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MAGNETOCALORIC EFFECT
IN THE ONE-DIMENSIONAL SPIN-1

2
𝑋𝑋 MODEL

WITH TWO PERIODICALLY VARYING 𝑔-FACTORS

The influence of a non-uniformity of the 𝑔-factors with period two on the magnetocaloric effect
in the spin- 1

2
𝑋𝑋 chain in the transverse field has been studied. By means of the Jordan–

Wigner transformation, the problem is reduced to the Hamiltonian of noninteracting spinless
fermions and solved exactly. The variation of isentropes and the field dependences of the mag-
netic Grüneisen ratio with a change in the ratio 𝑔2/𝑔1 are analyzed. Main attention is paid
to the low-temperature region. Distinctions among the magnetocaloric effect manifestations in
the cases where the 𝑔-factors have different or identical signs, or if either of 𝑔-factors equals
zero, are demonstrated.
K e yw o r d s: one-dimensional quantum spin models, 𝑔-factor, Jordan–Wigner fermionization,
magnetocaloric effect, quantum phase transition.

1. Introduction

1.1. One-dimensional systems
with periodically varying 𝑔-factors

Among the magnetic materials, there are a number
of compounds that can be adequately described on
the basis of spin chains with periodically varying 𝑔-
factors. In particular, the magnetic properties of the
molecular magnet [{CoII(Δ)CoII(Λ)}(ox)2(phen)2]𝑛
can be explained with the help of the Ising chain
with two different 𝑔-factors at neighboring sites (𝑔1 =
= 2.5, 𝑔2 = 2.1) and by two different exchange in-
teractions [1]. In work [2], the Heisenberg and Ising
spin-1 𝑔1 − 𝑔2 chains with antiferromagnetic interac-
tions were applied to model the one-dimensional (1D)
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two-sublattice system Ni2(EDTA)(H2O)4 · 2H2O, and
good agreement between the theory and the experi-
ment was obtained for 𝑔2/𝑔1 = 1.1. One-dimensional
complex oxide Sr3CuIrO6, which contains both 3𝑑
(Cu2+) and 5𝑑 (Ir4+) magnetic ions, can be described
using the spin- 12 Heisenberg ferromagnetic model
with easy-axis magnetic anisotropy (𝛾 = 𝐽𝑧/𝐽𝑥 =
= 𝐽𝑧/𝐽𝑦 ≈ 2.55) and a periodically varying 𝑔-factor
with period two (the copper ions have the spin with
𝑔 ≈ 2, and the iridium ions the isospin with 𝑔 ≈
≈ −3) [3, 4]. Note that the 𝑔-factors at neighbor-
ing sites are of identical signs in the first two sub-
stances mentioned above and have different signs in
the third one.

It is also pertinent to mention the compounds that
are described by somewhat more complicated one-di-
mensional spin models. For instance, the heterotrime-
tallic coordination polymer

[CuIIMnII(L1)][FeIII(bpb)(CN)2] · ClO4 · H2O

can be approximately considered (see work [5]) as a
spin- 12 Ising chain whose sites are alternately occu-
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pied by iron Fe3+ and manganese Mn2+ ions with ad-
ditional copper Cu2+ ions; the latter are “side-connec-
ted” to manganese ions with the anisotropic Heisen-
berg (𝑋𝑋𝑍) exchange interaction. Values of 𝑔-factors
for Fe3+, Cu2+, and Mn2+ were put equal 2.4, 2.2,
and 10, respectively. The value 𝑔Mn = 10 for the man-
ganese ion was associated with the fact that, in the
cited work, all ions were assigned the spin 𝑠 = 1

2 (to
simplify the problem), whereas it should be 𝑠 = 5/2
for Mn2+.

Another example is the infinite polymer chain
[DyCuMoCu]∞, in which there is, so to speak, a next-
neighbor interaction between the dysprosium and the
molybdenum [6]. The unit cell of this compound con-
tains four magnetic ions with three different 𝑔-factor
values. Moreover, the dysprosium ions Dy3+ are de-
scribed by Ising spins, and the copper Cu2+ and
molybdenum Mo5+ ions by Heisenberg spins. Since
the Ising spins are decorated by [CuMoCu] trimeric
Heisenberg units, this problem can be solved exactly.

In order to explain certain experimental results ob-
tained for the coordination compound copper ben-
zoate, in works [7, 8], there was considered a spin
model with the sign-alternating (for neighboring
sites) Dzyaloshinsky–Moriya interaction and a 𝑔-
tensor whose certain elements are also sign-alterna-
ting. Those sign alternations bring about an effective
model, namely, the Heisenberg model with a sign-al-
ternating magnetic field along the 𝑥-axis and a uni-
form field along the 𝑧-axis (which is equivalent to a
periodically varying 𝑔-factor). A similar model was
also used in work [9] to model the spin- 12 antiferro-
magnetic chain CuCl2· 2[(CD3)2SO].

1.2. Jordan–Wigner transformation

While researching various one-, two-, and three-di-
mensional spin systems, widely applied are approa-
ches and approximations in which various variants of
the Jordan–Wigner fermionization are used (see re-
view [10]). The advantage of such methods is that
strongly correlated spin states can be compactly de-
scribed in terms of fermion excitations. For the first
time, the one-dimensional Jordan–Wigner transfor-
mation was implemented more than half a century
ago in paper [11] for the spin- 12 𝑋𝑌 chain. As a re-
sult of the fermionization, the problem was reduced to
the Hamiltonian of non-interacting spinless fermions
and solved exactly.

Later, on the basis of such a one-dimensional
fermionization, both exact and approximate results
were obtained for the thermodynamic and dynamic
characteristics of a number of one-dimensional mod-
els. For example, in works [12, 13], the problem of
one-dimensional spin- 12 𝑋𝑋 chain in a transverse field
with two different 𝑔-factors (𝑔1 and 𝑔2) at neighbor-
ing sites was solved exactly. In work [12], besides the
𝑔-factors, exchange interactions were also assumed to
be periodic with the same period (two). The cited au-
thors confined the consideration to thermodynamic
characteristics in the case where 𝑔1 and 𝑔2 have the
same sign.

In paper [13], however, the research was carried out
for both the 𝑔1𝑔2 > 0 and 𝑔1𝑔2 ≤ 0 cases. Main at-
tention was focused on the analysis of dynamic char-
acteristics, namely, the transverse and longitudinal
absorption intensities [they are observed in electron
spin resonance (ESR) experiments], and the dynamic
structure factors (they can be studied in neutron
magnetic scattering experiments). Expressions for all
studied quantities were obtained analytically except
for the longitudinal structural factor, which was cal-
culated using the method developed in works [14,15].

In paper [16], a one-dimensional spin- 12 anisotropic
𝑋𝑌 model in a transverse field with periodically vary-
ing 𝑔-factors and periodically varying exchange inter-
actions with the same (for both microscopic param-
eters) but arbitrary period was considered. Accurate
results were obtained for some thermodynamic char-
acteristics, as well as for the 𝑧𝑧 pair dynamic corre-
lation function and the 𝑧𝑧 dynamic susceptibility.

Among the set of works, where rigorous results
were obtained due to the implementation of the one-
dimensional Jordan–Wigner transformation, there
can be mentioned, for example, those, where the
Hamiltonian contains not only two-spin interactions
but also three-spin ones (see, e.g., works [17–24]). In
particular, papers [23, 24] were devoted to the study
of one-dimensional magnetoelectrics, where the cou-
pling of localized spins (i.e., magnetic moments) with
the electric polarization of the bond connecting those
spins is described by the Katsura–Nagaosa–Balatsky
mechanism [25]. Menchyshyn et al. [23] showed that
the additional account for three-spin interactions can
result in a non-trivial magnetoelectric effect (the in-
duction of the electric polarization by a magnetic field
at the zero electric field and vice versa), which is
not realized in 1D magnetoelectrics with only pair
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exchanges [26–28]. In work [24], three-spin interac-
tions (𝑋𝑍𝑌 − 𝑌 𝑍𝑋 and 𝑋𝑍𝑋 + 𝑌 𝑍𝑌 ) arose, so
to speak, naturally when considering the stationary
energy flow on the basis of the Lagrange multiplier
method (see works [17, 29]) in the one-dimensional
spin- 12 isotropic 𝑋𝑌 model of the magnetoelectric
with only two-spin interactions. It is also worth sin-
gling out work [20], where a rigorous result was ob-
tained for the 𝑋𝑋 model not only with three-spin
interactions (𝑋𝑍𝑌 − 𝑌 𝑍𝑋), but also with a uni-
form long-range pair interaction between the spin 𝑧-
components.

Not all 1D spin models in the framework of the Jor-
dan–Wigner transformation provide exact solutions.
For example, in work [30], to study an anisotropic
𝑋𝑌 linear chain with uniform long-range Ising inter-
action in a magnetic field directed along the 𝑧-axis,
a mean-field-type approximation was implemented
for the direct interaction between fermions, similarly
to what was done in the case of one-dimensional
anisotropic 𝑋𝑋𝑍 and 𝑋𝑌 𝑍 models in a transverse
field [31, 32]. A certain approximation procedure af-
ter the fermionization has also been performed for the
spin- 12 diamond 𝑋𝑋 chain. In particular, the phase
factors were neglected in work [33], and the Hartree–
Fock approximation was used in work [34].

If talking about systems with dimensionalities
higher than one, then, for example, in work [35],
one of the generalizations of the one-dimensional Jor-
dan–Wigner transformation was realized in the case
of the spin- 12 Heisenberg model on a square lattice
(see also works [36, 37] and review [10]). The trans-
formed Hamiltonian corresponds to interacting spin-
less fermions that jump between neighboring sites
in a fictitious gauge magnetic field that was gener-
ated in this approach. Using an approximation of the
mean-field type for both the direct interaction be-
tween fermions and the phase multipliers correspond-
ing to the gauge field, the problem was reduced to a
free Fermi gas, and the properties of the ground state
were examined [35]. Later, this method was adapted
to study other systems, in particular, the anisotropic
and isotropic 𝑋𝑌 models on a rectangular lattice
[38–40], and the frustrated Heisenberg model with
interactions between nearest and next-nearest neigh-
bors [41, 42]. It should be noted that the flow of the
strength vector of the fictitious magnetic field was
considered in the cited works to be identical for all
rectangular elementary plaques. At the same time,

for example, in work [43] (see also work [44]), it was
considered to depend on the magnetization of only
one site (e.g., the upper left one) “adjacent” to this
plaque.

1.3. Formulation of the problem.
Magnetocaloric effect

This work continues the study of the properties of the
one-dimensional spin- 12 𝑔1−𝑔2 𝑋𝑋 model in a trans-
verse field, which was started in work [13]. As was
already mentioned above, this model in the frame-
work of the Jordan–Wigner transformation has exact
solutions. The results obtained for such a simplified
problem may be useful for explaining certain proper-
ties of systems described by a Heisenberg chain with
different 𝑔-factors at neighboring sites. For example,
it was found in work [13] that logarithmic singulari-
ties in the magnetization curve and the static suscep-
tibility at the zero field (the latter is a result of the
periodicity of the 𝑔-factor in real magnets) are a con-
sequence of an unexpected effect, when the sublattice
with a smaller 𝑔-factor begins to become ordered in
the direction opposite to the field due to the quantum-
mechanical interaction between the spins. Eventually,
the energy of those magnetic ions in the field prevails,
and all magnetic moments become oriented along the
magnetic field.

In the same paper [13], some dynamic characteris-
tics were also calculated, which made it possible to re-
veal the non-uniformity of 𝑔-factors in experiments on
the magnetic neutron scattering and electron spin res-
onance. In particular, the model of uniform 𝑔-factors
(𝑔1 = 𝑔2) did not demonstrate any response in the
Voigt ESR configuration. In the case of different 𝑔1
and 𝑔2, the corresponding absorption intensity was
found to be able to differ from zero, and, at suffi-
ciently high frequencies, it had a van Hove singular-
ity. In the Faraday ESR configuration, the absorp-
tion spectrum with a deviation from the uniform case
showed a resonance line doubling.

Based on the results obtained in work [13], in this
work, the magnetocaloric effect (MCE) will be stud-
ied in both the 𝑔1𝑔2 > 0 and 𝑔1𝑔2 ≤ 0 cases. In par-
ticular, such important characteristics of this effect as
isentropes (see, e.g., works [27,45–47]) and the inten-
sity of adiabatic cooling (see, e.g., works [22, 46, 47])
will be calculated and analyzed. It will be shown how
the above-mentioned quantities change with a devia-
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tion from the uniform case, and how they are different
in the 𝑔1𝑔2 > 0, 𝑔2 = 0, and 𝑔1𝑔2 < 0 cases.

It should be said that the MCE, namely, a change
in the magnetic material temperature, when the ex-
ternal magnetic field changes, has been known since
the end of the 19th century [48]. A successful MCE-
based adiabatic demagnetization experiment was per-
formed for the first time in 1993 [49], and methods
similar by principles are now standard ones when
obtaining low and ultralow temperatures (see works
[50–52]). Nowadays, the MCE also draws consider-
able attention in connection with the possibility of
creating cooling devices that could operate, in partic-
ular, at room temperatures [53, 54]. Another impor-
tant property of the magnetocaloric effect is its, so
to speak, response [55, 56] to the presence of a quan-
tum phase transition (the proximity to the quantum
critical point manifests itself in the MCE in the low-
temperature region).

In view of the problem under consideration, it is
also pertinent to mention that there are a number
of papers, where the magnetocaloric effect in spin
systems (both one- [22, 27, 45, 46, 57–62], and two-
dimensional ones [63–65]) was studied on the basis of
rigorous results obtained in the framework of various
approaches. In particular, the MCE in the spin- 12 𝑋𝑋
1D model with three-spin interactions of the types
𝑋𝑍𝑋 + 𝑌 𝑍𝑌 and 𝑋𝑍𝑌 − 𝑌 𝑍𝑋 was considered in
work [22] using the one-dimensional Jordan–Wigner
transformation. In papers [45] and [27], the isentropes
for the spin-( 12 , 𝑠) Ising-Heisenberg rhombic chain
were analyzed using the decoration-iterative transfor-
mation, and those for the spin-12 𝑋𝑋 magnetoelectric
chain with zigzag geometry were studied in the frame-
work of the fermionization method. In work [46], by
applying the transfer matrix technique to the spin-
1
2 𝑋𝑋𝑍 one-dimensional model, and, in work [62]
for the spin-( 12 , 1) decorated Ising–Heisenberg saw-
tooth ladder, the Grüneisen magnetic parameters, be-
sides the isentropes, were also calculated to describe
the MCE.

2. Thermodynamic Parameters
of Quantum Spin Chains with Periodically
Varying 𝑔-Factors

Consider a spin- 12 𝑋𝑋 chain in a transverse (oriented
along the 𝑧-axis) magnetic field in the case where the
𝑔-factor is a periodically varying function with a pe-

riod of 2. The model Hamiltonian looks like

𝐻 =

𝑁
2∑︁

𝑙=1

[︁
− 𝑔1ℎ𝑠

𝑧
2𝑙−1 − 𝑔2ℎ𝑠

𝑧
2𝑙 +

+𝐽
(︀
𝑠𝑥2𝑙−1𝑠

𝑥
2𝑙 + 𝑠𝑦2𝑙−1𝑠

𝑦
2𝑙 + 𝑠𝑥2𝑙𝑠

𝑥
2𝑙+1 + 𝑠𝑦2𝑙𝑠

𝑦
2𝑙+1

)︀]︁
. (1)

Here, 𝑁 is the number of spins in the chain, 𝐽 the
exchange interaction parameter, and ℎ the external
magnetic field (ℎ = 𝜇B𝐵, where 𝜇B ≈ 0.67171K

T is
the Bohr magneton); the dimensions of the fields ℎ
and 𝐵 are kelvin and tesla, respectively. In what fol-
lows and without loss of generality, periodic bound-
ary conditions are adopted, and 𝑁 is assumed an even
number.

In the framework of the one-dimensional Jordan–
Wigner transformation [11], the problem is re-
duced to the Hamiltonian of non-interacting spinless
fermions. In the momentum space, we have [13]

𝐻 =
∑︁

−𝜋≤𝜅<𝜋

Λ𝜅

(︂
𝛼†
𝜅𝛼𝜅 − 1

2

)︂
, (2)

where

Λ𝜅 = −𝑔+ℎ+ sgn(𝐽 cos𝜅)
√︁
𝐽2 cos2 𝜅+ 𝑔2−ℎ

2,

𝑔± =
𝑔1 ± 𝑔2

2
.

𝛼†
𝜅 and 𝛼𝜅 are the creation and annihilation, respec-

tively, operators for a fermion with the quasimomen-
tum 𝜅 = 2𝜋𝑙/𝑁 (𝑙 = −𝑁/2, ..., 𝑁/2 − 1), and Λ𝜅 is
the spectrum of elementary excitations. As was men-
tioned above, the thermodynamic and transverse dy-
namic characteristics for problem (2) can be obtained
analytically, whereas numerical methods have to be
used when calculating the longitudinal dynamic prop-
erties (see work [13]).

From the viewpoint of the research carried out in
this work, it is important to recall that if 𝑔1𝑔2 > 0,
and if the magnetic field ℎ varies, phase transitions in
the ground state from the gapless spin liquid phase
into the phase with saturated magnetization occur
at ℎ = ℎ𝑠, where ℎ𝑠 = ±|𝐽 |/√𝑔1𝑔2 are saturation
fields [12, 13]. But if 𝑔1𝑔2 ≤ 0, and the temperature
equals zero, the system does not undergo any quan-
tum phase transition with a change in ℎ [13] and re-
mains in a phase, where the Fermi level is located
in the forbidden band between two spectral branches
and ⟨𝑠𝑧1⟩ = −⟨𝑠𝑧2⟩, where ⟨𝑠𝑧1⟩ and ⟨𝑠𝑧2⟩ are the average
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values of the spin 𝑧 -component in two sublattices. It
should be noted that the magnetization in the prob-
lem with the periodically varying factors 𝑔1 and 𝑔2
obviously equals 𝑚 = 1

2 (𝑔1⟨𝑠
𝑧
1⟩+ 𝑔2⟨𝑠𝑧2⟩).

In the thermodynamic limit, on the basis of Eq. (2),
it is easy to obtain the free energy per particle [13],

𝑓(𝑇, ℎ) = −𝑇 lnTr e−𝐻/𝑇 =

= − 𝑇

2𝜋

𝜋∫︁
−𝜋

𝑑𝜅 ln

(︂
2 cosh

Λ𝜅

2𝑇

)︂
(3)

here, we put 𝑘B = 1. In turn, on the basis of Eq. (3),
we can obtain other thermodynamic quantities, in
particular, the magnetization 𝑚, the entropy 𝑆, and
the heat capacity 𝑐 (all per particle):

𝑚(𝑇, ℎ) = −𝜕𝑓(𝑇, ℎ)

𝜕ℎ
=

1

4𝜋

𝜋∫︁
−𝜋

𝑑𝜅 tanh

(︂
Λ𝜅

2𝑇

)︂
×

×

⎡⎣ sgn(𝐽 cos𝜅)𝑔2−ℎ√︁
𝐽2 cos2 𝜅+ 𝑔2−ℎ

2
− 𝑔+

⎤⎦, (4)

𝑆 = −𝜕𝑓(𝑇, ℎ)

𝜕𝑇
=

=
1

2𝜋

𝜋∫︁
−𝜋

𝑑𝜅

[︂
ln

(︂
2 cosh

Λ𝜅

2𝑇

)︂
− Λ𝜅

2𝑇
tanh

Λ𝜅

2𝑇

]︂
, (5)

𝑐(𝑇, ℎ) = 𝑇
𝜕𝑆(𝑇, ℎ)

𝜕𝑇
=

=
1

8𝜋𝑇 2

𝜋∫︁
−𝜋

𝑑𝜅

[︂
Λ𝜅/ cosh

Λ𝜅

2𝑇

]︂2
. (6)

The expression for the partial derivative 𝜕𝑚(𝑇,ℎ)
𝜕𝑇 looks

like
𝜕𝑚(𝑇, ℎ)

𝜕𝑇
= − 1

8𝜋𝑇 2

𝜋∫︁
−𝜋

𝑑𝜅Λ𝜅 cosh
−2

(︂
Λ𝜅

2𝑇

)︂
×

×

⎡⎣ sgn(𝐽 cos𝜅)𝑔2−ℎ√︁
𝐽2 cos2 𝜅+ 𝑔2−ℎ

2
− 𝑔+

⎤⎦. (7)

Thus, we have all the necessary expressions in ex-
plicit forms for the calculation of some important
parameters of the magnetocaloric effect: the isen-
tropes and the adiabatic cooling intensity (𝜕𝑇𝜕ℎ )𝑆 , or
the Grüneisen parameter

Γℎ =
1

𝑇

(︂
𝜕𝑇

𝜕ℎ

)︂
𝑆

= − 1

𝑐(𝑇, ℎ)

𝜕𝑚(𝑇, ℎ)

𝜕𝑇

(see, e.g., works [22, 27, 46, 47, 66–69]).

3. Results of Numerical Calculations
Let us now briefly dwell on the results of numerical
calculations. Below, without loss of generality, we put
𝑔1 = 1 and 𝐽 = 1. We also confine the consideration
to the 𝑔2-values 𝑔2 ∈ [−1, 1].

The magnetocaloric effect in a uniform system
(𝑔1 = 𝑔2) was studied in considerable details in work
[22]. Here, the influence of the system non-uniformity
will be analyzed first on the adiabatic change of the
temperature with the change of the magnetic field,
and then on the intensity of adiabatic cooling.

As was said above, if 𝑔2 > 0, quantum phase tran-
sitions occur in the ground state at ℎ = ℎ𝑠. They
manifest themselves in the magnetocaloric effect in
the low-temperature interval (see Fig. 1). Namely, the
isentropes have rather sharp slopes near the critical
magnetic fields (there are clearly identified minima in
the adiabatic dependence of the temperature on ℎ). If
𝑔2 ≤ 0, the system is in the ground state and does
not undergo any phase transition with the change of
the magnetic field (the saturation is reached only at
ℎ → ∞). Therefore, the isentropes at small 𝑆-values
(see Fig. 2) have no aforementioned minima associ-
ated with quantum phase transitions (as it was in
the case with positive 𝑔2-values).

Let us analyze in more details how the non-
uniformity of the system affects the adiabatic
change of the temperature, when the magnetic field
varies. This influence is especially evident at low tem-
peratures. In Figs. 1 and 2, the gradient maps of the
entropy as a function of the magnetic field and the
temperature are depicted for various values of the
parameter 𝑔2. The plotted isentropes correspond to
the following 𝑆-values: 0.01 and 0.03 (white curves);
0.05, 0.1, and 0.15 (light gray curves); 0.2, 0.3,
and 0.4 (dark gray curves); and 0.5 and 0.6 (black
curves). When “moving” along the isentrope, the tem-
perature changes adiabatically with the change of the
magnetic field. From Figs. 1 and 2, one can see the
main aspect of the magnetocaloric effect change with
the 𝑔2-factor change. Note that since the entropy is an
even function of the magnetic field, the analysis can
be confined to positive ℎ-values. It is evident that the
isentropes have extrema at ℎ = 0.

Let us first consider the case 𝑔2 > 0 (Fig. 1). If
𝑔2 = 1, the isentropes plotted for small 𝑆-values
(𝑆 = 0.01÷0.3) have one maximum at ℎ = 0 and
one minimum at a field ℎ relatively close to ℎ𝑠. The
smaller the entropy, the closer the latter value to ℎ𝑠.
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a b c d
Fig. 1. Gradient maps of the entropy as a function of the magnetic field and the temperature at 𝑔2 = 1 (a), 0.5 (b), 0.25 (c),
and 0.1 (d). The isentrope curves correspond to 𝑆 = 0.01, 0.03 (white curves), 0.05, 0.1, 0.15 (light gray curves), 0.2, 0.3, 0.4
(dark gray curves), and 0.5, 0.6 (black curves). Quantum phase transitions occur at ℎ𝑠 = 1, 1.414, 2, and 3.162 for 𝑔2 = 1, 0.5,
0.25, and 0.1, respectively

a b c d
Fig. 2. Gradient maps of the entropy as a function of the magnetic field and the temperature at 𝑔2 = 0 (a), −0.05 (b), −0.125

(c), and −0.5 (d). The isentrope curves correspond to 𝑆 = 0.01, 0.03 (white curves), 0.05, 0.1, 0.15 (light gray curves), 0.2, 0.3,
0.4 (dark gray curves), and 0.5, 0.6 (black curves)

If 𝑔2 ∈]0, 1[, the isentropes corresponding to small
𝑆-values have a minimum at ℎ = 0 (unlike the max-
imum in the uniform case) and a minimum at ℎ
close to ℎ𝑠 (similarly to the case 𝑔2 = 1). In ad-
dition, there can be another minimum located be-
tween the mentioned ones. This additional isentrope
minimum – and, accordingly, two maxima – appears
only at sufficiently small 𝑆-values; and the smaller 𝑔2,
the higher the entropy at which additional extrema
takes place. For instance, one can see from Fig. 1
that if 𝑔2 = 0.5 or 0.25, only the curve for the con-
stant entropy 𝑆 = 0.01 has those three additional ex-
trema, whereas, in the case 𝑔2 = 0.1, those extrema
are observed in the isoentropes plotted for 𝑆 = 0.01
and 0.03.

For some higher entropy values, the isentropes have
only one maximum between the minimum at ℎ = 0
and the minimum associated with the quantum phase
transition (see the results for 𝑆 = 0.03÷0.15 at 𝑔2 =
= 0.5, for 𝑆 = 0.03÷0.3 at 𝑔2 = 0.25, and for 𝑆 =
= 0.05÷0.3 at 𝑔2 = 0.1). In other words, if, e.g., 𝑔2 =
= 0.25 and 𝑆 = 0.01, the following adiabatic pro-
cesses run one by one as the magnitude of the mag-
netic field in the system increases: heating, drastic
cooling, slow heating, cooling (its rate increases as
|ℎ𝑠|), and, finally, rather fast heating. For the same
time 𝑔2 = 0.25 but for 𝑆 = 0.03, the observed se-
quence is as follows: heating, cooling (rather fast both
at small |ℎ| and at |ℎ| close to |ℎ𝑠|), and, finally, quick
heating.
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Fig. 3. Isoentropes plotted in the case 𝑔2 = 0 for various
entropy values 𝑆 = 0.05, 0.1, 0.2, 0.3, and 0.4

Now, let us consider the case 𝑔2 ≤ 0 (Fig. 2). If
𝑔2 = 0 or −0.05, the isentropes plotted for small
𝑆-values are nonmonotonic functions of the mag-
netic field: they have two minima (one of them at
ℎ = 0) and one maximum. If 𝑔2 = 0, such behav-
ior is observed for the isentropes corresponding to
𝑆 = 0.01÷0.3 (see also Fig. 3). But if 𝑔2 = −0.05,
only the isentropes for 𝑆 = 0.01÷0.2 have those three
extrema, whereas the isentrope for 𝑆 = 0.3 has only
one minimum at ℎ = 0. It is of interest that, in the
case 𝑔2 = 0, the minimum point at ℎ ̸= 0 on the
isentropes is simultaneously a cusp. Furthermore, at
|ℎ| larger than the cusp |ℎ|-value, the isentropes corre-
sponding to different entropy values are superimposed
(see Fig. 3).

If 𝑔2 = −0.125 or −0.5, the isentropes correspond-
ing to small 𝑆-values have only one minimum at
ℎ = 0 (see Fig. 2). In the case 𝑔2 = −0.125, the
isentropes for 𝑆 = 0.01÷0.2 demonstrate distinct in-
flection points at small ℎ-values (a sort of “remnants”
of the extrema at larger 𝑔2; cf. the cases 𝑔2 = −0.05
and −0.125). But there are no such inflection points,
if 𝑔2 = −0.5.

Let us now analyze how the field dependences of the
adiabatic cooling intensity (𝜕𝑇𝜕ℎ )𝑆 (or the Grüneisen
parameter Γℎ) change with the variation of 𝑔2 and the
temperature (see Figs. 4–6). Since Γℎ(ℎ) is an odd
function of the magnetic field, we will confine our
study to positive ℎ-values.

It is known that, in systems with quantum phase
transitions, if the temperature is low, Γℎ(ℎ) changes
its sign at ℎ that is close to the critical value ℎ𝑠 (see
work [22] and references therein). It is clear that the
lower 𝑇 , the closer ℎ to ℎ𝑠. This can be seen from the
presented figures for 𝑔2 = 1, 0.9, 0.5, 0.1, and 0.03. At
sufficiently high temperatures, Γℎ(ℎ) does not change
its sign for both 𝑔2 > 0 and 𝑔2 < 0, and is positive
over the whole interval ℎ ∈]0,∞[.

Recall that, in the uniform case at low tempera-
tures (𝑇 = 0.01, 0.05, and 0.1), the Grüneisen param-
eter as a function of the magnetic field has one min-
imum and one maximum, but it has only one maxi-
mum at high temperatures (𝑇 = 0.5). Furthermore,
if the temperature 𝑇 is low and ℎ > 0, the parameter
Γℎ(ℎ) intersects the abscissa axis only once.

A small deviation from uniformity (the case 𝑔2 =
= 0.9) leads to the appearance of additional extrema
at low temperatures: three at 𝑇 = 0.001 and 0.01,
and one at 𝑇 = 0.02. Hence, the field dependence
of the Grüneisen parameter has three maxima and
two minima at 𝑇 = 0.001 and 0.01, and two maxima
and one minimum at 𝑇 = 0.02. Moreover, at 𝑇 =
= 0.001 there are three additional points where Γℎ(ℎ)
changes its sign. But, at the temperatures 𝑇 = 0.01
and 0.02, there is only one such additional point. It
should be noted that those additional points, where
Γℎ(ℎ) = 0 (at smaller ℎ’s) are not associated with
any quantum phase transition. At the same time, it
is the last change in the sign of the Grüneisen pa-
rameter with the increasing magnetic field (this is
the fourth sign change for 𝑇 = 0.001, and the sec-
ond one for 𝑇 = 0.01 and 0.02) at the ℎ-values
rather close to ℎ𝑠 that testifies to the phase tran-
sition in the ground state (similarly to other 𝑔2-
values from the interval ]0, 1[). At 𝑇 = 0.05 and 0.1,
the dependences Γℎ(ℎ) have only two extrema each
and change their sign in the interval ℎ ∈]0,∞[ only
once (similarly to the case 𝑔2 = 1 at 𝑇 = 0.01,
0.05, and 0.1). It is clear that this sign change is
also connected to the presence of the quantum phase
transition.

The case 𝑔2 = 0.5 is slightly more complicated than
that considered above. There are three additional ex-
trema at 𝑇 = 0.01 and 0.05, one at 𝑇 = 0.1 and 0.27,
and none at the intermediate temperature 𝑇 = 0.2
(i.e., at 𝑇 = 0.2 the parameter Γℎ(ℎ) has only one
minimum and one maximum, similarly to the cases
𝑔2 = 1 at low temperatures and 𝑔2 = 0.9 at 𝑇 = 0.05
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Fig. 4. Field dependences of the adiabatic cooling intensity (𝜕𝑇/𝜕ℎ)𝑆 = 𝑇Γℎ at 𝑔2 = 1, 0.9, 0.5,
and 0.1, and various temperatures. Intersections of vertical and horizontal dashed lines in the insets
correspond to the points where Γℎ changes its sign when 𝑇 is close to zero, which is associated with
quantum phase transitions (ℎ𝑠 = 1, 1.054, 1.414 and 3.162 for 𝑔2 = 1, 0.9, 0.5 and 0.1, respectively)

and 0.1). Hence, one can see that the main difference
between the cases 𝑔2 = 0.5 and 0.9 consists in that
the number of Γℎ(ℎ) extrema can only decrease as
the temperature increases, if 𝑔2 = 0.9, but it can also
increase once (from two to three), if 𝑔2 = 0.5.

Let us briefly dwell on the number of points, where
the Grüneisen parameter changes its sign. At 𝑔2 =
= 0.5 and 𝑇 = 0.01, there are three additional points,
where Γℎ(ℎ) = 0 (together with the point close to ℎ𝑠,
their number equals four at ℎ > 0). The dependence
Γℎ(ℎ) intersects the abscissa axis at ℎ > 0 twice at

the temperatures 𝑇 = 0.05, 0.1, and 0.27, and only
once at 𝑇 = 0.2.

As concerning the variation in the number of ex-
trema in the field dependences of Γℎ with the tem-
perature growth, the cases 𝑔2 = 0.1 and 0.03 are
somewhat similar to the case 𝑔2 = 0.9. In partic-
ular, for 𝑔2 = 0.1 at 𝑇 = 0.01 and 0.05, as well
as for 𝑔2 = 0.03 at 𝑇 = 0.01, the Grüneisen pa-
rameter has three maxima and two minima (simi-
larly as for 𝑔2 = 0.9, 𝑇 = 0.01). For 𝑔2 = 0.1 at
𝑇 = 0.1, 0.2, 0.3, and 0.5, as well as for 𝑔2 = 0.03
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Fig. 5. Field dependences of the adiabatic cooling intensity (𝜕𝑇/𝜕ℎ)𝑆 = 𝑇Γℎ at 𝑔2 = 0.03 and 0,
and various temperatures. Intersections of vertical and horizontal dashed lines in the lower inset in
the left panel correspond to the point where Γℎ changes its sign when 𝑇 is close to zero, which is
associated with a quantum phase transition (ℎ𝑠 = 5.773 for 𝑔2 = 0.03)

at 𝑇 = 0.05, 0.1, 0.2, 0.3, and 0.5, it has two max-
ima and one minimum (similarly as for 𝑔2 = 0.9,
𝑇 = 0.02). However, in contrast to the cases close
to uniform (𝑔2 = 0.9) and nonuniform ones, in the
considered cases with strong deviations from unifor-
mity (𝑔2 = 0.1 and 0.03), there is no temperature
at which Γℎ(ℎ) would have one minimum and one
maximum at positive fields. Thus, a “transition” from
a Γℎ(ℎ)-curve with several extrema to a curve with
one maximum occurs at 𝑔2 = 0.1 and 0.03 differently
than at 𝑔2 = 1 and 0.9. In the cases with strong de-
viations from uniformity, the second and third ex-
trema (at higher ℎ’s), so to speak, “merge” and dis-
appear, as the temperature increases. On the other
hand, in the uniform case and the case with weak de-
viations from uniformity, the first extremum becomes
less pronounced, as the temperature 𝑇 grows, then
approaches the coordinate origin, and finally disap-
pears. A brief description of the temperature behav-
ior of the first two extrema (the maximum and the
minimum at small ℎ’s) in the field dependences of the
adiabatic cooling intensity will be made later, when
we will analyze the case 𝑔2 = 0.

As concerning the variation in the number of
points, where Γℎ(ℎ) = 0, from Fig. 4 and the left
panel in Fig. 5, one can see that, in the cases 𝑔2 = 0.1
and 0.03, the situations are somewhat different; at
the same time, they are somewhat similar to and

somewhat different from the situations for the cases
𝑔2 = 0.9 and 0.5. For instance, for 𝑔2 = 0.1 and
0.03 at 𝑇 = 0.01, the parameter Γℎ(ℎ) with five ex-
trema changes its sign four times at ℎ > 0 (as it
is for 𝑔2 = 0.9 at 𝑇 = 0.001 and for 𝑔2 = 0.5 at
𝑇 = 0.01). For 𝑔2 = 0.1 at 𝑇 = 0.05 and for 𝑔2 = 0.03
at 𝑇 = 0.02, Γℎ(ℎ), also with five extrema, crosses
the abscissa axis in the interval ℎ ∈]0,∞[ only two
times (similarly as for 𝑔2 = 0.9 at 𝑇 = 0.01 and for
𝑔2 = 0.5 at 𝑇 = 0.05). For 𝑔2 = 0.1 at 𝑇 = 0.1, 0.2,
and 0.3, as well as for 𝑔2 = 0.03 at 𝑇 = 0.05, 0.1,
0.2, and 0.3, the Grüneisen parameter, with three ex-
trema, changes its sign twice (as it is for 𝑔2 = 0.9 at
𝑇 = 0.02 and for 𝑔2 = 0.5 at 𝑇 = 0.1 and 0.27). At
the same time, in the cases 𝑔2 = 0.1 and 0.03 at
𝑇 = 0.5, Γℎ(ℎ) is a non-monotonic function with
three extrema, which is positive over the whole inter-
val ℎ > 0 (the Grüneisen parameter does not demon-
strate a similar behavior, if 𝑔2 = 0.9 or 0.5). On the
other hand, in the cases with strong deviations from
uniformity (𝑔2 = 0.1 and 0.03), there is no tempera-
ture at which Γℎ(ℎ) changes its sign once at ℎ > 0,
although such behavior can be observed at certain 𝑇 ’s
for 𝑔2 = 1, 0.9, and 0.5. Finally, at low temperatures
(𝑇 = 0.01), the last two extrema (there is a point
between them where Γℎ(ℎ) = 0 and which is associ-
ated with the quantum phase transition) at 𝑔2 = 0.03
are much less “pronounced” than the first two, which
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Fig. 6. Field dependences of the adiabatic cooling intensity (𝜕𝑇/𝜕ℎ)𝑆 = 𝑇Γℎ at 𝑔2 = −0.01, −0.1,
−0.2, and −0.5, and various temperatures

cannot be said about the case 𝑔2 = 0.1. For 𝑔2 = 0.9
and 0.5 at 𝑇 = 0.01, those two last extrema are much
more “pronounced” than the first two.

Let us briefly summarize the results obtained for
the adiabatic cooling intensity

(︀
𝜕𝑇
𝜕ℎ

)︀
𝑆
, or the associ-

ated Grüneisen parameter Γℎ, in the case 𝑔2 > 0
(Fig. 4 and the left panel in Fig. 5), when a quan-
tum phase transition occurs in the system at 𝑇 →
→ 0 [13]. From the above analysis, one can see that
the temperature-induced changes in the behavior of
either of the above-mentioned characteristics consid-
ered as functions of the magnetic field are different in
different cases: uniform, close to uniform, the case of

small positive 𝑔2, and the intermediate case between
the last two (an intermediate case between strong and
weak deviations from uniformity). However, it should
be noted that the situation is unambiguous at very
high fields: the both functions are decreasing at any
positive 𝑔2 and finite temperatures, and tend to zero
at ℎ → ∞.

Now, let us consider how the field dependences of
the adiabatic cooling intensity (or the Grüneisen pa-
rameter) change with the changes of 𝑔2 and the tem-
perature in the case 𝑔2 ≤ 0 (see the right panel in
Fig. 5 and Fig. 6). Since there are no phase transitions
in the ground state with the change of the magnetic
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field for such 𝑔2-values, it is natural that there is no
corresponding point, where the sign of Γℎ(ℎ) would
change and which would be related with a quantum
phase transition (as it was in the case 𝑔2 > 0). At
the same time, if 𝑔2 ≤ 0, also absent are the corre-
sponding extrema (the minimum and the maximum)
between which there was the above-mentioned point
Γℎ(ℎ) = 0 (at fields close to ℎ𝑠 and low temperatures)
in the case 𝑔2 > 0.

First, let us analyze the results obtained for 𝑔2 =
= 0, which are different from the results obtained for
𝑔2 ≷ 0. In the case 𝑔2 = 0, the Grüneisen parameter
has one maximum and one minimum at finite tem-
peratures and crosses the abscissa axis once at ℎ > 0.
That is, Γℎ(ℎ) is an increasing function at large fields
for any finite 𝑇 (in contrast to the case 𝑔2 ̸= 0), and
limℎ→∞ Γℎ(ℎ) = 0. It should also be noted that, as
the temperature increases, the maximum value in the
field dependence of the adiabatic cooling intensity
shifts toward higher ℎ’s. If the temperature grows,
but remains low, this maximum decreases insignifi-
cantly, but at high 𝑇, it increases rather drastically. A
similar situation is also observed for the first maxima
of (𝜕𝑇/𝜕ℎ)𝑆 = 𝑇Γℎ(ℎ) if the 𝑔2-values are negative
or small positive. At high 𝑇 , the minimum value in
the field dependence of the adiabatic cooling inten-
sity changes relatively weakly, as the temperature in-
creases, but its shift toward higher fields occurs faster
than that of the maxima. Moreover, if the tempera-
ture is sufficiently low or high and grows, the abso-
lute value of the minimum of (𝜕𝑇/𝜕ℎ)𝑆 = 𝑇Γℎ(ℎ)
decreases, but in the case of intermediate tempera-
tures, it increases. Somewhat similar behavior is also
demonstrated by the first minima in the cases of small
𝑔2-values [both positive (𝑔2 = 0.1, 0.03) and negative
(𝑔2 = −0.01)]: as the temperature increases, the first
minimum (𝜕𝑇/𝜕ℎ)𝑆 = 𝑇Γℎ(ℎ) first slightly “grows”,
then “falls”, and finally starts to “grow” again. For ex-
ample, at 𝑔2 = 0.1, the first minimum for 𝑇 = 0.1 is
higher than those for 𝑇 = 0.01 and 0.2, but lower
than that for 𝑇 = 0.3.

In the cases 𝑔2 = −0.01 and −0.1, and at not
very high temperatures, the Grüneisen parameter has
three extrema. At low 𝑇 , it crosses the abscissa axis
at ℎ > 0 twice, but at higher 𝑇 -values, it does not
change its sign. Thus, Γℎ(ℎ) at 𝑇 = 1 for 𝑔2 = −0.01
and at 𝑇 = 0.3 for 𝑔2 = −0.1 has three extrema and is
positive within the whole interval ℎ ∈]0,∞[. But, for
example, at 𝑇 = 0.5 for 𝑔2 = −0.01 or at 𝑇 = 0.3 for

𝑔2 = −0.1, the Grüneisen parameter changes its sign
two times. At sufficiently high temperatures (𝑇 = 2
for 𝑔2 = −0.01, and 𝑇 = 0.5 for 𝑔2 = −0.1), Γℎ(ℎ)
has only one extremum, similarly as it is at high
𝑇 in the case of positive 𝑔2. By comparing the re-
sults obtained for 𝑔2 = −0.01 and −0.1, one can see
that at 𝑔2 = −0.1 at low temperatures (for example,
𝑇 = 0.01 or 0.1), the absolute value of the minimum
Γℎ(ℎ) is much smaller than the value of the first max-
imum, which cannot be said in the case 𝑔2 = −0.01.

If 𝑔2 = −0.2, the number of extrema in the field
dependences of Γℎ changes with the increasing tem-
perature in the same way as in the cases 𝑔2 = −0.01
and −0.1. That is, the Grüneisen parameter has three
extrema at low temperatures, and one at high temper-
atures. At the same time, in the case 𝑔2 = −0.2, un-
like the cases 𝑔2 = −0.01 and −0.1 considered above,
Γℎ(ℎ) does not change its sign at ℎ > 0 even at rather
low temperatures.

Finally, let us consider the results obtained for
𝑔2 = −0.5 (see Fig. 6). In this case, the Grüneisen
parameter as a function of the magnetic field has
only one maximum even at low temperatures and is
positive within the whole interval ℎ > 0. The same
behavior of Γℎ(ℎ) takes place, if the deviation from
uniformity is maximum (𝑔2 = −1).

Let us briefly summarize the results obtained for
the adiabatic cooling intensity

(︀
𝜕𝑇
𝜕ℎ

)︀
𝑆
, or the related

Grüneisen parameter Γℎ, in the case 𝑔2 ≤ 0 (right
panel in Fig. 5 and Fig. 6), when the system in the
ground state and under any magnetic fields is in the
phase, where the Fermi level lies between two spec-
tral branches [13]. The analysis of how the number
of extrema in and the number of intersections of the
abscissa axis by the field dependence of either of the
above-mentioned characteristics change with the tem-
perature showed that the case 𝑔2 = 0, the case of
small or large 𝑔2-values, and the intermediate case be-
tween them are different. Furthermore, only if 𝑔2 = 0,
the adiabatic cooling intensity and, accordingly, the
Grüneisen parameter, are negative at strong positive
magnetic fields.

4. Conclusions

The magnetocaloric effect in the one-dimensional
spin- 12 𝑋𝑋 model with the periodically varying 𝑔-
factors (𝑔1 and 𝑔2) has been studied. In the case
where 𝑔1 and 𝑔2 are of the same sign, the variation
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of the magnetic field ℎ induces the quantum phase
transitions in the ground state between the phases
with saturated magnetization and the gapless spin
liquid, which manifests itself in the magnetocaloric
effect. In particular, near the critical magnetic fields
ℎ𝑠, the isentropes corresponding to small values of the
entropy 𝑆 have minima, and the Grüneisen parame-
ter Γℎ(ℎ) calculated for low temperatures changes its
sign. Note that, for a better understanding, the fol-
lowing conclusions concern the field interval ℎ ≥ 0
(since the entropy is an even function of ℎ, and Γℎ(ℎ)
is an odd one). It should also be said that, when an-
alyzing the isentropes and the Grüneisen parameter,
we confined the consideration to the entropy values
𝑆 > 0.001 and the temperature values 𝑇 > 0.001,
respectively.

∙ It is found that if 𝑔1𝑔2 > 0, and if the system is
non-uniform (𝑔1 ̸= 𝑔2), there appear additional ex-
trema in the isentropes plotted for small 𝑆-values:
three extrema, if the entropy values are rather small,
or one extremum for somewhat larger 𝑆-values. Fur-
thermore, in the non-uniform case, the curves corre-
sponding to a constant entropy have a minimum at
ℎ = 0, whereas they have maxima at ℎ = 0 for small
𝑆-values in the uniform case.

∙ If either of two 𝑔-factors equals zero or if 𝑔1 and
𝑔2 have different signs, and if their absolute values
are different by not less than about an order of mag-
nitude, the isentropes corresponding to small entropy
values have, besides the minimum at ℎ = 0, two more
extrema at ℎ > 0. In the case 𝑔1𝑔2 < 0, those two ex-
trema are more pronounced at not very small 𝑆-values
and have, so to speak, the same origin as the first two
additional extrema have (at 0 < ℎ ≪ ℎ𝑠) in the case
where 𝑔1 and 𝑔2 are of the same sign and differ by
values.

∙ It is shown that, at low temperatures, the devi-
ation from the uniformity of 𝑔-factors (nevertheless,
they remain to be of the same sign) leads to the ap-
pearance of three additional values of the magnetic
field at which the Grüneisen parameter Γℎ(ℎ) crosses
the abscissa axis and, accordingly, to the appearance
of three additional extrema in the field dependence of
this parameter (it is known that Γℎ(ℎ) has only two
extrema at low 𝑇 in the uniform case and is equal to
zero only at ℎ = 0 and at ℎ close to ℎ𝑠). It is im-
portant to note that, in the case of substantial non-
uniformity of 𝑔-factors, the extrema of Γℎ(ℎ) near
those two additional field values, where Γℎ(ℎ) changes

its sign, are much more pronounced than near ℎ𝑠. In
addition, it should be noted that the variation in the
behavior of the field dependence of the Grüneisen pa-
rameter with the temperature occurs differently for
different values of the ratio 𝑔2/𝑔1.

∙ When either of 𝑔-factors equals zero, the
Grüneisen parameter as a function of the magnetic
field has two extrema at any 𝑇 and crosses the ab-
scissa axis at ℎ ≥ 0 twice (for the first time, at ℎ = 0).
It should be noted that, only in this case, the param-
eter Γℎ(ℎ) is an increasing function of ℎ at very high
magnetic fields irrespective of the temperature. If the
both 𝑔-factors differ from zero, Γℎ decreases with the
increasing field (at large ℎ and any 𝑇 ).

∙ In the case 𝑔1𝑔2 < 0, the dependence Γℎ(ℎ) has
three extrema at low temperatures and crosses the
abscissa axis three times (in the interval ℎ ∈ [0,∞[),
only if the absolute values of 𝑔1 and 𝑔2 are different by
not less than about an order of magnitude. As the dif-
ference between |𝑔1| and |𝑔2| decreases, the Grüneisen
parameter (at low 𝑇 ) first preserves the three extrema
mentioned above, but it is already positive within the
whole interval ℎ ≥ 0 (Γℎ(ℎ) = 0 only at ℎ = 0). A fur-
ther reduction of the difference between the absolute
values of the 𝑔-factors preserves only one maximum
in the field dependence of Γℎ.

∙ At low temperatures and small positive values of
the magnetic field, Γℎ(ℎ) is an increasing function in
the case 𝑔1 ̸= 𝑔2 (irrespective of whether the 𝑔-factors
are of the same or different signs), and a descending
function in the case 𝑔1 = 𝑔2.
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chains in a field. Phys. Rev. B 71, 014437 (2005).

33. H.H. Fu, K.L. Yao, Z.L. Liu. Thermodynamic properties
of a spin- 1

2
diamond chain as a model for a molecule-based

ferrimagnet and the compound Cu3(CO3)2(OH)2. Phys.
Rev. B 73, 104454 (2006).

34. T. Verkholyak, J. Strečka, M. Jaščur, J. Richter. Magnetic
properties of the quantum spin- 1

2
𝑋𝑋 diamond chain: the

Jordan–Wigner approach. Eur. Phys. J. B 80, 433 (2011).
35. Y.R. Wang. Ground state of the two-dimensional antifer-

romagnetic Heisenberg model studied using an extended
Wigner–Jordon transformation. Phys. Rev. B 43, 3786
(1991).

36. E. Fradkin. Jordan–Wigner transformation for quantum-
spin systems in two dimensions and fractional statistics.
Phys. Rev. Lett. 63, 322 (1989).

37. A. Lopez, A.G. Rojo, E. Fradkin. Chern–Simons theory of
the anisotropic quantum Heisenberg antiferromagnet on a
square lattice. Phys. Rev. B 49, 15139 (1994).

38. O. Derzhko, T. Verkholyak, R. Schmidt, J. Richter.
Square-lattice 𝑠 = 1/2 𝑋𝑌 model and the Jordan–Wigner

500 ISSN 2071-0194. Ukr. J. Phys. 2023. Vol. 68, No. 7



Magnetocaloric Effect

fermions: The ground-state and thermodynamic proper-
ties. Physica A 320, 407 (2003).

39. O. Derzhko, T. Krokhmalskii. Dynamics of 𝑧𝑧 spin corre-
lations in the square-lattice spin- 1

2
isotropic 𝑋𝑌 model.

Physica B 337, 357 (2003).
40. O. Derzhko, T. Krokhmalskii. Jordan–Wigner approach to

dynamic correlations in 2D spin- 1
2

models. Czech. J. Phys.
55, 601 (2005).

41. O.R. Baran, T. M. Verholyak Ground state of two-
dimensional spin- 1

2
𝐽1 − 𝐽2 Heisenberg models in the

Jordan–Wigner fermionization approach. J. Phys. Stud.
19, 4701 (2015).

42. O.R. Baran, T.M. Verkholyak. Two-dimensional spin- 1
2

𝐽1−𝐽 ′
1−𝐽2 Heisenberg model within Jordan–Wigner trans-

formation. Ukr. J. Phys. 61, 597 (2016).
43. T. Jolicœur, G. Misguich, S.M. Girvin. Magnetization

process from Chern–Simons theory and its application
to SrCu2(BO3)2. Progr. Theor. Phys. Suppl. 145, 76
(2002).

44. D. Eliezer, G. Semenoff. Anyonization of lattice Chern–
Simons theory. Ann. Phys. 217, 66 (1992).
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МАГНЕТОКАЛОРИЧНИЙ ЕФЕКТ
У СПIН-1/2 ОДНОВИМIРНIЙ 𝑋𝑋 МОДЕЛI
З ДВОМА РЕГУЛЯРНОЗМIННИМИ 𝑔-ФАКТОРАМИ

Дослiджено вплив неоднорiдностi 𝑔-факторiв, коли вони є
регулярнозмiнними з перiодом два, на магнетокалоричний
ефект у спiн-1/2 𝑋𝑋 ланцюжку в поперечному магнiтному
полi. За допомогою перетворення Йордана–Вiґнера зада-
ча зводиться до гамiльтонiана невзаємодiючих безспiнових
фермiонiв i розв’язується точно. Проаналiзовано, як змiню-

ються iзоентропи та польовi залежностi параметра Грюнай-
зена зi змiною 𝑔2/𝑔1. Основна увага придiляється низько-
температурнiй областi. Показано вiдмiнностi магнетокало-
ричного ефекту у випадках, коли 𝑔-фактори мають однако-
вi та рiзнi знаки, а також коли один iз 𝑔-факторiв дорiвнює
нулю.

Ключ о в i с л о в а: одновимiрнi квантовi спiновi моделi,
𝑔-фактор, фермiонiзацiя Йордана–Вiґнера, магнетокалори-
чний ефект, квантовий фазовий перехiд.
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