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PHYSICAL PRINCIPLES
OF A FERROMAGNETIC GYROSCOPE
WITH NANOSCALE SENSITIVE ELEMENTS

Physical principles of applying modern nanotechnologies to develop nano-sized and energy-
efficient sensitive elements for control systems in small satellites have been considered. Of
practical interest is the creation of a ferromagnetic gyroscope. As its model, a periodic struc-
ture (a pseudocrystal) of coherent monodomain ferromagnetic quantum dots (FQDs) localized
in spherical nanocontainers, where they are expected to dwell in the quantum levitation state,
is proposed. Owing to the FEinstein—-de Haas effect, those FQDs would retain their angular
momentum over time. To control the pseudocrystal orientation in space, the pseudocrystal is
mounted on a movable platform located in an external two-component magnetic field (MF). The
static component of the MF is perpendicular to the pseudocrystal base, and the dynamic com-
ponent is perpendicular to the pseudocrystal lateral side. By analyzing the absorption spectrum
of the dynamic MF and its dependence on the pseudocrystal orientation in space, it is possible
to calculate the angular coordinates of the new pseudocrystal position, which are determined
by the relative orientations of the fized direction of the FQD’s angular momentum and the
vector of the external static MF.
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1. Introduction

Nanosatellites, i.e., ultra-small artificial satellites
of the CubeSat (cube satellite) standard, have re-
cently attracted increased interest. These are “cubes”
10 x 10 x 10 cm? in size and up to 1 kg in mass. Their
outer surfaces are equipped with solar batteries,
whereas the inside contains microelectronic power el-
ements, systems for receiving and transmitting sig-
nals, video cameras for making satellite images of the
Earth’s surface, and so forth. The disadvantages of
CubeSat satellites consist in that they are small and
possess limited energy capabilities. Their advantage
is a wider scope of research areas and technologies
that can be quickly implemented with relatively small
financial costs.
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In this connection, it is practically significant to
consider the possibilities of nanophysics and nan-
otechnology in developing nanosized and energy-
efficient sensitive elements for control systems in
small satellites. In this way, the main interest is the
creation of a ferromagnetic gyroscope with nanosized
sensitive elements.

2. Model of a Nanosized
Sensor for a Ferromagnetic Gyroscope

As a model of a ferromagnetic gyroscope, let
us choose N spherically symmetric nanocontainers.
Near the center of each of them, there is a ferro-
magnetic quantum dot (FQD) in the quantum lev-
itation state (see Appendix). In other words, spher-
ically symmetric objects with a characteristic size
d < 10 nm (see below) are created from a ferromag-
netic material. Those elementary structures compose
a layered periodic structure with cubic symmetry (a
ferromagnetic pseudocrystal with cubic symmetry).
In such a structure, the FQDs are arranged equidis-
tantly, with the distance a being equal to the diame-
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Fig. 1. Model of a ferromagnetic quantum dot

Fig. 2. A ferromagnetic quantum dot encapsulated into a
nanocontainer

Fig. 3. Schematic vector diagram of a ferromagnetic gyro-
scope

ter of the spherically symmetric container, where the
FQD is located, a = 2r( (see Figs 1 to 3).

After the technological implementation of the pseu-
docrystal, we obtain a matrix for the FQDs separated
from one another by a distance sufficient to assume
that only the magnetic dipole-dipole interaction takes
place between the FQDs. Under such conditions, the
issue of the influence of the pseudocrystal symmetry
on the pseudocrystal’s magnetic properties is elimi-
nated, i.e., the cubic symmetry of the pseudocrystal
is adopted only to specify the model.

396

In this work, we focus attention on the analysis of
the physical principles for the functioning of a fer-
romagnetic gyroscope with nanosized sensitive ele-
ments (see Fig. 1) that compose a three-dimensional
periodic, layered structure (see Fig. 3) of a given
volume V' (an artificial layered crystal consisting of
nanosized sensitive elements). In other words, the ob-
tained results of this research will have a qualitatively
schematic character.

As a starting point for such an analysis, we chose
the Einstein-de Haas effect [1-3] known from the
course of general physics. Its essence is that, during
the magnetization along a certain axis, a ferromagnet
acquires an angular momentum (an angular impulse)
L = const with respect to this axis, and the angular
momentum L is proportional to the magnetic moment
M of the ferromagnetic specimen.

Note that the authors of works [4,5] proposed to use
the classical Einstein-de Haas [1-3] and Barnett [6-
8] effects (the Barnett effect is, in a certain sense,
opposite to the Einstein-de Haas one) for construct-
ing ferromagnetic gyroscopes. However, in the case
of massive crystals, these effects, taking the small-
ness of their quantitative parameters, were of purely
academic interest. At the same time, in the case of
nano-objects with quantum properties, the situation
can be qualitatively different.

As was shown by theoretical and experimental
studies [9-14], the magnetic moment of atoms in fer-
romagnetic crystals, as a result of the spin-orbit in-
teraction and magnetic anisotropy, is substantially
lower than the sum of uncompensated Bohr magne-
tons (the spin magnetic moments of electrons) of the
same atoms. At the same time, a nanosized ferromag-
net with a characteristic size of 1 < d < 12 nm (and
containing from 10 to 10* atoms), due to a recon-
structing of the interaction and the dominant role of
surface atoms over bulk ones, becomes monodomain,
and its own magnetic moment approaches by mag-
nitude to the vector sum of uncompensated Bohr
magnetons of its atoms, thus becoming considerably
larger [11,12] in comparison with that in the case of
ferromagnetic crystal.

Ensembles of nanosized ferromagnetic formations,
which are characterized by extremely high specific
magnetization (significantly exceeding the specific
magnetization of the ferromagnetic crystal) in weak
external magnetic fields, as well as by the absence of
hysteresis, are called superparamagnets [11,13|. They
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can be considered as “big blocks” for creating new ma-
terials and devices.

To achieve the goal of the work, it is necessary

¢ to consider the structure of nanosized sensitive
elements and analyze their physical properties;

¢ to analyze the quantum states of nanosized sen-
sitive elements, which are induced by the Einstein—de
Haas effect;

¢ to consider the issue of quantum levitation of
nanosized sensitive elements in a spherical nanosized
container;

® to analyze the mechanism of monitoring a varia-
tion of the pseudocrystal orientation with respect to a
fixed direction of the magnetic moment of nanosized
sensitive elements owing to the conservation of their
angular momentum.

Nowadays, the ferromagnetic formations of a re-
quired nanosize are mainly constructed from ions of
transition elements. A lot of magnetic molecules are
known [1]., ].2] V15, Feg, Felo, Fego, MHQAC, MHG,
Mns, an d o thers. Note that the manufacturing
technology of nanosized ferromagnetic formations is
now well-developed because of their wide application
in medical and biological practice.

Let us also pay attention to the fact that nanoscale
formations composed of ions of transition elements
possess not only a magnetic moment, but also an un-
compensated electric charge.

As a model of a sensitive element for a ferromag-
netic gyroscope, let us consider a nanosized ferro-
magnetic sphere whose radius R is of an order of
1 nm < R <12 nm. Such a formation — it contains a
small (10+-10%) number of atoms; see Fig. 1 — is called
differently: a nanoparticle, a nanocrystal, an artificial
atom, or a quantum dot, because it still has quantum
properties. In what follows, the term “ferromagnetic
quantum dot” (FQD) will be used.

We assume that an FQD is encapsulated in a spher-
ical nanocontainer (see Fig. 2), the radius of which is
several dozen times larger than the FQD radius. The
FQD is in the quantum levitation state as a material
point that is located in a spherically symmetric po-
tential well [20]; see Appendix. The levitation of FQD
is necessary to exclude the influence of the environ-
ment on the FQD dynamics (as concerning friction,
it is completely absent in this case).

FQDs are interesting, because they possess an ad-
ditional internal degree of freedom, the monodomain
magnetic moment m, which is responsible for a wide
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variety of their properties and makes it possible to
monitor and control their state with the help of an
external magnetic field with the intensity Hp.

As a sensitive element of a ferromagnetic gyro-
scope, we propose to consider an FQD that, being
in the quantum levitation state, precesses in the ex-
ternal magnetic field, and whose magnetic moment
m is formed to a large extent by its uncompensated
spin subsystem.

A ferromagnetic gyroscope will be practically im-
plementable provided that the quantum angular mo-
mentum S (S = S| = NZ) of the FQD, which is
determined by the FQD’s spin subsystem consist-
ing of N uncompensated spins, substantially exceeds
the classical FQD’s mechanical angular momentum
ly = jowo. Here, Jy, = %mOR2 is the classical mo-
ment of inertia of a ferromagnetic sphere with the
inert mass mg and the radius R, which rotates at the
cyclic frequency of the classical Einstein—de Haas ef-
fect wg. Only provided this condition is satisfied, from
whence, the following inequality holds:

S

w o > wo, (1)
the magnetized FQD is in a state of rotational motion
at the frequency w; i.e., there arises the Einstein—de
Haas supereffect.

As a result, the mechanical angular momentum j
of the FQD, which is preserved, can be determined
by the formula

j=lo+S, ()

where S = const and 1o < S. Accordingly, we may as-
sume that the angular momentum vector of the pseu-
docrystal, J = const, is determined by the vector sum

N N
I=2 5=} S ®)
i=1 i=1

of uncompensated FQD spins, which was previously
known from experimental studies [11-14].
The magnitude of the FQD’s magnetic moment is
determined by the chain of formulas
28

m=upN = pp— = —75, (4)

is the Bohr magneton (the elemen-

tary magnetic moment of electron), and v = % is

the electron gyromagnetic ratio. According to formu-
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la (1), the FQD rotation frequency equals
S 5 Nh

YT T AmeR?

Let us evaluate the quantity w. It is obvious that
the quantities N and R are interdependent. Let us
find a functional relationship between them. For this
purpose, the FQD and its structural element will be
considered as spheres with the radii R and r,, re-
spectively. The relationships between their volumes
V and V,, respectively, and their inert masses mg
and mg, respectively, will be written as follows: V ~
~ NV,/k and mg ~ Nm,/k, where k is the number
of uncompensated spins in the FQD structural ele-
ment. Then the number N of uncompensated FQD
spins in the volume V and the quantity w have the
following representations:

RY 5 kh
N—k(n), w_4maR2' (6)
Let us make a quantitative evaluation of N and w
using the example of such an FQD structural element
as an iron atom, for which m, = 9.27 x 10723 g,
rq = 1.2 x 1078 c¢m, and k = 4. In this case, for
a FQD with the characteristic size R ~ 1 nm, we
obtain

N>1 w> wp. (5)

N ~4x72=289, w~143x 10" s71 (7)

It is essential that an FQD with R ~ 1 nm, which re-
mains in the quantum levitation state, rotates at an
angular velocity of an order of 10! s~! (inertial mo-
tion) only because it has the monodomain magnetic
moment m, without any energy costs (the Einstein—
de Haas supereffect).

To evaluate the magnitude B,, of the magnetic
field induction of the FQD associated with its mag-
netic moment m, let us use the equality B,,m ~ hw.
Whence, in view of formulas (1) and (4), we obtain

huw h
=05 T )

By order of magnitude, the induction of the magnetic
field of FQD, formula (8), has the following value:

B, ~ 5 x 10° Gs. (9)

B

Formula (9) testifies that the magnetic moment m
of FQD creates a substantial magnetodipole field,
which has to be taken into account in the further
calculations.
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Thus, we have found a physical justification for the
prospective application of FQDs as sensitive elements
in ferromagnetic gyroscopes.

The work [15] and the references therein are useful
for understanding the physics of artificial magnetic
materials. In those works, magnetic composites were
considered which can be created by embedding super-
paramagnetic nanoparticles into a liquid, polymer, or
solid simple cubic matrix.

When designing a device based on a really oper-
ating pseudocrystal model, the fact has to be taken
into account that the FQD is a quasi-classical ob-
ject, which should be isolated from external influences
by engaging that or another levitation mechanism. In
the specialized scientific literature, one can find the-
oretical descriptions of various mechanisms of levita-
tion of macroscopic objects. The most famous mech-
anism of levitation of macroscopic ferromagnetic ob-
jects is the Meissner effect [16-19]. It is the Meissner
effect that explains the levitation of a superconduc-
tor over a strong magnet (or a magnet over a super-
conductor). However, the implementation of levita-
tion of an ordered ensemble of FQDs on the basis of
the Meissner effect is not very promising due to its
technological complexity.

Bearing the purpose of this work in mind, as well as
from our viewpoint, more promising is the quantum
levitation of the FQD in a suitable nanocontainer,
with the latter playing the role of a deep potential
well for the FQD [20]. Such a model has not been pre-
viously considered in the scientific literature. In this
case, the problem of FQD isolation from the influ-
ence of the environment is solved automatically due
to the mechanism of quantum levitation of FQD in
the nanocontainer (see Appendix and Fig. 2).

From the application viewpoint, it is reasonable to
rigidly fix the lower face of the pseudocrystal at the
moving platform located in an external uniform mag-
netostatic field with the strength Hy. It is appropri-
ate to direct the magnetostatic field Hy perpendicu-
larly to the moving platform, where this pseudocrys-
tal is mounted.

Taking the law of conservation of the total FQD
angular momentum into account, J = const, a varia-
tion in the spatial orientation of the moving platform
will change the direction of the vector of the total
magnetic field induction B,es, which is a vector sum
of the magnetostatic field Hy and the magnetodipole
field B of pseudocrystal induced by the magnetic mo-
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ments m of FQDs (see below). In turn, monitoring
the induction of the magnetic field B,¢s will make it
possible to obtain data on the orientational dynamics
of the flying object.

In order to control the orientational dynamics of
the object flying over the geometric center of the
upper face of the pseudocrystal, it is necessary to
mount a magnetometer sensor. The latter is used to
measure the induction of the resulting magnetic field
B.,es = Hyp + B. As will be shown below, the compo-
nents of the induction vector of the resulting magnetic
field B,¢s contain information on the spatial orienta-
tion change of the pseudocrystal, i.e., the data on the
orientational dynamics of the flying object.

3. Analysis of Pseudocrystal
Magnetization Dynamics

Let us introduce a Cartesian coordinate system
OXY Z, with the origin point O located at the ge-
ometric center of the pseudocrystal and the axes
XY, and Z being parallel to the pseudocrystal
edges. Denote the unit vectors of this coordinate
system as e.,e,, and e;. Let there be 2Ny 53 + 1
FQDs along the axes X,Y, and Z. Hereafter, Ni 23
are integer numbers. So, the total number of FQDs
in the pseudocrystal equals N = (2N; + 1)(2Ny+
+1)(2N3 + 1). The coordinates of each FQD are
determined by the radius vector r, = an, where
n = (ni,ng,n3) and n1o3 = 0,£1,£2,...,£Nq 23.
Taking the properties of FQDs [11, 12] and their re-
moteness from one another, it is admissible to as-
sume that there exists only magnetodipole interaction
between them.

In the selected coordinate system, the induction of
the magnetodipole field B,, = By(r) created by an
FQD with the coordinates r, can be written in the
form

m b(r -
|t —ry)?

rp)m

|r — ryl®

According to the superposition principle, the magne-
todipole field B, of the pseudocrystal can be written

J

c(y) + e *w(v)
eyezw(y) + es
ezezw(7y) — eys

R= v) e(y) +eyPw(y)
7) ezeyw(y) + exs(7)
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—~~

exeyw(y) — exs(y) eze;w(y) + eys(y)
eyezw(V) - 67;5(
c(y) +es*w(7)

as follows:
m D(r —

B, =-— E -
|3
— || — ry

For further calculations, it is pertinent to express vec-
tor (11) via the pseudocrystal magnetization

rn)m

11
|r — ryl® (11)

M‘l/;m or M:% (12)
in the following form:

By = —G(r)M, (13)
where

A 1 D(r —n)
— 43 _
G—azn: |r —n|3 3|r—n\5

is the geometric factor (the discrete demagnetizing
factor) of the pseudocrystal, and V = a®N is the
pseudocrystal volume.

According to the superposition principle, the induc-
tion of the magnetic field created by the pseudocrys-
tal in the magnetostatic field Hy is determined by the
formula

B..s = Hy + By. (14)
Since the magnetic moment of each FQD is propor-
tional to its conserved angular momentum, the mag-
netic moments of the FQDs will also retain their
directions in space, if the pseudocrystal orientation
changes. This means that due to the preservation of
the FQD angular momenta, the spatial orientation of
the vector By will be unchanged. At the same time,
if the pseudocrystal orientation changes, the vector
B,s = Hy + By will also vary, which makes it pos-
sible to trace the orientation change of the flying
object.

If the pseudocrystal orientation changes, the transi-
tion to a new coordinate system OX'Y’Z’ associated
with the pseudocrystal is described by the matrix

7) |5
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where s(y) = sin(y), () = cos(y), w(y) = 1—cos(),
the unit vector e = e, defines the direction of the

Z'-axis in the coordinate system OX'Y’Z’ and 7 is
the rotation angle of the coordinate system OX'Y’Z’
around the vector e. Note that the components of
the vector

e = (sin(a) cos(B), sin(«) sin(3), cos(a))

are determined in the coordinate system OXY Z,
where « and 3 are the polar and azimuthal angles,
respectively.

The components of the FQD magnetic moment m
in the coordinate system OX'Y’Z’ are determined by
the rotation matrix m’ = R(e,~v)m, and the magne-
todipole field vector obviously has the following form
near the point r :

By =) R(e,)G(r)M. (16)

In particular, formula (16) can be applied in gy-
roscopy as follows.

1. Magnetostatic approach. In the general case,
the induction of the resulting magnetic field B/, in
a vicinity of the magnetometer sensor is determined
by the formula
B, = Hj + Bj(rly,).

res

(17)

In this formulation of the problem, the magnetization
of the pseudocrystal is almost uniform. Therefore, the
subscript N3 in formula (17) will be omitted below.

Formula (17) has an application potential for gy-
roscopy, since the main task of the latter is to monitor
the orientation changes of a flying object. In partic-
ular, if the vector B, is determined using a magne-
tometer in the case Hy = 0, then formula (17) can
be considered as a system of three equations for the
unknown angles «, 8, and «y, which describe the new
orientation of pseudocrystal. In other words, the sys-
tem of equations (17) describing the induction of the
magnetic field created by a ferromagnetic pseudocrys-
tal can be considered as a physical basis for the de-
velopment of a ferromagnetic gyroscope.

2. Magnetodynamic approach. The magneto-
dynamic approach looks more promising from the
application viewpoint. In particular, if Hy # 0, the
magnetic moments m of FQDs in the pseudocrystal
are in the precession state. Provided that a uniform
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harmonic magnetic field (HMF) H,, with the cyclic
frequency w, is created between two side faces of the
pseudocrystal and perpendicularly to the magneto-
static field Hp, then intensive absorption of its en-
ergy will occur in a vicinity of the Larmor frequen-
cies of the magnetic moments m of FQDs. This phe-
nomenon can be used to determine the spatial orien-
tation change of the pseudocrystal.

Under the condition N} 33 > 1, the FQDs in the
pseudocrystal bulk can be assumed to play the main
role in the energy absorption of the HMF H,,. The-
refore, we may consider the total induction of the
magnetic field

' =Bg+Hy+H, (18)

to be uniform within the pseudocrystal and close by
magnitude to that at the center of pseudocrystal. If
the dimensions of pseudocrystal are chosen such that
1 < N3 < Nj , then, according to works [21,22], the
geometric factor (the discrete demagnetizing factor)
and the magnetodipole field have only one non-zero
component each:

G =4m, B, =(0,0,—47M,/). (19)

In this approximation, the nonlinear Landau-Lifshitz
dynamic equation (12) for the pseudocrystal magne-
tization in the coordinate system OX'Y’Z’ looks like

AM 3
— B, x M| — 2
dt V(B x M M2

[B} x M'] x M'], (20)

where «y is the gyromagnetic ratio, 0 < 8 < 1 is the
damping coefficient, and My = |M'|. By scalar multi-
plying Eq. (20) by the vector M’ and considering the
properties of the mixed vector product on the right-
hand side of Eq. (20), we come to the conclusion that
|M'| = const. This result means that the dynamics of
the vector M’ in the magnetic field with the induction
B'f is reduced to precession.
Let us specify the intensity of the external magnetic
field H’f as follows:
{H/f = (wa/7Hwy/7H0z/ +sz’), (21)
H/, = Hjew'!
where w, is the cyclic frequency of the harmonic mag-
netic field. In this case, the magnetic field induction
in Eq. (20) has the following representation:

' =By + H}. (22)
ISSN 2071-0194. Ukr. J. Phys. 2024. Vol. 69, No. 6
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From the mathematical viewpoint, Eq. (20) is similar
to those that were analyzed in the magnetic resonance
theory [21, 22|, usually at small deviation angles be-
tween the vectors M’ and B’;. In our case, such a
restriction is not acceptable.

To construct the general solution of Eq. (20), let us
select the ansatz

M{,. = Mo sin(6) cos(p),
Mg, = Mo sin(0) sin(p),
M{,, = My cos(6)

(23)

as a trial function. Here, where My = |M’'|; and
0 = 0(t) and ¢ = p(t) are the polar and azimuthal,
respectively, angles, which are the dynamic variables
of the problem under the condition [M'| = M, =
= const.

We have the following relationships between the
components of the vector M’ and the dynamic angu-
lar variables 6 and ¢:

M., M,
0 = arccos Oz), = arctan ( Y )
( MO M(/):c’

For further calculations, it is convenient to express
the magnetic field induction B} via the potential en-
ergy U of magnetization M’ in this field. It can be
done as follows:

B,.:_aiU: oUu 00
fi OM’;

(24)

_OU 960U 9p
39 8M/7; &p (3'M/¢7

(25)

where i = z’,%/,2'.The relationships between the
components of the magnetic field in the Cartesian
and spherical coordinate systems were found in the
following form:

oU .
By = 78Mf$/ = —sin(p)By,,
oU
By = T, + cos(p) By, (26)
oUu 1
By = COMy, _sm(a)Bf‘“
where
1 oU
Bjg= ————
A VAP TR (27)
1 oU
Bpp = —7r——7s

MO SlD(Q) %
ISSN 2071-0194. Ukr. J. Phys. 2024. Vol. 69, No. 6

are the components of the magnetic field B} in the
spherical coordinate system, which were found from
formulas (24).

Substituting Egs. (26) into Eq. (20) and performing
some algebraic simplifications, we obtain

00

= T7Bfe = A Byo,

ot M, (28)
Oy v

92 T By=—" B
ot sin() 16 My sin(6) fe

The system of equations (28) is equivalent to the
Landau-Lifshitz equation (20) and has a wide scope
of applications. It can be used for an arbitrary ampli-
tude of oscillations of the vector M’ and at any level
of nonlinearity.

In what follows, we assume that the HMF B, is a
small perturbation to the magnetostatic field Hy and
use the criterion |H;| < |Hp| in order to linearize the
system of equations (28) in a vicinity of the steady
state of the system. For this purpose, we write down
the potential energy of magnetization in the form

U=Uy+ U, (29)
where is the first summand,
Uy = —Ho My cos() + 2m My? cos?(6), (30)

determines the potential energy of magnetization M’
in the magnetostatic field, and the second one,

Uy = —H,,My(sin(0) sin(6;) cos(p — 1) +
+ cos(8) cos(61)),
H, = Hy exp(iwt),

where

(31)

H,, = Hy exp(iw,t),

does the same in the HMF H/,. In Egs. (30) and (31),
0, = const and ¢, = const are the angular coordi-
nates of the vector H;. It is quite clear that only the
real parts of the quantity U; and the formulas ob-
tained on its basis have a physical meaning.

By substituting Eqgs. (29)—(31) into Egs. (27), we
obtain the magnetic field (27) in the following form:

By = —H0< - 47r% cos(@)) sin(6) +
Hy
+ H,, (cos(#) sin(6;) cos(p — ¢1) —

— sin(f) cos(61)), (32)
By, = —H,, sin(0) sin(6;) sin(p — ¢1),
H, = [Hj|etw="t.
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A combination of formulas (28) and (32) brings the
dynamic equations of the problem to the form

06 .
5= [awg — (ay, + aag)wie™=""] sin(6),
/ | 3
a—f = —wy + (ag — aa@wlel“’t,
where
wp = wp [1 — Aeos(9)], wo =~vHy, A = 47r%,
ag = cot () sin(6y) cos(¢p — ¢1) — cos(b1),
(34)

a, = sin(6q) sin(p — 1),

o= YA w1 =vH;.
Equations (33) are exact. Let us first consider the sta-
tionary dynamics of the magnetization vector M’ in
the magnetostatic field H'y and its dependence on
various factors

In the simplest case, i.e., without considering the
demagnetizing field and dissipation processes, 5 = 0,
solutions of Eqgs. (28) look like

{9 = 6y = const,

35
© = o = ¢g — wot, (35)

¢o = const.
Hence, in this case, the dynamics of the vector M’ is
reduced to the precession around the vector Hj, with
the cyclic frequency wg = YHj, as it has to be.

If we account for the demagnetizing field at 5 = 0,
then the solutions of Egs. (28), namely,

0 = 6y = const,
Y =@y = ¢0 - weota
wp, = wo [1 — Acos(6p)],

¢o = const, (36)

acquire a new quality: the precession frequency wg —
— wp, becomes dependent on the angle 6y between
the directions of the vectors H{, and Mj,.

Dissipation processes, 8 # 0, substantially compli-
cate the solutions of the system of equations (28). For
instance, without the influence of a demagnetizing
field and at 8 # 0, they include an implicit function
of the dynamic variable 6,

[ [
tan <2> = tan <20> e~ owot @y = const,

@ = o = ¢o —wot, ¢Po = const.
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(37)

Formulas (37) describe the damping precession with
the frequency wg and the damping parameter awy.

In the most general case, the magnetostatic dy-
namics of the magnetization M’ is described by the
solutions of the system of equations (28)

A(0) = A(bp)e™ ",

/ (38)
© =g = ¢Pg — wo t—/\/cose(T)dT ,
0

where
1

A tan (§)7*

.
[tan (gf + %} N

which were obtained at H/, = 0 and are expressed via
an implicit function of the dynamic variable 6. It is
obvious that, at A = 0, formulas (38) are reduced to
formulas (37).

The obtained solutions (38) of the system of equa-
tions (28) with H/, = 0 are exact. From formulas (38),
it follows that the demagnetizing field and dissipation
processes substantially affect the precession character
of the vector M. In particular, the cyclic precession
frequency

(39)

wg, = wo [l — Acos(0) (40)
depends on the angle # between the vectors M’ and
H{. Furthermore, due to dissipation processes (0 <
< B < 1), the angle 0 slowly changes in time within
the interval 0 < 6 < 6.

Now, let us consider the influence of the HMF H/
(see Fig. 3) on the dynamics of the pseudocrystal
magnetization vector M'. Since this problem is es-
sentially nonlinear, it is impossible to find an exact
solution to the system of equations (28). Therefore,
we limit the consideration to solving them in the lin-
ear approximation.

As a rule, when linearizing the Landau-Lifshitz
equation in the ferromagnetic resonance theory, the
Smit—Suhl method [23-26] is applied. When using
this method as a reference solution for the dynamic
equations of the problem, the magnetization equilib-
rium condition is applied, when the effective magnetic
field (27) equals zero. However, in this work, owing to
the Einstein—de Haas effect [1-3], such a magnetiza-
tion state is impossible. Magnetization in this case
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will always be in the precession. Therefore, when lin-
earizing the system of equations (28), it is necessary
to choose their stationary solution (36) or (38) as a
reference one.

Taking the character of the system perturbations
by the HMF H/ , let us choose the dynamic variables
of the problem in the following form:
0=00+080, p=po+dp, K1, dp<1, (41)
where the quantities 8y = const and ¢g = ¢g — we,t
correspond to the stationary state of the system,
which is determined by solutions (36) of the sys-
tem of equations (28) where the dissipation processes
are neglected (8 = 0). Later, we will take them
into account using the standard frequency reduction
wp, — We, + oW, [21, 22]

and representation (41) for the dynamic variables
of the problem in Egs. (32) and (28), we obtain the
following system of inhomogeneous linear equations
for the quantities §6 and dp:

d59 . . W,

- = wisin(0) sin(x1)e"",

&5 _ 42
2 — i (ete(00) sin(01) cos(xa) — "

— cos(f))e™="",

where wy = 7H1, X1 = @0 — 1, and o = do — we, .
The solution of the system of equations (42) reads

_ wiwes(x1) . jw 1t
(59 = m Sln(91)ew 5
wlwsn(Xl) .
S =— <w(902—wz’2 ctg(6p) sin(fy) + (43)
+ 'w1 COS(@l))eiw2lt7
Wy
where the quantities
Wes = Wy, cos(x1) + iw, sin(x1),
(44)

Wsn = Wy, Sin(Xl) — Wy COS(Xl)

have a clearly pronounced resonance near the fre-
quency wp, = wo [l — Acos(fp)], which depends on
the parameter 6y. In addition, the oscillation ampli-
tudes of the quantities 40 and dp depend on the
time, since the quantity x; in Egs. (44) is a peri-
odic function of time; this fact substantially affects
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the dynamics of the M’ vector. Let us also pay at-
tention to that, in the case of collinear vectors Hj
and H{, (; = [0, 71]), the harmonic magnetic field H/,
does not appreciably affect the dynamics of the vec-
tor M. In this connection, we will consider the cases
where 6; = 90°.

For the numerical analysis of the problem, let us
change to dimensionless variables, namely,

_ O - Wz _ w1
T = WOt7 Wh, = —, Wy = , W1 = —,
wo wo wo (45)
_ Wes Wsn _
Wes = , Wsn = , Yo = ¢O — We,T.
wo

wo

If substitutions (45) are made in formulas (43), the
latter retain their form and present expressions for
the quantities 60 and ¢ in terms of dimensionless
variables (45).

First of all, let us consider the free precession of
the relative magnetization vector J = M/Mj on the
basis of formulas (36) written in terms of dimension-
less variables (45) for the values of the polar angle
0y = 30°, 60°, and 90°, and the demagnetization
parameter A = 0.25. The plots of precessions under
those conditions are shown in Fig. 4. Let us take the
motion path of the vector J at 6y = 90° as the refer-
ence one. In particular, in this case, the demagnetiz-
ing field has no effect on the dynamics of the vector
J, the precession period equals 7990 = 27, and the
orbit radius is rgpo = 27. Note that, here, the planes
of the orbits of the J vector are parallel to the plane
o'X'y’.

Concerning the precession period of the vector J
provided other conditions are satisfied, it is deter-
mined by the formula 7y, = #gs(@g)' This formula
explains why, in Fig. 4, the motion paths of the vec-
tors Jg, with the rotation period 7, > Tgoo are in-
complete within the time interval 0 > 7 > 7g9go.

Now, let us consider the influence of the HMF fre-
quency H/, on the precession of the vector M'. The
corresponding plots of the motion paths of the vector
J are shown in Fig. 5 for various values of the pa-
rameter A, the deviation of the frequency w from
the resonance frequency. Each motion path was cal-
culated within the corresponding rotation period of
the vector J. As follows from the plots depicted in
Fig. 5, the HMF H/, substantially affects the dynam-
ics of the M’ vector only in a vicinity of the resonance
frequency.
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— 6p=30°
—_— 0y =60°

— 0, =90°

Fig. 4. Motion paths of the relative magnetization vector J
for some values of the polar angle 6y

Next, let us consider the dependence of the mo-
tion paths of the pseudocrystal magnetization vector
M’ on the magnitude of the HMF H} amplitude un-
der resonance conditions. The corresponding plots for
some values of the quantity w; = v|H}| are shown in
Fig. 6. As was done earlier, each motion path was
calculated within the corresponding rotation period
of the vector J. One can see from the plots shown in
Fig. 6 that the behavior of the motion paths of the
vector M’ substantially depends on the polar angle
0o and the amplitude of the HMF H/, even if the
quantity wy = vH; changes slightly.

4. Absorption of the Energy
of the Harmonic Magnetic Field
by the Pseudocrystal

To analyze the intensity of absorption of the HMF
H/, energy, it is necessary to find the magnetic sus-
ceptibility tensor x. The latter is determined by the
variational derivatives,

M el A

Xi'j' = <77 > 1,] =T,Y,%. (46)
SH!,

In order to specify formula (46), let us first
rewrite expressions (43) for 60 and d¢ using the
Cartesian components of the vector H/,. The result
looks like

wcs(@O)le’ +Wsn<900)H1y’ eiwt

00 =~ wo.? — . )
Wsn(Po Hlm’_wcs ®o Hl’
S| RESNC M
0 z

1 .
X Ctg(eo) + - le/) ezwt.
Wy
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A combination of formulas (23), (41), (46), and (47)
allows the magnetic susceptibility tensor yx of the
pseudocrystal to be found in the Cartesian coordi-
nate system in the form

TesWo, 77:Tcswz/ Xsn
)AC = iTCSwZ’ Tcswe() _XCS ) (48)
" TsnWes —TsnWsn 0
My cos(6y Mo sin(po) .
Tes = 27(2)’ Xsn = # Sln(@o),
Wey = — Wy Wy
’YMO sin 90 'YMO Ccos{po) .
sn — 27(2)’ Xes = # Sln(@o).
W@g — Wy W 1

Unexpectedly, the tensor x obtained a very simple
view.

Expression (48) is the final formula in this pa-
per for the magnetic susceptibility tensor y of pseu-
docrystal. It is essential that the magnetic suscepti-
bility x has a resonance near the frequency wy, =
= wo [1 — Acos(fp)], which, in turn, depends on the
angle 0y between the vectors H, and Mj,.

Let us also pay attention to the fact that the
components Xuz, Xay, Xyz, ad Xyy of the tensor x
have a standard construction, which can be found in
works dealing with the ferromagnetic resonance the-
ory [21,22]. At the same time, the other tensor com-
ponents are substantially different. In particular, the
components ., and x., of the tensor x are periodic
functions of time. This circumstance can be explained
by the fact that, owing to the Einstein-de Haas ef-
fect, the pseudocrystal magnetization precesses in the
ground state. The components x., and x., are re-
sponsible for the non-trivial magnetization dynamics
of pseudocrystal (see Figs 5 and 6), which is caused
by the HMF H, = (H1,/, H1y, 0) exp(iwt).

According to works [21, 22], in order to account
for the dissipation processes occurring in the pseu-
docrystal, the frequency reduction wy, — we, + i,/
has to be carried out in the components of tensor
(48). Again, according to works [21,22], the intensity
of absorption of the HMF energy is determined by
the formula

Wy ~

Q= (49)

In this work, the HMF configuration H/ =
= (Hy4,0,0) exp(iw,/t) is preemptive. In this case,
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— 6p=30°
—_— G, =60°
— G, =90°

— 6,=30°
—_— Gy =60°
— 0 = 90°

— 0p=30°
—_— 0y =60°
— 0 =90°

a c
Fig. 5. Motion paths of the relative magnetization vector J for various values of the parameter Ao = —0.1 (a), 0 (b), and
0.1 (¢); w1 = 0.0075. The selected set of parameter values A = = 0.25, o = 0.01, ¢p = 0, and @1 = 45° satisfies conditions (41)
— 6p=30° — 6,=30° — 6p=30°
— 0y =60° — 0y =60° — Gy =60°
— 0 =90° — G, =90° — 0 = 90°

Fig. 6. Motion paths of the relative magnetization vector J for various values of the parameter wi = 0.0025 (a), 0.005 (b),
and 0.0075 (c) under the resonance condition (Aw = 0). The selected set of parameter values A = 0.25, a = 0.01, ¢g = 0, and

p1 = 45° satisfies conditions (41)

formula (49) takes the simple form

Wy aw Ay 9
= —_— 0o)| H 50
Q oy Y OA,2—|—A02 COS( 0) 15 ( )

where Ay = wp,? £ (1 +a?)w,/? and Ay = 20w, wy, -

Figure 7 demonstrates the dependences F =
= F(0p,w) of the form factor of the intensity of ab-
sorption of the HMF Hjy,, energy,

Q(w’ 90)

F = 8p =2 %0)
yMoH;

(51)

on the main parameters of the problem. The reso-
nance frequency at which intensive absorption of the
HMF Hi, energy takes place is determined from the
extremum condition for the function F' = F(fy,w); it
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looks like

2(1+ a2)1/? 1

. 2
3+a2(2—a2) 3-a? (52)

Wres = Wo,

From expression (52), it is clear that the damping pa-
rameter o < 1 weakly affects the value of wyes >~ wy, -

The dependence of the resonance frequency wWyes on
the polar angle 6, is shown in Fig. 8.

From Figs 7 and 8, one can see that, as the po-
lar angle 6y grows, the resonance frequency wyes in-
creases, and the intensity of absorption of the HMF
H;,, energy decreases.

Thus, the found dependence of the amplitude-fre-
quency characteristic of the intensity of absorption
of the HMF H;,, energy by the pseudocrystal on the
pseudocrystal orientation in space (the variation of
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Fig. 7. Dependences F'(0p,w) of the form factor F' of the in-
tensity of absorption of the HMF Hj,, energy on the main pa-
rameters of the problem at A = 0.25 and a = 0.01
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° o °
=] o o
w (=] w

Resonance frequency Wres

o
©
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0 20 40 60 80
Polar angle 6o

Fig. 8. Dependence of the cyclic frequency wy, on the polar
angle 6p at A = 0.25 and o = 0.01

the vector Hj, orientation provided the fixed orienta-
tion of the vector Mpy; see Fig. 3) can be used as a
basis when developing a ferromagnetic gyroscope.

5. Conclusions

It has been shown that an FQD encapsulated in a
nanocontainer whose characteristic sizes are several
tens times larger than the characteristic size of the
FQD can be used as a sensitive element in a ferro-
magnetic gyroscope.

The ferromagnetic gyroscope itself is constructed
as a three-dimensional periodic layered structure (the
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artificial layered crystal, the pseudocrystal) of sen-
sitive elements (see Figs 1 and 3). This structure is
rigidly fixed on a moving platform. The whole system
is embedded into an external two-component mag-
netic field H = (H,,,0, Hy). The static vector of the
magnetic field strength Hj is chosen to be directed
strictly perpendicularly to the pseudocrystal base,
and the dynamic vector H,, = Hj cos(w,t) is directed
perpendicularly to the pseudocrystal lateral face.

Before using the ferromagnetic gyroscope, the mon-
odomain magnetic moments of the FQDs m must be
oriented along the vector Hy by means of an external
magnetic pulse.

Due to the law of angular momentum conservation,
L = const, the ferromagnetic gyroscope maintains
the fixed direction of the magnetization My irrespec-
tive of whether the vector Hy oriented perpendicu-
larly to the moving platform changes its direction. In
this case, a variation in the relative orientation of the
vectors My and Hj is accompanied by a change in
the amplitude-frequency characteristic of the inten-
sity of the HMF energy absorption. Its spectral anal-
ysis makes it possible to obtain information about
changes in the orientation of the moving platform and
generate required control signals.

Note that, formally,the structure of the spectrum
of absorption of the HMF energy by the FQD is
similar to that available in ferromagnetic resonance
studies. This fact allows the experience of radio spec-
troscopy to be applied when developing ferromagnetic
gyroscopes with nanosized sensitive elements.

It is essential that the proposed model of ferro-
magnetic gyroscope includes no mechanical compo-
nents. This feature of the model can increase the re-
liability of the construction and bring the sensitivity
of ferromagnetic gyroscopes to the level achieved in
radio spectroscopy.

The number of sensitive elements in the ferromag-
netic gyroscope is determined by the requirements for
the intensity of the HMF energy absorption by the
FQD. In turn, this parameter depends on the sensi-
tivity of the radio spectrometer that is used for the
spectral analysis.

APPENDIX.
Mechanism of quantum levitation
of a ferromagnetic quantum dot

The FQD is a quasi-classical object that preserves its quantum-
mechanical properties. Therefore, the dynamics of an FQD
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in a nanocontainer can be considered using the quantum-
mechanical methods. Since the FQD volume is much smaller
than the nanocontainer one and the FQD cannot go beyond
the nanocontainer boundaries, we will below consider an FQD
in the framework of the model of a material point located in a
deep potential well characterized by the radius rg,
oo ifr > ro,

W= {0 if r < 7o, (53)
where r is the radial coordinate of the FQD in the nanocon-
tainer.

Potential energy (53) within the nanocontainer brings about
the stationary radial Schrodinger equation HR(r) = ER(r)
supplemented with the boundary condition R(r > r¢) = 0. Its
specific form looks like [20]

d’R 2dR o lI+1)
et e m=o (54)
where k2 = ZTZSE, 1=0,1,2,3,... is the orbital quantum num-

ber, E is the FQD energy, and R = R(r) is the radial part
of the FQD wave function, which satisfies the normalization
condition

/R(r)2r2dr =1. (55)
0

By substituting the variable p = kr, Eq. (55) is reduced to the
Bessel equation

2R g@_’_ |:1 I(l+1)
dp? ~ pdp p?
Of two solutions of Eq. (56), finite at p < 0 is the spherical
Bessel function [27]

. . ™
R=Cjh(p), 5= \/%Jerl/z(P), (57)

where C; are integration constants whose values are deter-
mined from normalization conditions, and J;1 /o is the Bessel
function of half-integer order. The normalized radial wave func-
tions of the FQD have the following form:

2k
Ry = 2kji(kr) =\ == T o (k). (58)

According to the properties of the function j5; = j;(kr) [27],
the FQD wave function at the center of nanocontainer can be
approximated by the expression

2 kl+1
Ry~ ——— ¢l (59)
20+ )N
At kp > 0, the wave function equals zero since the FQD can-
not be located outside the nanocontainer. From the continuity
condition for the wave function at kp = ro, we find the quan-
tization condition for the FQD energy in the nanocontainer,

Ji(kro) = 0. (60)

}R =0, R=R(p). (56)

By denoting the roots of the spherical Bessel function as x,,,

where n = 1,2, 3, ... is the principal quantum number, we ob-

tain from Eq. (60) discrete values of the FQD energy,
Tnl h2xn12

k—kny=—, En= .
0 2moro
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(61)

Here, from the entire set of the FQD quantum states in the
nanocontainer, we are interested in the ground state, which
corresponds to the quantum numbers n the spherical Bessel
function. Therefore, in the ground state, the FQD has the finite
energy

Eio =

2

6.283 #£ 0, (62)
2moro

and its wave function (58) has a maximum at the cen-
ter of nanocontainer and monotonically vanishes toward the
nanocontainer boundary. Such a behavior means that the FQD
is most likely located at the center of nanocontainer, i.e., the
FQD is in the quantum levitation state (a state without any
contact with the elements of external environment).

As a result, an FQD consisting of iron atoms and having

a characteristic size of R = 1 nm, when being placed in a
container with a characteristic size of 79 = 10 nm, has the
following energy in the ground state:

Ero = hwio, wio=3x10%s™ " (63)

Since this work has a qualitative and schematic character, the
results obtained in this Appendix can be considered as quite
satisfactory.
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M.M. Yeniaxo, C.O. ITonomaperro

OISNYHI OCHOBU ®EPOMATHITHOI'O
I'POCKOITIA 3 HAHOPO3MIPHVMI
YYTJINBUMU EJIEMEHTAMI

PosrisiryTo disuuni 0CHOBH 3aCTOCYBaHHS CydYaCHUX HAHOTE-
XHOJIOTI# JUUIsi pO3POOKM HAHOPO3MIDHHX Ta €HeproedeKTHB-
HUAX 9yTJIMBUX JATUHKIB I CHCTEM YyIPaBJIiHHS MaJjoraba-
puTHUX cymnyTHuKiB. [IpakTuunuii inTepec BUKJIMKAE CTBOPEH-
Hs1 (pbepOMAarHiTHOIO ripoCKona, B POJIi MOJEJI SIKOTO IIPOIOHY-
€ThCsl BUKOPUCTATH TEPIOJUYHY CTPYKTYpy (TICeBIOKpHUCTAI)
3 KOT€PEHTHUX MOHOJOMEHHHUX (PepOMArHITHHX KBAHTOBUX TO-
qok (PKT), sokamnizoBanux y cepudHuX HAHOKOHTEHHEpax,
Ie BOHH OymyThb nepebyBaru y cTani kBaHTOBOI JeBiTaril. Bua-
caiziok edekry Eitnmreiina—ne Iaaza, ®PKT 6yayre matu mo-
MEHT iMITysIbCy, 1o 36epiraernes y daci. st korTpouto 3a opi-
€HTAIli€I0 IICEBIOKPHUCTAJIA y IIPOCTOPi BiH KPIIUTHCS 10 PyXO-
MOl I1aTdOPMHU, PO3MINIEHO] Yy 30BHIITHHOMY JBOKOMIIOHEHTHO-
My MarzitHomy noui (MIT). Craruana komnorernta MII € nep-
MIeHIUKYJISPHOIO JIO OCHOBH IICEBIOKPHUCTAaJIA, & JUHAMIUHA —
1o fioro 6iuHOl cTOpoHH. 3a PaXyHOK aHAJII3y CIEKTPa IIOIJIH-
HaHHsa guHamigaoro MII, 3asiexxHoro Bij opieHTalil mcesio-
KPHUCTaJIa y IPOCTOPi, iCHy€ MOXKJINBICTH pO3paxyBaTH KyTOBI
KOODJHUHATH HOro HOBOI'O IIOJIOXKEHHS, fIKi BU3HAYAIOTHCSA B3a-
€MHOIO OpieHTAIlif0 (PIKCOBAHOIO HAIPSIMKY MOMEHTY IMITYJIbCY
OKT Ta BexkTOpa 30BHiIHbOrO crarmynoro MII.

Katrwwoei caoea: HaHODI3NKA, HAHOYACTUHKA, (PepoMarti-
THa KBAHTOBA TOYKA, JIeBiTaIlis, NiPOCKOII, CIIiH, MarHeTOH, MO-
MEHT IMITIyJIbCY.
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