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CRITICAL TEMPERATURE DETERMINATION
FOR SIMPLE FLUIDS: AN ANALYTICAL APPROACH
BASED ON COLLECTIVE VARIABLES METHOD

An explicit equation for the liquid-vapor critical temperature of simple fluids is derived within
an analytic approach — the method of collective variables with a reference system. This equation
is applied to calculate the critical temperature values for several hard-core van der Waals
fluids. The study also examines how the critical temperature depends on parameters of the
interaction. Specifically, it is observed that, as the range of attractive interaction decreases,
the critical temperature decreases as well.
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1. Introduction

Nowadays, computer simulations seem to be the most
common tool to study the equilibrium properties of
simple fluids. Still, analytic theories that enable the
calculation of thermodynamic properties for many-
particle interacting systems remain invaluable, as
they may provide physical understanding that might
otherwise be missed. One such theory is built around
the collective variables (CV) method [1] with a refer-
ence system (RS) [2]. A general overview of this ap-
proach and the results obtained in its framework for
liquid systems near the liquid-vapor critical point can
be found in [3]. For an overview of the general state
of the physics of fluids, we refer to [4, 5]. In this pa-
per, we focus on the details of determining the critical
temperature and how the parameters of the attractive
interaction affect this temperature.

The structure of this paper is as follows. In Sec-
tion 2, we present a functional of the grand parti-
tion function (GPF), with all coefficients explicitly
defined. Then we proceed with the “layer-by-layer” in-
tegration of that functional to obtain a sequence of
effective block Hamiltonians, each characterized by
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its own coefficients. After the result of the integra-
tion over n layers is written down in a generic form,
we pass to the analysis of the recurrence relations
between the effective Hamiltonian coefficients. As a
result, we find the fixed point solution, write the re-
currence relations in the linear approximation around
the fixed point, and find a condition that leads to the
equation for the critical temperature. In Section 3, we
briefly discuss the interaction potentials and applied
approximations. In Section 4, we calculate the criti-
cal temperature for different hard-core (HC) van der
Waals fluids using the derived expression and com-
pare the obtained values with known results for the
considered models.

2. Grand Partition
Function in the Representation
of Collective Variables

The GPF of a simple many-particle interacting sys-
tem can be represented as [2, 6, 7]

L- (1)

Here =g is the GPF of a RS, which is assumed to be
known. Z¢ is a short-wave contribution to the GPF
with wave-vectors |k| > By, By being the cut-off pa-
rameter. The quantity Z; denotes long-wave contri-
butions to the GPF and is the object of our inves-
tigation in this paper. In our previous paper [7] we
provided very detailed derivation of the expression
for =1, (see [8] for even more details) and presented
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it as follows:
2L = joQ(My, My)™N0 exp (90) =4, (2)

where jo = \/§N0_1, Ny being determined in (4) be-
low, Q(f)ftg,i)ﬁ@ and M, are explicitly given in Ap-
pendix A.

The quantity E(Ll) in the approximation of the so-
called p* model is given by

- . 1
= = /eXp (u o= 3 zk: da (k) pxp—x —
k<Bo

Z Pky -+ Pk4§k1+...+k4> (dp)No' (3)

ki,....kq
ki<Bo

ay
4N,

Here, do(k) = as + ﬂ{{;k, (3 being the inverse tempera-
ture, V' the volume, dy the Fourier component of the
long-range part of the interaction potential. Quanti-
ties p*, as and a4 are functions of the RS particle
density p, temperature T, and microscopic parame-
ters of the interaction potential. They are explicitly
presented in Appendix A. The quantity p* also lin-
early depends on the chemical potential u.

The wave vector k takes on Ny values in a sphere
of radius By, so that

B

Thus, the number of variables to be integrated over
is equal to Ny

/
(dp)™o =dpo [] dpfdus
kSkBo

where pj, and pj, are the real and imaginary parts of
the CV px = p{ —ip§, respectively '. The ‘prime’ sign
over the product means that the wave-vector takes on
values only form the upper semi-sphere, i.e., k, > 0
and |k| # 0.

-

Traditionally, the collective variables are denoted by py, and
the element of integration over CVs is denoted by (dp), while
the particle density is denoted by p. We hope that it is clear
from the context when p is understood as the number density,
and when it is related to CVs.
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The following simplification is used for the Kro-
necker symbol in (3)

1 : 1 .
S = — /e—lkr dr = — e_lklo.

The summation over 1y implies that 1y takes on Ny
values in real space corresponding to the Ny values
of the wave vector k in a sphere of radius By in the
reciprocal space. This is called a spherical approxima-
tion for the first Brillouin zone. It is assumed that a
proper correspondence can be established between a
spherical Brillouin zone and a structure in real space
by analogy to how simple cubic lattice corresponds to
its Brillouin zone in the Ising-model problem [9].

In what follows, we also will understand that 1 € Ag
corresponds to vectors k such that & < By, 1€ A; to
k < Bi, and, in general, 1 € A,, to k£ < B,. Here,
B, = By/s", and s is the renormalization parameter
to be introduced later.

The expression (3) formally coincides with the ex-
pression for the partition function functional of the
3-dimentional Ising-like model in an external field
[10,11]. It is not surprising with regard for that both
the simple fluids and the Ising model belong to the
same class of universality. One can go even further
and consider the idea of a global isomorphism and its
applications [12,13].

A necessary condition for the functional (3) to give
rise to a critical-point solution is p* = 0, which leads
to a line of critical temperature dependence on the
chemical potential u (at some value of the RS particle
density p.) [7].

We are going to integrate (3) following the method
developed for calculation of the partition function of
the 3-dimentional Ising-like models [9, 14, 15]. The
main idea is to divide the interval [0, By] into sub-
intervals (B, Byl, (Ba, B1], (B3, Bs] and so on, where
By = By/s, By = Bi/s = By/s?, or, in general,
B,, = By/s", s being the renormalization group pa-
rameter, s > 1. Variables px with B; < k < By are
said to belong to the first layer, py with By < k < Bj
to the second one, and, continuing in the same man-
ner, px with B,, < k < B, _1 to the n-th layer. The
integration is performed iteratively, starting with in-
tegration over the CVs of the first layer, then over
the second one and so on. The number of variables
to be left after the integration over the first layer
is Ny = No/s® = (B3V)/(2n?s3). Thus, the num-
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ber of variables integrated out in the first iteration is
No— Ny = No(]. — 873).

To factorize the integrals, the Fourier transform Py
of the long-range part of interaction potential is re-
placed with its average value over each interval:

o — ®p, p,, Bi<k< B
(i)BZ;Bl7 By <k < By;
g, 5, ., Bu<k< B,

The particulars of this averaging are not so impor-
tant to outline the method of layer-by-layer integra-
tion. Thus, we will return to them later, when we
present some numerical and graphical results. Note
that we postpone the specifying of the interaction po-
tential details to a later stage of the paper. For now,
we just restrict it to a form that it can be (quite
freerely) separated into short-range repulsive and
long-range attractive counterparts. The properties of
the short-range one are assumed to be known. One
of the required properties for the long-range part is
that it possesses a Fourier transform, and the long-
wave limit (|k| = 0) of it takes on a negative value.

2.1. Integration over the first layer

Now, let us explicitly integrate over the variables of
the first layer. During the course of integration, we
closely follow steps described in [15].

The second term in the exponent of (3) is rewrit-

ten as
oxpoe= > da(k

> da(k

)Pkp—x +

k, k<Bo k, k<B;
+ E da(B1, Bo) pxp—xk;
k, B1<k<Bj

where d2(B1, Bo) = as + B(i)Bl,BO/V- The expression

for E(Ll)

- « 1
20 = /GXP (M Po— 3 Z da (k) prep—x —
k

k<B:
da(B1, Bo)
T 9 Z PkpP—xk —

k
B1<k<B,

is now recast

aq
4INo ki,..,kq
ki;<Bo
X (dp)™(dp) Mo

Pky - Pk45k1+..4+k4> X
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To distinguish the variables to be integrated over in
the first iteration, let us denote them by 7y, i.e., px —
— 1y for By < k < By. Let us also extend the number
of variables 7, with the help of §—functions:

[T o= [@)™ =

k,0<k<B;

x exp(2m > v — pic))
E<Bi

so that E(Ll) is rewritten as

20 = / (dp)™ exp <u*po -

- % Zk: (da(k) — da(By, Bo))ﬂkp—k> X
k<B;
X /(du)N1 exp (271'1 Z I/kpk> I(vy).
k, k<B,

Here the notation I (14 ) stands for the integral over ny

I(w) = /(dn)NO exp (27ri Z DM —

Kk, k<Bo
_dy B17Bo
Z M-k —
k, k<Bo
e D T Tk K
4'N0 100 kg Yki+..+ky |5
15---, Ka
ki<Bo

where the quantity 7y is introduced as

— VkakSBh
Y« =90, B, <k<B,

by analogy with the method described in [15].
Now, this integral can be factorized in the so-called
site variables

=~ 1 ikl
m = —F= e
D

For some useful relations for site variables, see Ap-
pendix B. Now, the integral takes on the form

I() = jy H /dmexp<27numl

ledo
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d (Bl,Bo) a4~4 o
9 771 4,771 =

=g 1Qn]"™ [T exp (— > (§Z§!D?”>

1eAo n>1

Restricting the resulting exponent to the 4-th power
in 71, we get

S. S
109 = 5@l [T o (- 5052 - 5131

1€Ao

In terms of v the result for I(vk) is expressed as
follows:

S
f(uk>=jol[c2fo]%exp<—£ >

K, k<B;
54 E Y Vi, 0
- kq - YkaVki+...+ky |-
4!N0 1 aVki+...+ky
ki,....kq
ki<B;

In the above formulae, the following quantities were
introduced:

3\,
Qf(]:\/%(> e 4U(0, 2);

a4

3
a@(z)a

S = (2n)? (3)/ Ule): 81 = (2m)*
2 = ds(By, Bo) (i)m.

The next step is to integrate, over vy, the following

integral
/(du)N1 exp (—27ri Z ViPk —

I(px) =
K, k<Bi

E VglV_x —

"k, k<B;
548_3
- 4!N1 E Vkl"'yk45k1+...+k4 =
ki,...,ks
ki<B1
=7 H /dul exp(—2winpy) X
leA,

S2 ~2 S4 ~4
X exp <—2' 4'33 141

Ni—1
where j1 =2 ", and this time

n =

pre®
= Z Vkei

k,k<B1

The result of the integration is

il eXp< > (RQ’; ﬁf”)

leA; n>1

I(px) = j1[Quo ]~
In the “p*” approximation, this takes the form

Ry o R4
Hexp( ey - 4;1/;;1) =

L(px) = j1[Quo ™

1eA;
. R
= j1[Qyo] " exp <—2,2 > prpor—
k,k<B;
Ry
4'N1 Z Pk - pk46k1+ +k4>
k'iéBl
Here,
/ a4 e 2/
Q.. = (2m)7 ! 283/4( ) eV 1U(0,y);
$o ( ) S0(1,) ( )
R 283/2 a4 1/2 U( ) R :S3a Llo(y)
2 QD(IE) Y); 4 4@($)7
3
_.3/2
y=s"U(x)y| ——.
CN\ @

This time, the approximation for the Kronecker sym-

bol is
Z exp(—ikl).
Liea,

Finally, as a result of the integration over the first

layer, we get, for ES—}),

H(l) - JO -71[Qf0}N0 [QW)]NI X

X /(dp)Nl exp <u*po —5 > ) (k) prep— —

k, k<B;
(1)
4'N1 klzk4pk1 pk46k1+ +ky )y
ki <By
where
ds (k) = al" + BV (5)
P
oD = Ry — B 1‘3/1,30 _
1/2 -
)
283/2<a4) Uy—ﬁ 31,30; 6
) v - (6)
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(1) R — s3a4 L,O(y) (7)
o(z)

These are recurrence relations between coeflicients of

an effective Hamiltonian before and after the integra-

tion over the first layer, establishing expressions for

coeflicients aél) and ail)
tive, the concise form is X

BB, B,

a5 = dy(By, Bo)N () — —17; (8)
ail) = s 3a4E(x). 9)

via as and a4. An alterna-

Here, the following quantities are introduced

yU(y)

o)
zU(z)’

p(x)

N(z) = E(z) =

2.2. Integration over the second layer

Following the outlined procedure, we can perform the
integration over the second layer with By < k < <
B;. As a result of such integration, the quantity = ( D

takes on the following expression:

(1) = .70 J?[Qfo]NO [Qwo]Nl [Qfl]Nl [Qipl]N2 X

. 1
X /(dp)Nz exp (,u pPo — B} Z de)(k)PkP_k—
k, k< B>
(2)
4‘N Z Pk - pk46k1+ ks |y
2 ki,.... kg
ki <B2
where jo = \@er, and
ds? (k) = af?) + By /V; (10)
@ _ p) _ BBy _
Qs 2 %
(1) \1/2 .
a [0
= %/2 ((p(‘;l)) Ulyr) — 2R 1‘3/_2,31; (11)

2) _ p) _ 3,0 eW)
* top(an)

The other quantities are

3/2 aé(ll) 1/2U .
S < ($1)> (y1);
(y1)

R — a0 2w,
: “ o)
ISSN 2071-0194. Ukr. J. Phys. 2024. Vol. 69, No. 9

Ry =

Y1 =
1/2
(1) 3
r, = d2 (BQ,Bl) — .
D
4
. 1/4
Qfl - \/27T <(1)> ez%/4U(O,JZ1);
ay
a(l) 1/4
Q,, = (271,)71/253/4 <§0(43;1)> ey1/4U(O,y1).

The recurrence relations (10)—(12) link the coef-
ficients of an effective Hamiltonian before and after
the integration over the second layer, expressing coef-
ficients a( ) and af) via aél) and afll). They are anal-
ogous to Eqs. (5)—(7). Written in a concise form anal-

ogous to Egs. (8) and (9), they are

o
o) = & (Bo, BN () — D2E2EL, (13)
af) = s*3a$)E(m1). (14)
2.3. General result

for the layer-by-layer integration

Having noticed the pattern at the integration over
the first two layers, we are now ready to generalize
the result for an arbitrary number of layers.

—(1 —1 -
:'5:) =Jo 1]7LQ0Q1

. 1 n
X /(dp)Nn exp (u Po — ) Z dé )(k)pkp_k =

k,k<Bn

(n)
4IN Z Pley -+ Py Ok +. +k4>7

1, ka
ki<Bn

Qn—l X

Nn_
where j, = V2 1, and

d" (k) = af") + pie/V (15)

alV = Ré"_l) - % -

_ g (g@(; )))/ Ul - 220 )

o) = R = oV, i
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The other quantities are

Rgn) = s

RO — g3 ©(Yn)

v = o*Vlan) <so<in>>l/2’

1/2
ay

w

No )Nnt1.
Qn = ananpn*»l’

1/4

3

Qy, = V2w ((n)) U0, 2,);
ay

1/4
en /A 0,Yn).

_ —1/2 3/4 ain)
QW7L - (Qﬂ—) S

A concise form of the recurrence relations is as fol-
lows:

_ o
o = d" DBy, Byoy)N(wy_y) — D2 Pl B’{/’B"*l;
afln) = sigain_l)E(xn_l).

2.4. Recurrence relations

The general recurrence relations between coefficients
of effective block-structure Hamiltonians can be writ-
ten in the form

0 n 85, 5,
a"t = g >(Bn+1,Bn)N(xn)—%; (18)
afln—’_l) = sigain)E(xn). (19)

With the help of the following change of variables

re = dy(0)s?",
Uy = ai")s‘m
the recurrence relations become

Tnt1 = $2(ry + Q)N (z) — $%g;

(20)
Upt1 = SupF(zy).
Here
an(I)O q)BnJthn ,8‘1’07
o e
e ban ),
676

The recurrence relations (20) possess a fixed point
solution in the limit of n — oco. By definition, the
fixed point solution means

*, _ _ *
Thn4l =Tn =T 3 Unp+1 = Up = U

and hence

r* = s?[—q+ (r* + q)N(z*)],

From the last equality, it follows
sE(z*) = 1.

It is practical to chose z* = 0, which is equivalent to
limy, o0 dén)(O) = d5 = 0 at the fixed point and gives
s = s* = 3.5862. We will use this value of s to obtain
particular numerical and graphical results. From the
first recurrence relation, it follows

. N(z*) -1
T = 7(]*7_2
N(z*)—s
At z* =0, r* = —q, because
N(z) -1

lim =1.

P p——

Finally, from

. " +q
=3
/u*

we find the following expression for u*
" 3¢? 1-s2 7
u* = .
(z9)2 | N(z*) — 52

We can write down the coordinates of the fixed
point (for details on ®g, see Subsection 3):

R N2
rt = le‘?MF, ut = <B$O> a (21)
where
~ N@9 -1 _ _ 3 1—s2 V',
T = N —o—2d YT T2 * =) 1
N(z*) —s (z*)2 \WN(z*) — s

ISSN 2071-0194. Ukr. J. Phys. 2024. Vol. 69, No. 9
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We consider potentials with <i>0 < 0. Thus, we write
g = —[Po

Let us use the linear approximation for the recur-
rence relations (20)

r —r* T —TF
Upy1 — U Up — U
The elements of the linearized renormalization group

transformation matrix R are calculated by the for-
mulas

R = (%) = [+ (BE) ]

(22)

Ryy = (%) =5 {E(w‘*) - % (ﬁ?) z_z*]'

Here, the star refers to the fixed-point values, and
2 ON (z)
RY = -2 (1) ( ) )
12 2\/3( ) or S
OF
= o5 ()

ox

Note that the following relations were used for calcu-
lating the matrix elements:

o) _ VB (omy
orn)  Vur \Oun)  2u*

The eigenvalues for the matrix R are

1
B = 5{(311 + Ro2) +
1/2
+ [(Ru - R22)2 + 4R§2)R$)} }»
1
E, = 5{(311 + Ra2) —
1/2
— [(Rn — Rao)* + 4R§g)R$)} }
The eigenvectors for the matrix R are

Wy =Wn (}%1)’ Wi =Wy ({{),

ISSN 2071-0194. Ukr. J. Phys. 2024. Vol. 69, No. 9

where constants Wy; and Wy, are to be determined,
and quantities R and R; are defined as

R 172 500
RfE2_R11 = (u*)"/*R"™,
Ei— R oy
Ry = 1R12 1L _ (+)-1/2R(0)

with .
po _ Ty
Ey — Ry’
RO _ Ey — Ryy
= 0
R{)

Thus, the solution to the linear recurrence rela-
tions (22) can be written as

(i 2h) = Wi B + b WaE, (23)

where ¢] and ¢}, are some constants. We arrive at the

following equations for 7, and u,:

T =7"+ 1 ET + coREY,

Un = 0 + L RAET + 2B, (24)

where ¢; = Wiic) and ¢g = Waach are to be deter-
mined from the initial conditions at n = 0:

00
0 2024-7,

that leads to

Up = A4,

cp = (ro—r"—(up—u") R)D™,
ca = (up—u* —(ro—r*)R1)D7 1,
where 5 5
D=1-RR=_1""2

! Ry — Es

Numerical values of coefficients we have defined so
far are presented in Table 1.

Table 1. Numerical values for universal
coefficients calculated at * = 0. These are
independent of either the interaction potential
or the potential averaging details

during the layer-by-layer integration

st R Ras RY R
35862 | 7.6315 | 1.0000 3.8502 1.1753
B Es D RO R("
82552 | 0.3763 | 1.0860 | -0.5307 | 0.1620
677
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3.57

31 A=2.00

:

1.5

\ A=1.50

-
1 A=1.25
-
p
0.|10 04‘15 04‘20 0.25 OA'30 0A|35

Critical temperature from Eq. (25) versus reduced density p*.
As an example, the square-well potential is used with different
values of parameter A (for details, see Section 4). The vertical
line corresponds to the critical density p% = 0.249 from [6].
Intersection of this line with a line T} = T} (p*) determines
the critical temperature for particular potential

The fixed point solution should obey the recurrence
relations at the critical point. Since F; > 1, it follows
that the condition

Cl( )—0

must be true. In the explicit form, ¢; is written as

_F_Rm)\/g)@Jr

asRO [ B|Dy|
et (3

and we arrive at the equation for the critical temper-

Cc1 = CLQ—(].

D—l

ature
_F_RO 5|‘I’0|
(1 ! f)(( %
0}
B 2ﬂ| 0|+G4R —0

4 Va

which is a quadratic equation for B|®o|/V. From

two solutions to this equation, we select the one

that gives positive value for the critical temperature
c* = kBTC/{:‘S

) _7F_ RO /T

T::@ 2(1 — 7 — RO/a) (25)
Voay+fa3 — 19E2 (1 — 7 — RO)V/a)

678

We have obtained an explicit expression for the
critical temperature in terms of the Fourier transform
of the long-range part of the interaction potential in
the long-wave limit, i.e., at |k| = 0, of coefficients as
and a4, which are calculated only based on the RS,
and on the details of averaging the potentials along
the layer-by-layer integration.

Note also that the value of the critical tempera-
ture depends on the density of the RS. One possi-
ble approach to find the critical value of p. is from
the condition that the average number of particles
of the RS is equal to that of the whole system
(N)rs = (N), see [7] for details. This condition is
essentially a mean field approximation for the critical
density [16, 17], but since the dependence of T on p
is smooth, see Figure, we will use the critical value
of pf = 0.24912 found from this condition in [6] (ex-
pressed there via critical value of the packing fraction
Ne = gpe = 0.13044).

In Section 4 we will calculate numerical values for
T following from Eq. (25) for a few model systems
of type “hard spheres with long-range attractive tail”,
and compare the results obtained from our analytic
approach with known results from other works. For
the HC system, we employ the Carnahan—Starling
approximation [18] to calculate quantities as and aq,
which enter the equation (25) and are explicitly given
in Appendix A. But first let us discuss the details
of interaction potentials and applied approximations
for them.

3. Interaction Potentials.
Parabolic Approximation

The potential energy of the inter-particle interaction
is written in the form

(NN
Z S winy) + 32 2 80ry).
i=1 j=1 =1 j=1
i#j i#]

Here ¥(r) corresponds for the short-range repulsive
interaction, and ®(r) for the long-range attractive
interaction. In this work, the HC potential is taken
for W(r)

\I’(T) — {OO, r S g,
0, r>o,

where o denotes the HC diameter. The long-range
term ®(r) is chosen so that it possesses a potential

ISSN 2071-0194. Ukr. J. Phys. 2024. Vol. 69, No. 9
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well at r > o

B(r) — {0, r<o,

o), r>0o (26)

where ¢(r) denotes the attractive part of the interac-
tion and is chosen in the form of a few widely used
potentials later. Separation in (26) is not the only way
to select the form for ®(r) inside the HC region. One
popular approach is the Weeks—Chandler—Andersen
(WCA) regularization originated from [19], according
to which one has

‘I)(T) — {_€a rSrm,

o(r), r>o 27)

where 7, is the coordinate of the potential mini-
mum. We use the WCA regularization scheme for
most of the potentials considered in Section 4.

It is additionally assumed that the attractive part
of the interaction potential possesses a well-behaved
Fourier component dy such that:

1 A 1 A
— d ikr _ d zkrdk
=y Zk O / ke

and

Py = /@(T)e_ikrdr.

Converting to spherical coordinates, and integrating
over the angle variables, one arrives at

B(k) = 4;/7@( ) sin(kr) dr.

0

(28)

Several model potentials will be considered for ¢ in
the next Section 4.

To proceed with analytic calculations of the criti-
cal temperature and in order to get some numerical
results, let us apply the so-called parabolic approxi-
mation for the Fourier component of the interaction
potential

By = Do (1 — 20°k?),
where

o2 — L 92d,,

20y Ok |
Then we select the cut-off parameter as
1

T
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By =

For (i> B
follows

. . 1 —2
®p,...,8, = Po (1 - 52"+25>

and for g one obtains
Bbg
% q,
with ¢ = 0.5389.
In the case of spherical averaging

o, Pudk <I>kdk

wi1,Bns 0 the case of arithmetic average, it

1452

bp

n+1;B
fB71+1
q>0 (1 — 202k2)k2dk
Joms, (29)
an+1 k2dk
one gets
. . 0, 3(1—579)
® =dg (1 —s72"
and, for q,
_ BP . 3(1-s77)
q_ V 9 q_5(1_3_3)7

with § = 0.6123 at s = s*.

For convenience, we gathered the numerical values
of coefficients depending on the potential averaging
details in Table 2

4. Results. Critical Temperature
for Model Interaction Potentials

In this section we present numerical results for crit-
ical temperature calculated by Eq. (25) for several
HC van der Waals models [20]. We consider the fol-
lowing potentials as the long-range attractive part of
the whole interaction: the Morse potential, square-
well potential, Yukawa potential, and Lennard-Jones

Table 2. Numerical values for non-universal
coefficients calculated at * = 0. These are
dependent on the details of potential averaging
during the layer-by-layer integration

Averaging q 7 U
Arithmetic 0.5389 0.5389 0.6890
Spherical 0.6123 0.6123 0.8894
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6-12 potential. For potential averaging, we apply the
spherical one (29).
We start with the Morse potential given by

(bM(r) —¢ {e—Q(T—RD)/a _ 2e—(T—R0)/(X}.

This potential is characterized by the ratio of its pa-
rameters Ry/a. With increasing Ry/«, the range of
interaction decreases, or, in other words, the potential
well becomes narrower. Its Fourier transform is

1 efto/a ]

Mo 3 _Ro/a
=1 0 -
k fmeate {(1 tak?)? (41 a?k2)?

and the Fourier transform <i>k is

<i>k = —16mea’ x

X _ E+L cos(ko) —
14+ k%202 \ao 1+ k202 7

1 o
4+ k20? <a *y + k2a2) cos(ko) +
o/ o 1—k2a?\ sin(ko)
1+ k2a? (a 1+ k2a2> ko

Table 3. Critical temperature
for different values of Ro/c

HC Morse
Ro/a T
2.0 4.2852
2.5 2.1593
3.0 1.3418
3.5 0.9396
4.0 0.7096
4.5 0.5641
5.0 0.4652

Table 4. Critical temperature of the HC
square-well fluid for different values of A

Square-well
A Tr (WCA) T [20]
1.25 0.78 0.75
1.50 1.26 1.25
1.75 1.92 1.88
2.00 2.79 2.72
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o/ 74 4 — k%a?\ sin(ko)
44+ k202 \ a4+ k2a2 ko |

The results for critical temperature for the HC Morse
model are presented in Table 3. It is seen from the re-
sults that the critical temperature decreases, as the
range of interaction decreases. This trend is a com-
mon fact [20,21]. We have not found other works that
study the HC Morse fluid, but we include these results
here, since it has been the model often considered in
the CV approach with HC as a RS [2, 6, 22], as well
as without employing any RS [23, 24].

We proceed with the square-well potential given by

w7 T§0—7
¢SW(7”) =4 —¢, og<r<o,
0, r>o.

This potential is characterized by the parameter .
Increasing A one increases the width of the square
well, and, thus, the range of interaction increases. Its
Fourier transform does not exist, and the Fourier
transform @y in this case is

R 3
by, = _% [sin (Aok) — Aok cos (Aak) —

— sin (ok) + ok cos (ok)].

We, however, will apply the WCA regularization for
the square-well potential in the HC region

_ )= r S g,
o = {¢>SW(7’), r>o,

since for such choice the agreement of critical tem-
perature values with known results for this model is
much better. The Fourier transform ®y in this case is

dreos
(ok)3

dp = — [sin(Acgk) — Aok cos(Aak)].

The results for such model are presented in Ta-
ble 4. The results are compared with the ones re-
ported in [20] for their perturbed virial expansion
of the second order (PVE2). The work [20] contains
more results for the HC square-well model obtained
by different methods, as well as references to com-
puter simulation results. As is seen from the results,
the critical temperature increases as the range of
interaction increases. Overall, the agreement of the
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critical temperature for the square-well potential ob-
tained within our approach agrees very well with the
known results for this model.
The next one is the Yukawa potential given by

v eo
¢" (r) = ——=exp[=A(r/o — 1)].
It is characterized by the parameter A\. With increas-
ing A the potential well gets narrower, thus, the range
of interaction decreases. Its Fourier transform is
3.2

e

(30)

dreo

by
d)k __)\2—|-0'2k2’

and the Fourier transform <i>k is

- 4reo’ sin(ok)
@k——m COS(O‘]C)"_)\ o'k' .
Applying the WCA regularization, we get
v -, T S g,
r)= 31
$ ) — T expl=A(r/o —1)], r >0, (81)
r
and, thus,
& Areo sin(ok) — ok cos(ok)
= —4r
’ (k)%
n (ok) + /\sm(ak)
7()\2—1—02]92) cos(o s :

The results for the critical temperatures of the HC
attractive Yukawa model (30) are presented in Ta-
ble 5. They are compared with the ones reported in
[21] (wherein other results for the critical tempera-
ture of the HC Yukawa model can also be found). As
is seen from the Table 5, the critical temperature de-
creases, as the range of interaction decreases. Our
results are reported for two cases, with and with-
out applying the WCA regularization. It is seen that
the critical temperature calculated without applying
WCA regularization tends to be lower compared to
the known results, while the one with applying it
tends to be higher.

The final potential we consider in this paper is the
Lennard-Jones one

o™ (r) = de [(o/r)"* = (o/r)°].

The HC Lennard-Jones fluid is defined in litera-
ture [25, 26] as

00, r<o,
d)LJ(T) = =) o<r S Tm,
de [(a/r)'? = (o/r)°], 7> 1m,
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Table 5. Critical temperature
of the HC Yukawa fluid for different values of A\

HC Yukawa
A Ty T (WCA) T [21]
0.5 6.15 7.24 7.009
1.0 2.07 2.69 2.486
1.5 1.16 1.69 1.634
1.8 0.90 1.41 1.228
2.0 0.79 1.28 1.031
2.5 0.59 1.07 0.836
3.0 0.47 0.94 0.722
Table 6. Critical temperature
of the HC Lennard-Jones fluid
HC Lennard—Jones
Tr (WCA) T [25]
1.43 1.375

where r = 2160, In this case, it is easy to apply
the WCA regularization

B(r) = {6, 7 < Tm,
4e [(o/m)2 = (o/7)%], 7 > rm.

We do not present the explicit formula for the Fourier
transform of the potential defined by (32), since it is
somewhat cumbersome, but its calculation by (28) is
straightforward. The calculated critical temperature
is present in Table 6. Result from [25] is given for
comparison.

(32)

5. Conclusions

By integrating the functional for the grand partition
function of a system of many interacting particles us-
ing the “layer-by-layer” approach, we have obtained a
sequence of effective block Hamiltonians, each char-
acterized by its own coefficients. Since the approach
is essentially analytic and the coefficients are explic-
itly known, we derived the recurrence relations. The
analysis of these recurrence relations revealed the ex-
istence of a fixed-point solution. We determined the
coordinates of the fixed point and presented a solu-
tion linearized near the fixed point. By requiring that
the linearized solution equals the fixed-point solution
at large iteration numbers n, we derived an explicit
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equation for the critical temperature T} as a function
of the particle density p*. Using the critical density
value from another work [6], we found the critical
temperature that depends only on the parameters of
the attractive part of the interaction potential. Based
on this equation, we calculated the critical temper-
ature for several hard-core van der Waals fluids and
compared these values with known results for the con-
sidered models. The results confirm that the critical
temperature of simple fluid models decreases, as the
range of attractive interaction decreases.

R.V. Romanik acknowledges financial support from
the National Research Foundation of Ukraine (Project
No. 2023.03/0201) and is grateful to O.L. Ivankiv for
comprehensive support, and to M.P. Kozlovskii for
fruitful scientific discussions.

APPENDIX A.
Explicit Expressions for Quantities
Entering the GPF Functional

Here, we explicitly present quantities entering the GPF expres-
sions (2) and (3).
First, for the coefficients in (2) one has

~ - ms3\ . oo (N)o
Mo = (N)o [mo + (h+m—i)m1f%<v>om§ )
- _ mims mgmg m§
T T T om2 T m2’

4 my my
- moms mg
my = m - — + —5,

my 3my

where (N)g is the average particle number for the RS, and

mp = 1,

my = 14 ph®,

mz = 1+ 3pr(2) + p2fb(3),

my = 1+ 7pil,(2) + 6p2i1(3) + p3i1(4).

Here h(") are the Fourier transforms of the total correlation
functions at |k| = 0, and m,, are the n-particle structure fac-
tors at |k| = 0, both determined for the RS. They are functions
of the RS particle density. More detailed investigation of quan-
tities m,, and h(") was performed in [7, 8].

The quantity h stands for

h = 6(#7“0)7

where p and po are the chemical potentials of the whole system
and of the RS, respectively.
The quantity Q(M2,M4) is determined by

Mg, M) = — 12 V2
Q(M2, 4)—ﬁ(m) e (0,9),
where

B (<N>0 ﬁ)1/2

- No |m4| ’
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8 m3
My =mg — 2,

2my
and U(a,y) is the Weber parabolic cylinder function [27].

Now, for quantities in (3) we have

3 1/2
= (N0<N>0|m4|> v,
“T No(Wyolma] 7
where
_ ULy
Uly) = U(0.9)’
e(y) = 3U°(y) + 29U (y) — 2.

By multiplying a2 by (N)o, and a4 by <N>g, we get quantities

that are functions of the particle density only
az = (N)oaz,
a; = (N)2as.
Finally, the quantity p* is a linear function of the chemical
potential p

m N P
pr= g™y Nogs
my 1%

APPENDIX B. Some relations for site variables

Here, we present some relations between sets of CV {pk,wk}

and their counterparts — site CV {p),@;}. The presented ex-

pressions are meant to be generic, so that the meaning of sum-

mation over k and over 1 are not particularly specified, while N

being the number of different values that k or 1 takes on. They

are usually specified more strictly in particular applications.
By definition

~ 1 —ikl
0 = — wie ,
=~

From this definition, the following equalities follow:
Z wip1 = Z Wk Pk -
1 k
>6t = Y enon
1 k

Wiy o Wiy Ok 4.4k >
1 ki,...,ka

D Wiy Wk Ob ey ot
Ki,.., kn

b

1
A=Y pro-
K
> Py POk o tss

1
~4
NE p =
1 ki,..., ka

o1 ~n __
N2 Zm = Z Py Py Oky+... 4k, -
1 ki, kn
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1.P. FOxnoscokuti, P.B. Pomanix

BU3HAYEHHA KPUTUYHOI TEMIIEPATYPU
[MPOCTUX IIJIMHIB: AHAJIITUYHUN TTIIXIT
HA OCHOBI METOAY KOJIEKTUBHIX 3MIHHNX

B pamMkax aHaJIITHYHOrO MiZIXO/Ly — METOY KOJIEKTUBHUX 3MiH-
HUX i3 CHCTEMOIO BiJliKy — OTPHMAaHO sIBHE DiBHSHHS NI KPU-
TUYHOI TeMIepaTypu piiuHa-napa npoctux mwinHis. lle piBHs-
HHSI 3aCTOCOBAHO JIJIsl PO3PaxXyHKY 3HAYeHb KPUTUYIHOI TEeMIIe-
paTypH KinbKox TBepaocdepHux miauHiB Ban-nep-Baanbca. Ta-
KOXK OyJI0 JOC/IIXKEHO, SIK KPUTHUYHA TEMIEPATYpPa 3aJIEXKUTH
BiJl mapamMerpiB B3aeMozil. 30KpeMa, BUSIBJIEHO, IO 31 3MeHIIe-
HHSIM 00J1aCTi IPUTATAIBHOI B3a€MO/Iil KDUTUYHA TEMIIEPATYPa
TAKOXK 3MEHIIYETHCH.

Katowoei ca06a: TPOCTI INIMHUA, KOJEKTUBHI 3MiHHI, KpHU-
TUYHA TEMIIEPATypa.
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