖, 𝑗 + 1, 𝑘 = 0

)︀
+ 𝐶𝐴

(︀
𝑖, 𝑗 − 1, 𝑘 = 0

)︀]︁
. (6)

This assumption, while not absolute, works well for
decomposition, as demonstrated later.

For simplicity, we also assume: 𝑉𝐴𝐴 = 0, 𝑉𝐵𝐵 = 0,
𝑉𝐴𝐵 = 𝐸mix. Thus:

Γ𝐴𝐵

(︁
𝐴(𝑖) ↔ 𝐵(𝑖𝑛)

)︁
= 𝜈0 exp

[︂
−𝐸𝑠

𝑘𝑇

]︂
×

× exp

[︃
𝐸mix

𝑘𝑇

(︂
𝑍 −

𝑍∑︁
𝑖′=1

𝐶𝐴(𝑖
′) +

𝑍∑︁
𝑖𝑛′=1

𝐶𝐴(𝑖𝑛
′)

)︂]︃
, (7)

Γ𝐴𝐵

(︁
𝐴(𝑖𝑛) ↔ 𝐵(𝑖)

)︁
= 𝜈0 exp

[︂
−𝐸𝑠

𝑘𝑇

]︂
×

× exp

[︃
𝐸mix

𝑘𝑇

(︂
𝑍 −

𝑍∑︁
𝑖𝑛′=1

𝐶𝐴(𝑖𝑛
′) +

𝑍∑︁
𝑖′=1

𝐶𝐴(𝑖
′)

)︂]︃
. (8)

The master equation for site occupancy probabili-
ties within the surface layer 𝑘 = 0 becomes:

𝜕𝐶𝐴(𝑖)

𝜕𝑡
=

𝑍‖∑︁
𝑖𝑛=1

{︃
−𝐶𝐴(𝑖)(1− 𝐶𝐴(𝑖𝑛))×

× exp

[︃
𝐸mix

𝑘𝑇

(︃
𝑍∑︁

𝑖𝑛′=1

𝐶𝐴(𝑖𝑛
′)−

𝑍∑︁
𝑖′=1

𝐶𝐴(𝑖
′)

)︃]︃
+

+
(︀
1− 𝐶𝐴(𝑖)

)︀
𝐶𝐴(𝑖𝑛)×

× exp

[︃
𝐸mix

𝑘𝑇

(︃
𝑍∑︁

𝑖′=1

𝐶𝐴(𝑖
′)−

𝑍∑︁
𝑖𝑛′=1

𝐶𝐴(𝑖𝑛
′)

)︃]︃}︃
+

+ 𝜐
(︀
𝐶dep − 𝐶𝐴(𝑖)

)︀
, (9)
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where the non-dimensional time and velocity param-
eters are:

𝑡𝑡 = 𝑡 𝜈0 exp

[︃
𝑍𝐸mix − 𝐸𝑠

𝑘𝑇

]︃
,

𝜐 =
𝑉

𝛿 𝜈0 exp
[︀
𝑍𝐸mix−𝐸𝑠

𝑘𝑇

]︀ . (10)

In this study, we focus on the case of positive mix-
ing energy, which corresponds to a tendency toward
decomposition. Depending on temperature, composi-
tion, and deposition velocity, decomposition may be
realized partially or not at all.

3. Binodal and Spinodal
in KMF Model at Zero Rate
(Decomposition in a Closed System)

In this section, we verify whether our atomistic, non-
linear KMF model adheres to the standard binodal
and spinodal concepts for closed systems (𝑉 = 0).

3.1. Binodal (thermodynamic
two-phase equilibrium which can be
reformulated as detailed flux balance)

First, we consider the equilibrium condition at 𝑉 = 0,
which corresponds to the balance equations derived
from Eq. (2):

𝐶𝐴(𝑖)
(︀
1− 𝐶𝐴(𝑖𝑛)

)︀
Γ𝐴𝐵

(︀
𝐴(𝑖) ↔ 𝐵(𝑖𝑛)

)︀
=

=
(︀
1− 𝐶𝐴(𝑖)

)︀
𝐶𝐴(𝑖𝑛) Γ𝐴𝐵

(︀
𝐴(𝑖𝑛) ↔ 𝐵(𝑖)

)︀
or

𝐶𝐴(𝑖)
(︀
1−𝐶𝐴(𝑖𝑛)

)︀
exp

[︂
−
𝐸𝑠 −

(︀
𝐸𝐴(𝑖)+𝐸𝐵(𝑖𝑛)

)︀
𝑘𝑇

]︂
=

=
(︀
1−𝐶𝐴(𝑖)

)︀
𝐶𝐴(𝑖𝑛) exp

[︂
−
𝐸𝑠 −

(︀
𝐸𝐴(𝑖𝑛) + 𝐸𝐵(𝑖)

)︀
𝑘𝑇

]︂
,

(11)
which can be reformulated as:(︀
𝐸𝐴(𝑖) + 𝑘𝑇 ln𝐶𝐴(𝑖)

)︀
−
(︀
𝐸𝐵(𝑖) + 𝑘𝑇 ln𝐶𝐵(𝑖)

)︀
=

=
(︀
𝐸𝐴(𝑖𝑛)+ 𝑘𝑇 ln𝐶𝐴(𝑖𝑛)

)︀
−
(︀
𝐸𝐵(𝑖𝑛)+ 𝑘𝑇 ln𝐶𝐵(𝑖𝑛)

)︀
.

(12)

Since 𝐸𝐴(𝑖)+ 𝑘𝑇 ln𝐶𝐴(𝑖) = 𝜇𝐴(𝑖) is a local chemical
potential of 𝐴, and 𝐸𝐵(𝑖) + 𝑘𝑇 ln𝐶𝐵(𝑖) = 𝜇𝐵(𝑖) –
that of 𝐵, their difference 𝜇𝐴𝐵(𝑖) ≡ 𝜇𝐴(𝑖) − 𝜇𝐵(𝑖)
is just a reduced chemical potential (change of Gibbs

free energy due to the replacement of atom 𝐵 by atom
𝐴). Equality of the reduced chemical potential across
different sites indicates thermodynamic equilibrium,
including cases where these sites belong to distinct
phases (e.g., solid solutions on opposite sides of the
binodal). For such cases, 𝐶𝐴(𝑖) = 𝐶𝐴(𝑖

′) = 𝐶𝐴(𝛼),
𝐶𝐴(𝑖𝑛) = 𝐶𝐴(𝑖𝑛

′) = 𝐶𝐴(𝛽) = 1 − 𝐶𝐴(𝛼). Substi-
tuting it into Eq. (9) under conditions 𝜐 = 0, 𝜕𝐶𝐴(𝑖)

𝜕𝑡𝑡 =
= 0, after simple algebra, we get:

𝐶𝐴(𝛼)

1− 𝐶𝐴(𝛼)
= exp

[︂
−8𝐸mix

𝑘𝑇

(︀
1− 2𝐶𝐴(𝛼)

)︀]︂
. (13)

This expression matches the binodal equation for the
regular solution model with eight nearest neighbors
per site.

3.2. Instability criterion
for a closed system (spinodal)

Typically, the concept of infinitesimal concentration
waves, which may exponentially increase or decrease
depending on the wave vector, temperature, and com-
position, is attributed to Cahn and Hilliard in their
phenomenological analysis of the spinodal decompo-
sition [22]. However, a similar idea for the instabil-
ity criterion of non-linear kinetic equations was pro-
posed much earlier for the atomic scale by Anatoliy
Vlasov in his non-local statistical approach to crystals
[23]. Later, analogous concepts were also applied on
the atomic scale by Armen Khachaturyan in his the-
ory of concentration waves [24]. In our KMF model,
we seek a solution in the form of an atomic-scale con-
centration wave with an infinitesimal time-dependent
amplitude 𝐴:

𝐶𝐴(𝑖, 𝑗, 𝑘 = 0) = 𝐶dep + 𝛿𝐶(𝑖, 𝑗, 𝑘 = 0) =

= 𝐶dep +𝐴(𝑡𝑡,q) exp
[︀
𝐼q · r𝑖,𝑗

]︀
=

= 𝐶dep +𝐴(𝑡𝑡, 𝑞𝑥, 𝑞𝑦) exp
[︁
𝐼
𝑎

2
(𝑞𝑥𝑖+ 𝑞𝑦𝑗)

]︁
. (14)

Here, 𝐼 is the imaginary unit,
√
−1. Then, according

to our condition (Eq. (6)), for the sites of sublevel
(𝑘 = 1), the concentration wave is:

𝐶𝐴(𝑖
′, 𝑗′, 𝑘 = 1) =

=
1

4

[︁
𝐶𝐴(𝑖

′ + 1, 𝑗′, 𝑘 = 0) + 𝐶𝐴(𝑖
′ − 1, 𝑗′, 𝑘 = 0)+

+𝐶𝐴(𝑖
′, 𝑗′ + 1, 𝑘 = 0) + 𝐶𝐴(𝑖

′, 𝑗′ − 1, 𝑘 = 0)
]︁
=

274 ISSN 2071-0194. Ukr. J. Phys. 2025. Vol. 70, No. 4



Simplified Open 2D Phase-Pattern Competition

= 𝐶dep +𝐴 exp

[︂
𝐼
𝑎

2

(︀
𝑞𝑥𝑖

′ + 𝑞𝑦𝑗
′)︀]︂1

4

[︃
exp

(︂
𝐼
𝑎

2
𝑞𝑥

)︂
+

+ exp

(︂
−𝐼

𝑎

2
𝑞𝑥

)︂
+ exp

(︂
𝐼
𝑎

2
𝑞𝑦

)︂
+ exp

(︂
−𝐼

𝑎

2
𝑞𝑦

)︂]︃
=

= 𝐶dep +𝐴 exp

[︂
𝐼
𝑎

2

(︀
𝑞𝑥𝑖

′ + 𝑞𝑦𝑗
′)︀]︂×

× 1

2

[︃
cos

(︂
𝑎

2
𝑞𝑥

)︂
+ cos

(︂
𝑎

2
𝑞𝑦

)︂]︃
. (15)

Substituting Eqs. (14) and (15) into Eq. (9), expand-
ing everything into a series over small 𝐴 and neglect-
ing second-order and higher-order terms, a simple
algebra (Appendix A) leads to the following stabil-
ity/instability criterion for the amplitudes of concen-
tration fluctuation waves:

𝜕 ln𝐴

𝜕𝑡𝑡
= 4

[︃
1− cos

(︂
𝑞𝑥

𝑎

2

)︂
cos

(︂
𝑞𝑦

𝑎

2

)︂]︃
×

×

{︃
16𝐸mix

𝑘𝑇
𝐶dep

(︀
1− 𝐶dep

)︀
𝑓(𝑞𝑥, 𝑞𝑦)− 1

}︃
, (16)

𝑓(𝑞𝑥, 𝑞𝑦) =
1

2
cos

(︂
𝑞𝑥

𝑎

2

)︂
cos

(︂
𝑞𝑦

𝑎

2

)︂
+

+
1

8

(︃
cos

(︂
𝑞𝑥

𝑎

2

)︂
+ cos

(︂
𝑞𝑦

𝑎

2

)︂)︃2
. (17)

Instability case: 𝜕 ln𝐴
𝜕𝑡𝑡 > 0. Taking into account

that 𝑓(𝑞𝑥, 𝑞𝑦) ≤ 1, the condition of instability is
16𝐸mix

𝑘𝑇 𝐶dep (1 − 𝐶dep) > 1, which coincides with the
spinodal criterion in the regular solid solution model
at 𝑍 = 8.

4. Rate-Dependent Binodal in Open System

Here, we discuss a binodal-like solution – a steady
state instead of equilibrium. As follows from Eq. (7),
in the case of open systems, the “binodal-like” condi-
tion includes an additional rate-dependent term:

𝜐 (𝐶𝐴(𝑖)− 𝐶dep) =

𝑍‖∑︁
𝑖𝑛=1

{︃
−𝐶𝐴(𝑖)

(︀
1− 𝐶𝐴(𝑖𝑛)

)︀
×

× exp

[︃
𝐸mix

𝑘𝑇

(︃
𝑍∑︁

𝑖𝑛′=1

𝐶𝐴(𝑖𝑛
′)−

𝑍∑︁
𝑖′=1

𝐶𝐴(𝑖
′)

)︃]︃
+

+
(︀
1− 𝐶𝐴(𝑖)

)︀
𝐶𝐴(𝑖𝑛)+

+ exp

[︃
𝐸mix

𝑘𝑇

(︃
𝑍∑︁

𝑖′=1

𝐶𝐴(𝑖
′)−

𝑍∑︁
𝑖𝑛′=1

𝐶𝐴(𝑖𝑛
′)

)︃]︃}︃
. (18)

Fig. 1. Rate-dependent binodals and rate-dependent spin-
odals at 𝜐 = 0, 0.1, 0.2, 0.3, 0.4, 0.5, ... . Binodals are found from
the averaging of marginal compositions

So far, we cannot suggest a natural interpretation
of this condition, as we did with the detailed bal-
ance and equality of reduced chemical potentials
for the closed system in Eqs. (11) and (12). Thus,
we numerically simulated decomposition by solving
the set of Eqs. (9) and tracking the solution un-
til it practically satisfied Eq. (18). In that process,
we fixed the maximal (right part of the binodal)
and minimal (left part of the binodal) concentra-
tions within our system, allowing for small correc-
tions due to noise and Gibbs–Thomson corrections
at the curved interfaces. Of course, the tendency
toward the steady state of the solution to Eq. (9)
should lead to the validity of Eq. (18), at least in the
case where initial inhomogeneities are large enough
to overcome the nucleation barrier of decomposi-
tion. The result – rate-dependent binodals (as well
as rate-dependent spinodals in Section 5) – is shown
in Fig. 1. We emphasize an important difference be-
tween the binodal in closed and open systems: In
a closed system, any point below the binodal cor-
responds to an alloy that will decompose – via the
spinodal decomposition of an absolutely unstable so-
lution, if this point is simultaneously below the spin-
odal, or via a “nucleation-growth-ripening” process
in the metastable solution, if this point is between
the binodal and spinodal. In both cases, the result
is the same: the system transforms into a two-phase
state with two marginal compositions corresponding
to the binodal. In an open system, as we will see
in Section 7, the situation is ambiguous in several
aspects:
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a

b
Fig. 2. Smeared (splitted) binodal for steady-states in an
open system. Histogram of compositions in the decomposed
steady-state of the open system, 𝐶 = 0.4 (a); Binodal as a
bunch of curves-only marginal curves and the mean curve are
shown, the regions within the binodal will be described below.
In all Figures below, we will use only the mean binodal (b)

1) If the composition of the incoming flux belongs
to the spinodal region and is equal to the initial com-
position, it decomposes and finally reaches a steady-
state two-phase morphology, which is not equilibrium
and not uniform within each phase, since, in steady-
state, the divergence of in- and out-fluxes should be
compensated by the divergence of lateral redistribu-
tion fluxes. This means that, in steady state, contrary
to the equilibrium decomposed state in a closed sys-
tem, the system does not demonstrate the two dis-
tinct compositions of the binodal curve, but rather
the whole composition spectrum. An example of such
a composition histogram in the steady state is shown
in Fig. 2, a. One may roughly interpret the composi-
tions corresponding to the minimum and maximum
of this histogram as a “smeared”binodal – typically,
these marginal compositions are quite close to the
two peaks of the mentioned histogram.

2) Typically, marginal compositions are close but
different for two different alloys with different com-
positions of the incoming flux. It means that, strictly
speaking, for an open system, the rate-dependent
binodal is not a curve, but rather something like a
“smeared” curve, or, in other words, a “bunch” of
binodals. An example of such a bunch is shown in
Fig. 2, b.

3) If the composition of the incoming flux belongs
to the interdome region (beyond the spinodal, but
within the binodal), it, indeed, leads to the decompo-
sition (if pre-existing structures are used as the initial
condition), while another part shows a full absence of
decomposition. In this sense, the rate-dependent bin-
odal is “smeared”, like the size-dependent binodal for
nanoparticles [25–27].

5. Rate-Dependent Spinodal – Instability
in Respect to Infinitesimal Perturbations

In full analogy with subsection 3.2, for the open sys-
tem, the criterion for absolute instability and subse-
quent decomposition is reduced to the positive sign
of the following derivative:

𝜕 ln𝐴

𝜕𝑡𝑡
= −𝜐 + 4

[︃
1− cos

(︂
𝑞𝑥

𝑎

2

)︂
cos

(︂
𝑞𝑦

𝑎

2

)︂]︃
×

×

{︃
8𝐸mix

𝑘𝑇
𝐶dep

(︀
1− 𝐶dep

)︀
𝑓(𝑞𝑥, 𝑞𝑦)− 1

}︃
, (19)

(where 𝑓 is determined by Eq. (17))
This means that, at a fixed composition of the de-

position flux and a fixed temperature, the alloy can be
stabilized against the decomposition by the velocity:

𝜐 > 𝜐critical = max (in respect to 𝑞𝑥, 𝑞𝑦)×

×

{︃
4

[︂
1− cos

(︂
𝑞𝑥

𝑎

2

)︂
cos

(︂
𝑞𝑦

𝑎

2

)︂]︂
×

×
[︂
8𝐸mix

𝑘𝑇
𝐶dep (1− 𝐶dep) 𝑓(𝑞𝑥, 𝑞𝑦)− 1

]︂}︃
. (20)

In Appendix B, we show that the maximum is reached
for concentration waves along the diagonal direction
⟨110⟩, q =

(︀
𝑞√
2
, 𝑞√

2
, 0
)︀
, cos2

(︀
𝑞𝑎

2
√
2

)︀
= 𝑊+1

2𝑊 , (here 𝑊 =

= 16𝐸mix

𝑘𝑇 𝐶dep
(︀
1− 𝐶dep

)︀
> 1).

Thus, the critical velocity is:

𝜐critical(⟨110⟩) =
(︀
𝑊 − 1

)︀2
𝑊

. (21)
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From Eq. (21), we obtain the velocity-dependent spin-
odal curve for the open system:

𝑘𝑇

4𝐸mix
=

4𝐶
(︀
1− 𝐶

)︀
1 + 𝜐

2 +

√︂(︁
1 + 𝜐

2

)︁2
− 1

. (22)

6. Morphology Maps
for Steady-State (Amplitude of
Initial Noise 0.001, Dynamic Zoise Zero)

If we use a homogeneous alloy with small initial fluc-
tuations in the composition (e.g., 0.01), the decompo-
sition in a steady-state occurs only for concentrations
and temperatures under the rate-dependent spino-
dals. These regions are divided into three types of fi-
nal steady morphologies: Gepard (spots), mixed mor-
phology Gepard + Zebra, and Zebra (layered mor-
phology – labyrinth or lamellae) – see Figs. 3 and 4.

7. Influence of Pre-Existing
Structures: Decomposition Beyond
Rate-Dependent Spinodal (as a Result
of Composition or Temperature Shift
from the Spinodal Region)

In closed systems, any alloy between the spinodal and
binodal demonstrates decomposition via the nuclea-
tion-precipitation-coarsening mechanism. Since wait-
ing for nucleation can take a very long time, one
may use pre-existing structures to initiate the de-
composition. In the case of an open system, to ac-
celerate the process, we use the structures formed
at a previous composition or temperature. By this
method, we were able to reach steady-state decom-
position only within a part of the region between the
binodal and spinodal, attaching to the spinodal – see
Fig. 5.

8. Hysteresis

As we can see from above, our model system exhibits
some memory of the final state with respect to the
initial conditions. This means that one can expect
the hysteresis effect, when each new morphology is
obtained in the system using the previous morphol-
ogy as the initial condition. In this case, we can shift,
step by step, the initial concentration (first from right
to left, and then in the reverse direction – subsec-
tion 8.1), or we can shift, step by step, the temper-

Fig. 3. Three main types of morphology in the case of
decomposed steady-state: Gepard (spots), and Zebra (lay-
ered morphology – labyrinth or lamellae), mixed morphology
Gepard+Zebra

Fig. 4. Map of steady-state morphologies, obtained with the
initial condition of a homogeneous alloy with small noise ampli-
tude under rates 𝜐 = 0, 0.1, 0.2, 0.3, 0.4, 0.5, ... . Here we choose
the mean value from the bunch of binodals

ature (first from low to high, and then from high to
low – subsection 8.2).

8.1. Compositional hysteresis

First, we obtain the steady-state pattern for compo-
sition 𝐶 = 0.50, simulated from homogeneous ini-
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Fig. 5. Violet regions beyond the spinodal demonstrating the
formation of steady-state gepard-like morphology on the basis
of pre-existing structures. Case 𝜐 = 0.1

tial conditions with a small initial noise amplitude of
0.001 at a constant temperature 𝑘𝑇/𝐸mix = 2. We
use this as the initial condition for the sample with
𝐶 = 0.49, and so on, until 𝐶 = 0.20. Then we start
to move back upward in concentration, finishing with
𝐶 = 0.50. In Fig. 6, we compare the steady-state mor-
phologies for 𝐶 = 0.50, obtained (first) from homo-
geneous initial conditions, and (second) as the last
step of the step-by-step increase im 𝐶 starting from
0.20. Two morphologies for 𝐶 = 0.49 are obtained
from 𝐶 = 0.50 (and down) and from 𝐶 = 0.48 (and
up), and so on. We observe a significant hysteresis
with respect to the direction of the concentration
shift: Going down from 0.50 preserves the Zebra mor-
phology until 𝐶 = 0.38, while going up preserves the
Gepard morphology up to 𝐶 = 0.47.

8.2. Temperature hysteresis

We used a constant concentration 𝐶 = 0.30 and
changed the temperature 𝑘𝑇/𝐸mix from 0.8 to 2.4
and then back down. We can observe that the type
of morphology remains almost the same (if we ig-
nore faceting), but the mean size and interparticle
distances differ (Fig. 7).

9. Evolution Criterion

For a closed system in a thermal bath at fixed temper-
ature and volume, the evolution criterion should coin-
cide with the second law of thermodynamics’ the time
derivative of the Helmholtz free energy should be neg-
ative and tend to zero, indicating an equilibrium state
with minimal free energy. Let us examine the behav-

Fig. 6. Comparison of steady-state morphologies for the same
composition, obtained from the pre-existing structures with
higher and lower concentrations of 𝐴 as the initial condition

ior of free energy in our simplified model system (and
check, if it reduces to the minimization of the free en-
ergy in the case of zero rate). In the general case, the
change rate of the free energy should consist of the
following terms: (1) in-flux of free energy correspond-
ing to the homogeneous solid solution 𝑉

𝛿 𝐹
{︀
𝐶dep

}︀
in

all sites, (2) out-flux of free energy with the actual
redistributed concentration −𝑉

𝛿 𝐹
{︀
𝐶(r)

}︀
, (3) change

rate due to atomic exchanges within the system

278 ISSN 2071-0194. Ukr. J. Phys. 2025. Vol. 70, No. 4



Simplified Open 2D Phase-Pattern Competition

[𝑑𝐹/𝑑𝑡]inner =
∑︀𝑁𝑍‖/2

(𝑖,𝑖𝑛)

(︀
𝜇𝐴𝐵(𝑖) − 𝜇𝐴𝐵(𝑖𝑛)

)︀
𝑑𝐶𝑖,𝑖𝑛

𝑑𝑡 ,

where 𝑑𝐶𝑖,𝑖𝑛

𝑑𝑡 is a partial change rate of site “𝑖” oc-
cupancy by 𝐴 (and simultaneously the partial change
rate of site “𝑖𝑛” occupancy by 𝐵 due to exchange only
between these two sites:
𝑑𝐶𝑖,𝑖𝑛

𝑑𝑡
= −𝐶𝐴(𝑖)𝐶𝐵(𝑖𝑛) Γ𝐴𝐵

(︀
𝐴(𝑖) ↔ 𝐵(𝑖𝑛)

)︀
+

+𝐶𝐵(𝑖)𝐶𝐴(𝑖𝑛) Γ𝐴𝐵

(︀
𝐴(𝑖𝑛) ↔ 𝐵(𝑖)

)︀
.

As shown in Ref. [8], [𝑑𝐹/𝑑𝑡]inner can be reorganized
to the form:

[𝑑𝐹/𝑑𝑡]inner = −𝜈0 exp

[︂
−𝐸𝑠

𝑘𝑇

]︂
×

×
𝑁𝑍‖/2∑︁
(𝑖,𝑖𝑛)

(︁
𝜇𝐴𝐵(𝑖)− 𝜇𝐴𝐵(𝑖𝑛)

)︁{︂
exp

[︂
𝜇𝐴𝐵(𝑖)

𝑘𝑇

]︂
−

− exp

[︂
𝜇𝐴𝐵(𝑖𝑛)

𝑘𝑇

]︂}︂
× 𝐶𝐵(𝑖)𝐶𝐵(𝑖𝑛)×

× exp

[︂
𝐸𝐵(𝑖) + 𝐸𝐵(𝑖𝑛)

𝑘𝑇

]︂
,

which is similar to the expression in Boltzmann
derivation of the H-theorem and is always nega-
tive. Thus:
𝑑𝐹

𝑑𝑡
=

𝑉

𝛿

[︁
𝐹
{︀
𝐶dep

}︀
− 𝐹

]︁
+
[︁
𝑑𝐹/𝑑𝑡

]︁
inner

,[︁
𝑑𝐹/𝑑𝑡

]︁
inner

≤ 0

for a closed system at fixed 𝑇 . This property can be
reformulated as{︂
exp

[︂
−𝑉

𝛿
𝑡

]︂
𝑑

𝑑𝑡
exp

[︂
𝑉

𝛿
𝑡

]︂}︂(︁
𝐹 − 𝐹

{︀
𝐶dep

}︀)︁
≤ 0. (23)

Equation (23) is a generalized evolution criterion for
our model of the open system.

10. Possible Modification
of the Model – Single Plane Instead
of Two Planes

(︀
𝑍‖ = 4, 𝑍⊥ = 0

)︀
The model can be simplified further, if one consid-
ers not only exchanges, but also interactions within
a single top plane. Elementary derivations (similar to
Appendices A and B) lead to the following equations
for the critical non-dimensional velocity and the rate-
dependent spinodal:

𝜐critical
(︀
single top plane

)︀
=

(︀
𝑊 − 2

)︀2
2𝑊

, (24)

Fig. 7. Comparison of steady-state morphologies for the
same temperature, obtained from the pre-existing structures
for higher and lower temperatures as the initial condition

Fig. 8. Comparison of morphology map for models with two
planes and single plane. One may see that after rescaling to
non-dimensional temperature 𝑇/𝑇crit the maps practically co-
incide(︂

𝑘𝑇

2𝐸mix

)︂
single top plane

=
4𝐶

(︀
1− 𝐶

)︀
1 + 𝜐

2 +

√︁(︀
1 + 𝜐

2

)︀2 − 1
. (25)

Figure 8 shows a comparison of the mapping of pat-
terns as a function of temperature and deposition rate
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a. Two top planes

b. Single top plane
Fig. 9. Ratio 𝑉1 of the scatter of distances to mean distance
among nearest 6 neighbors, and ratio 𝑉2 of the scatter of cluster
sizes to the mean size, as the functions of reduced temperature
(𝑘𝑇/4𝐸mix for case (a) and 𝑘𝑇/2𝐸mix for case (b)) at various
reduced rates 𝜐 from 0.1 to 0.5. Composition of the incoming
flux is 𝐶 = 0.3 in all cases here

Fig. 10. Typical morphologies, obtained for single-plane
model by Monte-Carlo method. Spots (Gepard), 𝐶dep = 0.2,
𝜐 = 0.1 (𝑃dep = 0.000083), 𝑘𝑇/𝐸mix = 0.4 (a); Mixed
(Gepard+Zebra), 𝐶dep = 0.3, 𝜐 = 0.1 (𝑃dep = 0.000083),
𝑘𝑇/𝐸mix = 0.4 (b), Layers – labyrinth (Zebra1), 𝐶dep = 0.5,
𝜐 = 0.1 (𝑃dep = 0.000083), 𝑘𝑇/𝐸mix = 0.452 (c), Layers –
lamellae (Zebra2), 𝐶dep = 0.4, 𝜐 = 0.1 (𝑃dep = 0.000083),
𝑘𝑇/𝐸mix = 0.557 (d)

for the main model with two planes and the model
with a single top plane. One can see that after rescal-
ing the temperature by a factor of 2, the maps prac-
tically coincide.

11. Ordering of Patterns
with Change of Rate and Temperature

With increasing rate (velocity) 𝜐 and temperature
𝑘𝑇/𝐸mix the patterns have a tendency of ordering –
distribution of distances between nearest neighbors
and distribution of sizes become more narrow. We
checked it for gepard-like morphology in both mod-
els – initial one (with exchanges within single plane
but interactions in two planes), and in simplified
model (both exchanges and interactions within sin-
gle plane). First, we calculated the distances from the
cluster centers to the centers of 6 nearest neighbors for
each spot, then found the difference of maximal and
minimal distances among these six, then calculated
the ratio of this difference and average distance, and
then took average over all spots. Second, we calcu-
lated the sizes (number of atoms) of each cluster, then
found the deviation of size over all spots, and then
calculated the ratio of deviation and mean size. The
typical results are shown in Fig. 9 for initial model
(a) and for simplified model (b).

12. Monte-Carlo Version of the Model

So far, all simulations were conducted within the
framework of the non-linear mean-field self-consistent
atomic approximation KMF (Kinetic Mean-Field).
To build the Monte Carlo version of our simplified
model, which includes interactions within a single top
plane, we start with the standard Metropolis algo-
rithm for the exchange mechanism in a 2D lattice, but
add the probability 𝑃dep of replacing any atom with
a new atom of type 𝐴 with probability 𝐶dep and type
𝐵 with probability 1− 𝐶dep. The probability 𝑃dep is
proportional to the non-dimensional deposition rate:
𝑃dep = 𝛼𝜐. To find the proportionality factor 𝛼, we
calculated the critical temperature (top of the rate-
dependent spinodal) from Eq. (25):

𝑘𝑇crit

2𝐸mix
=

1

1 + 𝜐
2 +

√︁(︀
1 + 𝜐

2

)︀2 − 1

for 𝜐 = 0.1 – it was 0.642, and then in Monte Carlo
scheme, for this temperature and for 𝐶dep = 0.5,
found at which probability 𝑃dep we get the margin
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of stability (larger 𝑃dep – stable alloy, smaller 𝑃dep –
decomposition starts). Such fitting gave us

𝛼 = 0.00083. (26)

Typical morphologies, obtained by Monte Carlo at
various composition of incoming flux, at the same ve-
locity but varying temperatures, are shown in Fig. 10.

13. Conclusions

1. We developed a model of a 2D regular solid solution
for an open system, characterized by an additional
rate parameter – the deposition rate, 𝑉 . For non-zero
constant 𝑉 , this model system reaches a steady state,
rather than equilibrium.

2. We analytically derived and numerically vali-
dated the rate-dependent spinodal for alloys that are
entirely unstable with respect to any fluctuation. In-
creasing 𝑉 stabilizes the alloy, lowering the spinodal
curve, as shown in Eqs. (20) and (21).

3. If the initial system composition is nearly uni-
form with minor fluctuations, and the deposited
composition-temperature point lies below the rate-
dependent spinodal, the resulting state stabilizes into
one of two primary morphologies (Figs. 3 and 4):
“cheetah”(gepard-like, spot-like) or “zebra” (layered,
in the form of labyrinths or parallel lamellae). In a
narrow transition zone, a mixture of these two mor-
phologies emerges.

4. The rate-dependent binodal has been deter-
mined only numerically, by directly measuring the
marginal compositions in the asymptotic steady
states (Fig. 1). The “interdome region”in the phase
diagram (points beyond the spinodal, but within the
binodal) is subdivided into two subregions – see the
next conclusion.

5. In the before-mentioned intermediate regions
between the rate-dependent binodals and rate-depen-
dent spinodals, the structure of steady states depends
significantly on pre-existing structures (memory ef-
fect). For a homogeneous initial alloy with slight ini-
tial noise, decomposition is suppressed everywhere
beyond the rate-dependent spinodal. If the initial
structure is prepared by shifting composition or tem-
perature into an instability region and then return-
ing it beyond the spinodal after partial decomposi-
tion, the alloy’s behavior varies. Closer to the spin-
odal (but still beyond it), the steady state tends to-
ward a cheetah-type (gepard-like) decomposition; in

the remaining area between the spinodal and binodal,
the alloy stays uniform.

6. Our system shows both compositional and tem-
perature hysteresis: by using a previous structure as
the initial condition for a new simulation with an
altered deposition composition or temperature, we
demonstrate that steady states in alloys with the
same composition, but different initial conditions, can
lead to markedly different morphologies.

7. We derived a generalized evolution criterion
(Eq. (23)) for the free energy of our open system.

8. We also studied the properties of an even more
simplified model – when both exchanges and inter-
action energies are taken into account only within a
single top plane. The results practically coincide with
the main model after rescaling the temperature twice.

9. Ordering of patterns is found: In both models,
the distribution of reduced cluster sizes as well as
distribution of distances between nearest neighbors
shows a tendency to become more and more narrow
with increasing rate and temperature.

10. We also used the Monte Carlo version of the
simplified model. The results are qualitatively simi-
lar. A detailed analysis of the influence of noise on
hysteresis and memory (both thermal noise of atomic
jump frequencies and noise from the deposition flux)
will be published elsewhere.

11. The mean-field version of our model seems more
preferable for further investigation of the fundamental
physics of open systems, including kinetic equations
for transitions between different steady states due to
changes in temperature, deposition rate, or the initial
structure.
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APPENDIX A.
Absolute Instability Criterion
for Closed System (𝜐 = 0)

According to Eqs. (9) and (10), we are looking for a solution in
the form of a concentration wave with infinitesimal amplitude
𝐴 for two planes of the FCC lattice:

𝐶𝐴

(︀
𝑖, 𝑗, 𝑘 = 0

)︀
= 𝐶dep +𝐴 exp

[︁
𝐼
𝑎

2

(︀
𝑞𝑥𝑖+ 𝑞𝑦𝑗

)︀]︁
, 𝑖+ 𝑗 = 2𝑚,

(A1)

𝐶𝐴(𝑖′, 𝑗′, 𝑘′ = 1) = 𝐶dep +𝐴 exp

[︂
𝐼
𝑎

2

(︀
𝑞𝑥𝑖

′ + 𝑞𝑦𝑗
′)︀]︂×

×
1

2

(︂
cos

(︂
𝑞𝑥𝑎

2

)︂
+ cos

(︂
𝑞𝑦𝑎

2

)︂)︂
, 𝑖′ + 𝑗′ = 2𝑚+ 1. (A2)

We substitute Eqs. (A1) and (A2) into Eq. (8), expanding ev-
erything into a series over small 𝐴 and neglecting the second-
order and higher-order terms. For example,

exp

[︃
𝐸mix

𝑘𝑇

(︃
𝑍∑︁

𝑖𝑛′=1

𝛿𝐶(𝑖𝑛′)−
𝑍∑︁

𝑖′=1

𝛿𝐶(𝑖′)

)︃]︃
≈

≈ 1 +
𝐸mix

𝑘𝑇

(︃
𝑍∑︁

𝑖𝑛′=1

𝛿𝐶(𝑖𝑛′)−
𝑍∑︁

𝑖′=1

𝛿𝐶(𝑖′)

)︃
.

We get

𝜕𝛿𝐶(𝑖)

𝜕𝑡𝑡
= −𝑍‖𝛿𝐶(𝑖)+

+

𝑍‖∑︁
𝑖𝑛=1

𝛿𝐶(𝑖𝑛)−
2𝐸mix

𝑘𝑇
𝐶dep

(︀
1− 𝐶dep

)︀
×

×
(︃

𝑍∑︁
𝑖𝑛′=1

𝛿𝐶(𝑖𝑛′)−
𝑍∑︁

𝑖′=1

𝛿𝐶(𝑖′)

)︃
. (A3)

We multiply both parts by 1
𝐴

exp
[︀
−𝐼q · r𝑖

]︀
. Then

𝜕 ln𝐴

𝜕𝑡2
=

𝑍‖∑︁
𝑖𝑛=1

exp
[︁
𝐼 q · (r𝑖𝑛 − r𝑖)

]︀
− 𝑍‖ −

−
2𝐸mix

𝑘𝑇
𝐶dep

(︀
1− 𝐶dep

)︀
×

×
𝑍‖∑︁

𝑖𝑛=1

{︃ 𝑍‖∑︁
𝑖𝑛′=1

exp
[︁
𝐼 q ·

(︀
(r𝑖𝑛′ − r𝑖𝑛) + (r𝑖𝑛 − r𝑖)

)︀]︁
+

+

𝑍⊥∑︁
𝑖𝑛′=1

𝛿𝐶(𝑖𝑛′)
1

𝐴
exp
[︁
−𝐼 q · r𝑖𝑛

]︁
×

× exp
[︁
𝐼 q ·

(︀
r𝑖𝑛 − r𝑖

)︀]︁
−

𝑍‖∑︁
𝑖′=1

exp
[︁
𝐼 q ·

(︀
r𝑖′ − r𝑖

)︀]︁
−

−
𝑍⊥∑︁
𝑖′=1

𝛿𝐶(𝑖′)
1

𝐴
exp

[︁
−𝐼 q · r𝑖

]︁}︃
. (A4)

We naturally come to two kinds of structural factors related
to different sums – (1) over nearest neighbors within plane
𝑘 = 0 (𝑎

2
, 𝑎
2
), (𝑎

2
,−𝑎

2
), (−𝑎

2
, 𝑎
2
), (−𝑎

2
,−𝑎

2
), and (2) over near-

est neighbors belonging to down plane 𝑘 = 1 (𝑎
2
, 0), (−𝑎

2
, 0),

(0, 𝑎
2
), (0,−𝑎

2
):

𝑆1(q) =

𝑍‖=4∑︁
𝑖𝑛=1

exp
[︁
𝐼 q ·

(︀
r𝑖𝑛 − r𝑖

)︀]︁
=

= exp
[︁
𝐼
(︁
𝑞𝑥

𝑎

2
+ 𝑞𝑦

𝑎

2

)︁]︁
+ exp

[︁
𝐼
(︁
𝑞𝑥

𝑎

2
− 𝑞𝑦

𝑎

2

)︁]︁
+

+exp
[︁
𝐼
(︁
−𝑞𝑥

𝑎

2
+ 𝑞𝑦

𝑎

2

)︁]︁
+ exp

[︁
𝐼
(︁
−𝑞𝑥

𝑎

2
− 𝑞𝑦

𝑎

2

)︁]︁
=

= 2

{︂
cos

(︂
(𝑞𝑥 + 𝑞𝑦)

𝑎

2

)︂
+ cos

(︂
(𝑞𝑥 − 𝑞𝑦)

𝑎

2

)︂}︂
=

= 4 cos

(︂
𝑞𝑥

𝑎

2

)︂
cos

(︂
𝑞𝑦

𝑎

2

)︂
, (A5)

𝑆2(q) =

𝑍⊥=4∑︁
𝑖𝑛′=1

𝛿𝐶(𝑖′)
1

𝐴
exp

[︁
−𝐼 q · r𝑖

]︁
=

=

{︂
exp

[︂
𝐼 𝑞𝑥

𝑎

2

]︂
+ exp

[︂
−𝐼 𝑞𝑥

𝑎

2

]︂
+

+ exp

[︂
𝐼 𝑞𝑦

𝑎

2

]︂
+ exp

[︂
−𝐼 𝑞𝑦

𝑎

2

]︂}︂
×

×
1

2

[︂
cos

(︂
𝑎

2
𝑞𝑥

)︂
+ cos

(︂
𝑎

2
𝑞𝑦

)︂]︂
=

=

[︂
cos

(︂
𝑞𝑥

𝑎

2

)︂
+ cos

(︂
𝑞𝑦

𝑎

2

)︂]︂2
. (A6)

In these terms, Eq. (A4) transforms into:

𝜕 ln𝐴

𝜕𝑡𝑡
= (𝑆1 − 4)×

×
{︂
1−

2𝐸mix

𝑘𝑇
𝐶dep

(︀
1− 𝐶dep

)︀ (︀
𝑆1 + 𝑆2

)︀}︂
=

= 4

[︂
1− cos

(︂
𝑞𝑥

𝑎

2

)︂
cos

(︂
𝑞𝑦

𝑎

2

)︂]︂
×

×
{︂
8𝐸mix

𝑘𝑇
𝐶dep

(︀
1− 𝐶dep

)︀
×

×
[︂
cos

(︂
𝑞𝑥

𝑎

2

)︂
cos

(︂
𝑞𝑦

𝑎

2

)︂
+

+
1

4

(︂
cos

(︂
𝑞𝑥

𝑎

2

)︂
+ cos

(︂
𝑞𝑦

𝑎

2

)︂)︂2]︂
− 1

}︂
.

APPENDIX B. Critical Velocity

𝜐critical = max
(𝑞𝑥,𝑞𝑦)

{︃
4

[︂
1− cos

(︂
𝑞𝑥

𝑎

2

)︂
cos

(︂
𝑞𝑦

𝑎

2

)︂]︂
×

×
[︃
𝑊

2

(︃
cos

(︂
𝑞𝑥

𝑎

2

)︂
cos

(︂
𝑞𝑦

𝑎

2

)︂
+

+

(︃
cos
(︀
𝑞𝑥

𝑎
2

)︀
+ cos

(︀
𝑞𝑦

𝑎
2

)︀
2

)︃2)︃
− 1

]︃}︃
. (B1)
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Let 𝑥 = cos
(︀
𝑞𝑥

𝑎
2

)︀
and 𝑦 = cos

(︀
𝑞𝑦

𝑎
2

)︀
,

𝜐critical = maxΨ(𝑥, 𝑦) = max

{︃
4
[︀
1− 𝑥𝑦

]︀
×

×
[︃
𝑊

2

(︃
𝑥𝑦 +

(︂
𝑥+ 𝑦

2

)︂2)︃
− 1

]︃}︃
. (B2)

The partial derivatives of Ψ with respect to 𝑥 and 𝑦 must
be zero at the maximum. Therefore, the combination 𝑥 𝜕Ψ

𝜕𝑥
−

− 𝑦 𝜕Ψ
𝜕𝑦

= 2𝑊 (𝑥2 − 𝑦2) = 0, indicating that the optimal con-
centration wave should be along the diagonal direction. Taking
𝑥 = 𝑦 in Ψ, one may easily find the maximum condition and
maximal value:

Ψ(𝑥 = 𝑦) = 4
[︁
1− 𝑥2

]︁[︁
𝑊𝑥2 − 1

]︁
= max =⇒ 𝑥2

opt =
𝑊 + 1

2𝑊
,

𝜐critical
(︀
⟨110⟩

)︀
= Ψ(𝑥opt) =

(𝑊 − 1)2

𝑊
. (27)
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mange. A multiscale procedure based on the stochastic ki-
netic mean field and the phase-field models for coarsening.
J. Appl. Phys. 126 (6), 065106 (2019).

12. A. Gusak, T. Zaporozhets, N. Storozhuk. Phase compe-
tition in solid-state reactive diffusion revisited – Stochas-
tic kinetic mean-field approach. J. Chem. Phys. 150 (17),
174109 (2019).

13. A. Titova, H. Zapolsky, A. Gusak. Memory effects dur-
ing co-deposition of binary alloys. Scripta Materialia 241,
115897 (2024).

14. Y. Lu, B. Derby, H. Sriram, K. Kadirvel, C. Wang, X. Liu,
Y. Wang. Microstructure development and morphological
transition during deposition of immiscible alloy films. Acta
Materialia 220, 117313 (2021).

15. M. Powers, J.A. Stewart, R. Dingreville, B.K. Derby,
A. Misra. Compositionally-driven formation mechanism of
hierarchical morphologies in co-deposited immiscible alloy
thin films. Nanomaterials 11 (10), 2635 (2021).

16. S. Akamatsu, S. Bottin-Rousseau, M. Şerefoğlu, V.T. Wi-
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СПРОЩЕНА КIНЕТИЧНА МОДЕЛЬ
ФАЗОВИХ ПЕРЕХОДIВ I КОНКУРЕНЦIЇ
СТРУКТУР У ВIДКРИТIЙ ДВОВИМIРНIЙ СИСТЕМI

Апроксимацiя регулярного розчину успiшно застосовується
в термодинамiцi та кiнетицi розкладання сплавiв, де вони
розглядаються як замкнутi системи. Ця апроксимацiя за-
безпечує якiсно правильний опис усiх стадiй як спiнодаль-
ного, так i опосередкованого стадiєю зародження розпадiв
сплавiв за однорiдних зовнiшнiх умов та без зовнiшнiх по-
токiв. У цiй статтi кiнетичну модель середнього поля для
вiдкритих (керованих потоком) систем розширено шляхом
включення розбiжностi вхiдних i вихiдних потокiв у основнi
рiвняння для ймовiрностей заселення. Найближчим експе-
риментальним аналогом цiєї моделi є формування структу-
ри пiд час спiльного осадження бiнарного сплаву в умовах
замороженої об’ємної дифузiї, але з прийнятною поверхне-

вою дифузiєю, де швидкiсть осадження 𝑉 є основним зов-
нiшнiм параметром. Однак деякi особливостi моделi також
можуть бути корисними для опису евтектичної та позаев-
тектичної кристалiзацiї. Для стацiонарних станiв такої вiд-
критої системи визначенi залежнi вiд швидкостi 𝑉 фазовi
дiаграми температура–концентрацiя. Область нестабiльно-
стi, що залежить вiд 𝑉 , пiдроздiляється на три рiзнi ста-
цiонарнi морфологiї: “гепардоподiбнi” плями, “зеброподiбнi”
смуги (ламелярнi та лабiринтовi структури), та їх комбiна-
цiї. Ця морфологiчна карта залежить вiд початкових умов,
проявляючи ефекти пам’ятi та гiстерезис. Це означає, що
на вiдмiну вiд стану рiвноваги у замкнутiй системi, яка дiє
як атрактор для шляхiв еволюцiї, стацiонарнi стани керо-
ваних потоком систем можуть не бути атракторами.

Ключ о в i с л о в а: вiдкрита система, керованi потоками
фазовi переходи, спiнодальний розклад, формування стру-
ктури, залежна вiд швидкостi фазова дiаграма, гiстерезис.
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