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The electronic band structure, the local densities of states (the to-
tal and layer-resolved ones), and the distribution of charge density
of valence electrons at the (111) polar surface in A3B5 and A2B6

crystals, such as GaAs and ZnSe, have been studied. The proper-
ties of anion- and cation-terminated surfaces have been analyzed
separately. The self-consistent “3D” pseudopotential method has
been used for numerical calculations in the framework of a model
of layered superlattice. The application of an original iterator in
the self-consistence procedure allowed difficulties associated with
the surface-induced presence of reciprocal-lattice vectors shorter
that 1 a.u. to be overcome.

1. Introduction. A Short Review of Researches
of the Electronic Structure of (111) Surface
in Crystals of the A2B6- and A3B5-types
with Sphalerite and Wurtzite Structures

To study the surface states, three main methods are usu-
ally applied [1]: the bond-orbital, tight-binding, and self-
consistent pseudopotential ones. The first method was
used in the 1970s to calculate the properties of (111) sur-
face in the elementary semiconductors Si and Ge. How-
ever, it found no wide application [2].

The non-self-consistent tight-binding method was pro-
posed for the first time by Slater and Koster in 1954 [3].
In work [4], it was applied to calculate the electronic
structure of (001) surfaces for all types of surface recon-
structions known from experimental data, as well as for
perfect (110) and (111) surfaces of cubic silicon carbides.
The authors of work [4] marked that the tight-binding

method describes well the valence band, but unsatisfac-
torily the conduction band and the energy gap. They
also obtained the total and the layer-resolved density
of states for various types of β-SiC (001) surface recon-
structions.

Five different configurations of polar β-SiC (001) sur-
faces were calculated in work [5] from the first princi-
ples. The calculations were carried out within the self-
consistent method, by using of smooth separable norm-
conserving pseudopotentials in the local-density approx-
imation of density-functional theory.

A similar method was used to calculate the surface
energies and to predict types of the reconstruction of
actual surfaces of various bulk phases of zirconium oxide
ZrO2.

In work [6], the self-consistent pseudopotential calcu-
lations for (110) surfaces in semiconductors of the A2B6

and A3B5 types with the zinc-blende structure – ZnSe
and GaAs – were carried out for the first time within the
layered-superlattice model. In contrast to the case of po-
lar (111) surface, the atoms of both types are on (110)
surface. The calculation confirmed the validity of ex-
perimental results obtained for GaAs specimens by pho-
toemission, energy loss spectroscopy, ellipsometry, and
other techniques that testify to the existence of two sur-
face states associated with dangling bonds. It was shown
that (110) surface is semiconducting.

For the GaAs (110) surface, only the relaxation of gal-
lium and arsenic surface atoms was observed [7]. At the
same time, on the GaAs (001) one, there exists a wide
spectrum of structures depending on the chemical com-
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position of the surface layer and the means of surface
preparation. In work [8], the atomic and electronic struc-
tures of four structural reconstructions of a GaAs (001)
– (4×2) gallium-terminated surface were studied within
the pseudopotential method and the layered-superlattice
model. The surface and local electron densities of states,
band spectra, and relative surface energies of those struc-
tures were calculated.

In work [9], the surface energetics of elementary semi-
conductors Ge, Si, and diamond with various types of
the reconstruction – 1× 1, 2× 1, c(4× 2), c(2× 8), and
7 × 7 – of (100), (110), and (111) surfaces was studied
from the first principles on the basis of the pseudopoten-
tial method with a plane-wave basis. The total energies
and the corresponding band structures were determined.
The behavior of various reconstructions was analyzed in
terms of atomic sizes and orbital energies.

In recent years, a large attention has been attracted
to the analysis of surface characteristics and interfaces
in indium nitride, a narrow-gap semiconductor with
Egap ≈ 0.65 eV that reveals the ability to maximally
accumulate electrons on a pure InN (0001) surface fabri-
cated by the molecular beam epitaxy method; this phe-
nomenon is not observed for the majority of III–V com-
pounds. It was experimentally found that electrons cre-
ate a separate subband in this accumulating InN (0001)
layer. The alloy of InN with the wide-band-gap semi-
conductor GaN (Egap ≈ 3.4 eV) opens new capabilities
in band engineering [10, 11].

Along with the study of electronic and optical proper-
ties of the ground state of crystal surfaces in the frame-
work of density-functional theory, the researches of ex-
cited surface states were started with the use of the
many-particle perturbation theory. The corresponding
calculations have already been made for two-dimensional
systems based on the IV-group elements, e.g., for the
pure surfaces of silicon and graphene, as well as for the
C (111) 2× 1 surface [12, 13].

The densities of states – total and in separate layers
– at perfect (111) surface of A2B6 and A3B5 semicon-
ductors with the zinc-blende structure were studied in
the AlP compound using the bond-orbital method [2],
in GaAs and ZnSe using the tight-binding method [14],
and in GaN using the linear combination of atomic or-
bitals method [15].

In this work, to study the electronic structure of the
(111) surface of similar crystals, we applied a “three-
dimensional” self-consistent pseudopotential method
within the layered-superlattice model that was used for
the first time in work [16] in the silicon (111) surface re-
searches. In this case, a solid state surface is simulated

as a layered superlattice, i.e. a system of thin films that
includes 5 to 20 and even more atomic layers that are
periodically alternate in the direction perpendicular to
the surface, being separated by vacuum intervals. The
thickness of a vacuum gap was selected so that the in-
teraction between neighbor films can be neglected.

This model is much more convenient than the model
of semiinfinite crystal, because the artificially induced
three-dimensional translational symmetry in the direc-
tion perpendicular to the crystal surface allows one to
use well-developed “three-dimensional” methods for the
calculation of the surface electronic structure.

The (111) surface of A2B6- and A3B5-type compounds
with the sphalerite structure is a special case of polar sur-
face, when the atoms of only one sort – either a cation
or an anion – are located on the surface. The polar
surface can be imagined as alternating parallel planes
that contain atoms of only one sort. The atomic layers
form hexagonal plane lattices in the [111] direction that
are separated by the intervals of 1/4, 1/12, 1/4, 1/12,
1/4. . . . Here, the enhancement of ionic bond degree at
changing from one compound to another, i.e. the in-
crease of bond asymmetry, is the major factor, which
governs features of the electronic energy structure. In
our case of periodically arranged films with an even num-
ber of atomic layers, a cation and an anion lie on the
opposite film surfaces.

2. Application of Layered-superlattice Model to
the Calculation of Electronic States at (111)
Surface of ZnSe and GaAs Crystals with
Sphalerite Structure

A big prolate elementary cell is so selected that, in two
dimensions, it is determined by the shortest vectors of
the direct lattice; i.e., for a hexagonal lattice, these are
vectors a

√
2/2 in length each, where a is the crystal lat-

tice constant. In the third dimension, we select the c-
axis, which passes in the [111] direction as the large di-
agonal of the cube (in such a way, the cubic structure of
sphalerite is regarded as a hexagonal one) and extends
over M atomic and N empty layers. The numbers M
and N are chosen as follows: i) the film has to possess a
sufficient thickness so that the interaction between both
its surfaces could be neglected, and ii) the surface poten-
tial has to damp in “vacuum”, so that other periodically
located films could not affected it. The test calcula-
tions gave the values M = 12 and N = 4; therefore, we
obtained c = 5a

√
3/2. The choice of 12 atomic layers

guarantees that the plate contains an integer number of
irreducible crystal layers. In the case of perfect (111)
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surface, those layers include six atomic layers of each
type.

Hence, the problem consists in a self-consistent calcu-
lation of the electronic structure of a “periodic” system,
in which a hexagonal cell contains 12 atoms in the case
of a nonreconstructed structure.

The wave function is expressed as a linear combina-
tion of plane waves with the wave vectors equal to the
reciprocal lattice vectors,

ψnk(r) =
∑
G

ank(G)ei(k+G)r, (1)

where n enumerates the bands.
The system of equations to be solved by the iteration

procedure has a standard form,∑
G

(HG,G′ − EδG,G′) ak(G) = 0, (2)

where

HG,G′ = |k + G|2 δG,G′ + Vps(G,G′). (3)

The calculations were carried out with the use of
1017 plane waves, which corresponds to the choice
|Gmax|2 ≤ 4.8 a.u.

The procedure of self-consistent iteration was started
from the empirical pseudopotential

Vemp(G) = S(G)V at
emp(|G|), (4)

where

S(G) =
1
M

∑
τi

e−iGτi (5)

is the structural factor which describes an atomic ar-
rangement in the “large” elementary cell, and the values
for the form factors V at

emp(|G|) were obtained from the
continuous curve [17]

V (q) =
a1(q2 − a2)
ea3(q2−a4) + 1

. (6)

Four parameters ai were determined by fitting the de-
pendence V (q) to known form factor values for a bulk
crystal; afterwards, they were renormalized to a differ-
ent volume of the elementary cell. The renormalization
consisted in multiplying the form factors by the “old” el-
ementary cell volume that is equal to 3a3/4, and divid-
ing the result by the “new” volume, 2 × a2√3

8 × 5
√

3a
2 =

15a3/8. The form factors for “new” G-vectors of the

surface problem were obtained by a continuous extrapo-
lation of expression (6).

The solution of Eqs. (2) and (3) for eigenvalues and
eigenfunctions gave the energies En(k) and the pseu-
dowave functions that are determined by Eq. (1). Those
quantities were calculated at 28 points of the irreducible
(1/12) two-dimensional hexagonal Brillouin zone. Such
a relatively large number of points for k (instead of a sin-
gle k-point or a few “special” k-points, as is often done)
was chosen in order to determine the Fermi level and the
charge of valence electrons with an accuracy as high as
possible.

The charge density of valence electrons was calculated
at each iteration by the formula

ρ(r) = e

Br.z.∑
k,n

Ψn∗
k (r)Ψn

k(r), (7)

where the summation over k and the energy band num-
ber n means that k belongs to the Brillouin zone and
the energy En(k) < EF , respectively. After substituting
Eq. (1) in Eq. (7), we obtain

ρn(r)=e
∑
k

[∑
m

(ank(Gm))2 +

+
∑
i 6=j

ank(Gi)ank(Gj) cos [(Gi −Gj)r]

 . (8)

The Fermi level that corresponds to the maximal en-
ergy of valence electrons was also calculated at each it-
eration. Its convergence was one of the criteria for the
convergence of the whole self-consistent iteration pro-
cess.

Further, the dependence ρ(r) served as a basis for the
calculation of Hartree–Fock screening potentials VH and
VX . The potential VH is a repulsive Coulomb potential
that describes the action of all other valence electrons on
the given one. It is determined by the Poisson equation

∇2VH(r) = −4πe2ρ(r) (9)

and can be presented as a Fourier-series expansion

VH(r) =
∑
G

VH(G)eiGr, (10)

where

VH(G) =
4πe2ρ(G)
|G|2

. (11)
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The divergence of VH(G) at G → 0 has no physical
meaning, because it is completely eliminated by the ionic
potential induced by positive ions,

V at
ion(q) = (b1/q2)[cos(b2q) + b3]eb4q

4
. (12)

The ionic potential was obtained by fitting the model
atomic potential to the values of atomic terms, as was
done by Heine and Abarenkov [18]. The quality of this
potential was tested by carrying out the self-consistent
calculations of the band structures in bulk ZnSe and
GaAs. Therefore, we may put1

VH(G = 0) = Vion(G = 0) = 0.

In the framework of the Slater statistical exchange
model, the local form for the Hartree–Fock exchange po-
tential looks like

VX(r) = −3αe2(3/8π)1/3ρ1/3(r), (13)

where α = 0.79, as was adopted in the calculations for
the bulk. Only the valence electrons are taken into con-
sideration.

The function ρ1/3(r) was determined at every point
separately in a three-dimensional grid with N = 21600
r-points in the elementary cell. The function ρ1/3(r) was
converted into its Fourier transform

ρ1/3(G) =
1
N

∑
ri

ρ1/3(ri)e−iGri . (14)

The sum of two Hartree–Fock potentials, VH and VX ,
composes the electron screening potential:

Vscreen(r) =
∑
G

[VH(G) + VX(G)]eiGr. (15)

It is worth emphasizing that it is determined at each
self-consistent iteration from the total valence charge.

T a b l e 1. Parameters ai for the empirical potential
at ZnSe and GaAs (111) surfaces (Ry)

No. Ga As Zn Se
1 1.22 0.35 6.70 0.23
2 2.45 2.62 1.50 3.39
3 0.54 0.93 0.67 0.73
4 –2.71 1.57 –4.71 2.20

1 In the practice of numerical calculations, the divergences of the
Hartree–Fock and ionic potentials at small lattice wave vec-
tors break the stability of and complicates the process of self-
consistent iterations while solving the surface problem numeri-
cally. This issue will be discussed below in more details.

The calculation (the self-consistence loop) begins from
the input empirical potential (4), (5). Table 1 exhibits
the values of parameters ai for empirical input poten-
tials. The potentials are normalized by the atomic vol-
ume that is equal to the volume of a new large elemen-
tary cell (16 layers) divided by the number of atoms
in the cell (12), in particular, 190.2 a.u. for ZnSe and
188.7 a.u. for GaAs. The lattice constants for ZnSe and
GaAs are 5.65 and 5.635 Å, respectively.

At a second iteration, the input potential is equal to
the sum of ionic and screening potentials. Table 2 ex-
hibits the values of parameters bi for the ion-frame po-
tential (12) at (111) surface of ZnSe and GaAs.

Hence, the input potentials for the first and second
iterations in the self-consistence procedure look like

V
(1)
in (r) = Vemp(r),

V
(2)
in (r) = Vion(r) + V

(1)
screen(r).

(16)

Since the empirical potential Vemp(r) for bulk crys-
tals was used in the calculations, we did not obtain – as
would be expected – a satisfactory screening charge on
the surface after the first iteration. Really, the poten-
tial V (2)

in (r) gives rise to the spectrum of eigenvalues and
the charge that strongly differ from the results of the
first iteration with V (1)

in (r), and all the following steps of
the self-consistence procedure did not make the results
convergent.

The matter is that, in the problem for the bulk,
the shortest vector in the reciprocal lattice has the
length 2π(111)/a > 1 a.u., whereas the length of such
a vector in the problem for the surface is 2π/ac <
1 a.u. Here, c means the axis of a large elemen-
tary cell. For short vectors in the reciprocal lat-
tice, |G| < 1, the iterated system (16) is very un-
stable. Mathematically, this circumstance manifests
itself in that the dependences Vout(G) = f(Vin(G))
for the reciprocal-lattice vectors within this interval
are curves with a large slope (often negative); i.e.
the smallest variations of the input potential (a few
tenths or hundredths of eV) bring about the changes
of both the order of the input potential and its
sign.

T a b l e 2. Parameters bi for the empirical potential of
the ionic frame at ZnSe and GaAs (111) surfaces (Ry)

No. Ga As Zn Se
1 –0.34 –0.71 –0.31 –2.32
2 1.33 1.04 1.34 0.53
3 0.45 0.17 0.082 – 0.57
4 0.0071 –0.015 –0.0086 –0.032
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In accordance with the results obtained by other au-
thors [6, 7], the calculation of the input potential at the
(n + 1)-th iteration as a linear combination of the in-
put and output potentials at the n-th iteration does not
provide the convergence. Therefore, to obtain the in-
put potential V (n)

in (G) for n > 2, we studied the curves
Vout(G) = f(Vin(G)) for every small |G| < 1 a.u. sepa-
rately and proposed the following iteration procedure.
Let us draw a straight line in the coordinate system
(x = Vin(G), y = Vout(G)) through two points (x1, y1)
and (x2, y2) that correspond to the input and output,
respectively, potentials for two iterations preceding to
the iteration (x, y) under consideration. We obtain a
system of equations
x1

a
+
y1
b

= 1 and
x2

a
+
y2
b

= 1, (17)

whence we can find the constants a and b:

a =
x2y1 − x1y2
y1 − y2

, b =
x2y1 − x1y2
x2 − x1

. (18)

The convergence of the procedure corresponds obviously
to the equality x ≈ y between the input and output po-
tentials. Therefore, from the system of equations ([22]),
we obtain the following condition for the input potential
in the current iteration:

x =
ab

a+ b
, (19)

In the literature, the input potential x (Eq. (19)) is
often written down as a linear combination of the input
and output potentials taken from the preceding itera-
tion,

x = αx2 + (1− α)y2, (20)

where the coefficient of a linear combination of the in-
put and output potentials from the preceding iteration
(x2, y2) is equal to

α =
x− y2
x2 − y2

. (21)

Expression (20) for the input potential allows the self-
consistence process to be made controllable. Namely,
the parameter α has to fall within the interval 0 < α <
1. This procedure was carried out for every iteration,
starting from the third one, and separately for the real
and imaginary parts of the potential.

Then, we calculated and analyzed the densities of
states (total one and that in each layer) for cation- and
anion-terminated surfaces:

N(E) =
∑
kii,n

∫
Ω

∣∣Ψkii(r)

∣∣2 dr δ(E − En(kii)). (22)

Fig. 1. Band structure of a 16-layer (111) GaAs film

Here, the integration is carried out over the volume of
either a separate layer or the whole elementary cell. Ex-
pression (22) is interpreted as a probability for an elec-
tron with energy E to be found in volume (region) Ω.

The authors developed an AEPP software package,
which allows one to obtain a self-consistent solution
for a system of equations within the pseudopotential
method with an original iterator, to calculate the dis-
persion laws at the surface in the framework of the
layered-superlattice model, to calculate the total and
layer-resolved densities of states, the 3D- and contour
distribution maps for charge densities – total, for charges
in separate energy bands, and at separate points in the
Brillouin zone – and so on. The soft package can be used
for an arbitrary crystal structure and arbitrary num-
bers of empty and filled atomic layers. It can be easily
adapted for surfaces with various indices. The authors
can easily improve the software package and expand its
scope of applications.

3. Results of Numerical Experiment and
Conclusions

3.1. Band structure and electron density of
states

In this work, we calculated two-dimensional band struc-
tures, the total and layer-resolved densities of states, and
the distributions of charge density created by valence
electrons in ZnSe and GaAs (111) films. The conver-
gence of iterations was achieved after 20 to 24 steps, until
the input and output potentials differed by 0.1–0.15 eV
from each other.

ISSN 2071-0194. Ukr. J. Phys. 2011. Vol. 56, No. 2 151



T.V. GORKAVENKO, S.M. ZUBKOVA, V.A. MAKARA et al.

Fig. 2. Total densities of states in ZnSe (a) and GaAs 6 ( b) (111) films

Fig. 3. Density of states in a Se-terminated ZnSe (111) film: (a) Se 6 atomic layer, (b) Zn 7 atomic layer, (c) (Se 6 + Zn 7) central
molecular layer, (d) Zn 11 atomic layer, (b) Se 12 atomic layer, (c) (Zn 11 + Se 12) surface molecular layer
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Fig. 4. Density of states in a Zn-terminated ZnSe (111) film: (a) Zn 6 atomic layer, (b) Se 7 atomic layer, (c) (Zn 6 + Se 7) central
molecular layer, (d) Se 11 atomic layer, (b) Zn 12 atomic layer, (c) (Se 11 + Zn 12) surface molecular layer

The band structures of 16-layer (. . . 12–4–12–4. . . )
ZnSe and GaAs (111) films were calculated for sur-
face vectors k‖ between points Γ(0, 0), M(1/2, 0),
K(1/3, 1/3), and Γ(0, 0) in the two-dimensional Brillouin
zone. By the example of the band structure of a (111)
GaAs film (Fig. 1), it is seen that the singularities of
the obtained dispersion curves are similar to those of
the band structure of a (111) Si film [16]. The Fermi
level passes through the valence band top. In Fig. 1, we
observe a sufficiently strong separation of lower unfilled
states from the valence band bottom, which decreases
significantly the energy gap [8]. At point Γ, the distance
between the Fermi level and the separated band is equal
to 1.3 eV. The same distance is between the surface level
created by the dangling bond of a Ga ion and the va-
lence band top in the case of a surface terminated by a
Ga ion.

Figures 2 to 5 present the curves for the total and
layer-resolved densities of states in the (111) films of

zinc selenide and gallium arsenide plotted with a step
of 0.2648 eV for ZnSe and 0.2725 eV for GaAs. The
covered energy range includes the whole valence band,
the forbidden gap, and some interval of the conduction
band.

Figure 2,a demonstrates the total density of states in
a ZnSe (111) film that consists of 12 filled and 4 empty
layers and is terminated by a Se ion.

Figures 3,a to c illustrate the density of states in the
sixth (Se 6) and the seventh (Zn 7) atomic, and the cen-
tral (Se 6 + Zn 7) molecular layer, respectively, in such
a 12-layer film. The central double layer is separated by
five atomic layers from each of the film surfaces, and its
density of states approaches the bulk value. It can be
regarded as a projection of bulk density of states onto
the (111) plane. The figures testify that, in the central
layer, the contribution of a Se ion to the density of states
in the depth of the valence band is an order of magni-
tude larger than that made by a Zn ion, whereas at the
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Fig. 5. Density of states in a Ga-terminated GaAs (111) film: (a) Ga 6 atomic layer, (b) As 7 atomic layer, (c) (Ga 6 + As 7) central
molecular layer, (d) As 11 atomic layer, (b) Ga 12 atomic layer, (c) (As 11 + Ga 12) surface molecular layer

lower boundary of the fundamental energy gap, the con-
tribution of a Zn ion is 7 to 8 times as large as that of a
Se ion.

Figures 3,d to f exhibit the densities of states in the
surface layer Se 12, the subsurface layer Zn 11, and
the surface molecular layer Zn 11 + Se 12, respectively.
A comparison of those figures testifies to the appear-
ance of a large peak in the density of states (the max-
imal number of states is 20.6) at a distance of about
2 eV from the valence band bottom. This peak corre-
sponds to a dangling bond of the surface Se ion. The
second peak in the density of surface states is located
at a distance of about 1 eV down from the valence
band top (the maximal number of states is 29.5). Here,
the contribution of a surface Se ion to the density of
states is almost 8 times as large as the contribution
of a subsurface Zn ion, the share of which amounts to
about 13%.

In Figs. 4,a to c, the densities of states are shown
for the atomic layers Zn 6 and Se 7, and the central
molecular layer (Zn 6 + Se 7), respectively, in a 12-
layer ZnSe film terminated by a Zn ion. In this case,
the surface level induced by a dangling bond appears at
a distance of about 1 eV above the valence band bot-
tom (the maximal number of states is 8.4). The sec-
ond surface level is located at a distance.of 6 eV un-
der the valence band top (the maximal number of states
is 13.4). The contribution of a Zn ion, at which the
bond becomes broken, amounts to about 5%. In ad-
dition, weak resonances are observed in the conduction
band.

Figures 4,d to f demonstrate the densities of states
for the surface, Zn 12, and subsurface, Se 11, atomic
layers and the surface molecular layer (Se 11 + Zn 12),
respectively. A comparison between Figs. 2–4 makes it
evident that the location and the arrangement of surface
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Fig. 6. Total valence charge density in a (111) film of the GaAs crystal terminated by a Ga ion: (a) – the contour plot, (b) – the 3D
image

Fig. 7. Total valence charge density in a (111) film of the ZnSe crystal terminated by a Zn ion: (a) – the contour plot, (b) – the 3D
image

levels depend on the atomic alternation in the surface
molecular layer.

In GaAs, in contrast to ZnSe, the contributions of Ga
and As ions to the density of states in the central molec-
ular layer are comparable by magnitude – 42% by Ga
and 58% by As ions, which is associated with a smaller
difference between the ionicities of Ga and As atoms in
comparison with that between Zn and Se ionicities.

In Fig. 2,b, the total density of states in a GaAs (111)
film terminated by a Ga ion is shown.

Figure 5 exhibits the densities of states in a GaAs
(111) film terminated by a Ga ion: panels a to c corre-
spond to the Ga 6 and As 7 central atomic, and (Ga 6
+ As 7) central molecular layers, respectively, whereas
panels d to f to the As 11 and Ga 12 surface atomic, and
(As 11 + Ga 12) surface molecular layers, respectively.
One can see that, in the depth of the valence band at
a distance of 3 eV from its top, there emerges a surface
level induced by a dangling bond and created mainly by
the As ion. At the same time, a surface level created
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mainly by the dangling bond of a Ga ion is observed in
the energy gap at a distance of about 1.3 eV from the
valence band top.

A comparison of the studied properties for the density
of states at (111) surface with the results of work [6] ob-
tained for (110) surface in crystals with the zinc-blende
structure demonstrates a substantial difference between
them. This circumstance is explained, first of all, by
the fact that there are atoms of both kinds on (110)
surface, whereas only cations or anions are present on
(111) one. The difference is observed between the band
structures, local densities of states, and charge density
maps (see below). In the case of GaAs (111) surface,
the band induced by dangling bonds is located in the en-
ergy gap. The properties of (111) surface in sphalerite-
type crystals are similar to those of silicon (111) sur-
face.

As the ionicity increases, the energy level of the surface
state decreases and enters the valence band.

3.2. Charge-density distribution for valence
electrons

In the present work, we obtained the 3D images and the
contour maps of charge-density distributions for valence
electrons in a (111) film of the GaAs crystal. The film
is started by an As (Ga) ion and terminated by a Ga
(As) one. In Fig. 6,a, b, the results are illustrated by
the example of a GaAs (111) film that is started by an
As ion and terminated by a Ga ion. The contour map is
represented in the (110) plane that intersects (111) plane
at a right angle.

Here, as well as in the following figure, 8 atoms
(4 atoms A and 4 atoms B) are located in the (110)
plane that is normal to (111) surface. The z-axis corre-
sponds to the c-axis of a large prolate elementary cell.
The y-coordinates of points in the elementary cell are
reckoned along the y-axis. The vertical axes in 3D plots
correspond to the charge-density magnitude. The charge
density is normalized by the number of electrons in the
elementary cell and is expressed in terms of 10−3 a.u. (to
make the notation compact, we write it as “c.u.”).

In the chosen (110) plane, 4 atoms (2A + 2B) have
the coordinate x = 0 and 4 atoms (2A + 2B) the coordi-
nate x = 3.765 a.u. in the GaAs case and x = 3.775 a.u.
in the ZnSe one. The average charge density is about
0.013 c.u. near the Ga ion and about 0.076 c.u. near the
As one. The calculations show that the charge density in
the upper surface layer in a (111) film of the GaAs crys-
tal differs weakly from the charge density in the central
layers.

In Fig. 7,a, b, the results are illustrated by the example
of a (111) film of the ZnSe crystal that is started by
an Se (Zn) ion and terminated by an Zn (Se) one, are
shown. The calculations showed that the average charge
density is about 0.003 c.u. near the Zn ion and about
0.106 c.u. near the Se one. The maximal charge density
of about 0.16–0.18 c.u. is reached in the central film
layers at a distance of about 0.7–0.9 a.u. from the Se ion,
around which a considerable part of the valence charge
is accumulated. It is clearly seen that the density of
valence charge decreases asymmetrically toward the left
and right film boundaries. The large humps are related
with Se ions, and the small projections to Zn ones.

4. Conclusions

We have calculated and analyzed the total density of
states for (111) films of ZnSe and GaAs that are com-
posed of 12 filled and 4 empty layers and are terminated
by a Se (Zn) or As (Ga) ion, respectively; the density of
states of the central molecular layer (sixth and seventh
atomic layers), and the densities of states of the surface
and subsurface layers and the surface molecular layer
(totally 26 versions). It turns out that the density of
states of the central double layer separated by 5 atomic
layers from each of the film surfaces approaches the bulk
one. We can consider it as the projection of the bulk
density of states on (111) plane. The locations and the
arrangement of surface levels depends on the alternation
of atoms in the surface layer.

In ZnSe, the contributions of Zn and Se ions to the
density of states of the central molecular layer differ from
each other by at least one order, whereas these contri-
butions in GaAs are comparable: 42% and 58% for Ga
and As, respectively, which is related to the less differ-
ence in the ionicities of Ga and As atoms as compared
with those of Zn and Se ones. The calculations indicate
that the charge density of the upper surface layer in a
(111) film of the GaAs crystal differs slightly from that
of central layers.

We have calculated the 3D images and the contour
maps of charge-density distributions for valence elec-
trons in a (111) film of the GaAs crystal that is started
by an As (Ga) ion and is terminated by a Ga (As) one,
as well as those in a (111) film of the ZnSe crystal that
is started by a Se (Zn) ion and is terminated by a Zn
(Se) one, respectively.

A tendency for the bond to be more ionic, when chang-
ing from GaAs to ZnSe, is obviously illustrated in the
charge density plots. As it occurs in the crystal bulk,
the valence charge increases around the anion and de-
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creases around the cation, whereas the charge along the
covalent bond between the ions diminishes.

The enhancement of bond ionicity gives rise to a
quicker damping of surface perturbation in ZnSe, in com-
parison with that in GaAs. The matter is that the charge
is mostly localized at the Se ion, which governs the be-
havior of the total charge density. Therefore, a strong
Se potential can be considerably perturbed only at the
upper surface level.

It is worth noting that (111) surface is not a cleavage
plane for crystals of the zinc-blende type. For the cre-
ation of a polar surface, a large electrostatic energy is
needed, which is necessary for two half-spaces with op-
positely charged boundaries to be separated from each
other. However, such a surface was obtained by bom-
barding those crystals with Ar+ ions followed by their
annealing under ultrahigh vacuum conditions. The spec-
imens of gallium arsenide and gallium phosphide were
used to carry out experiments on studying the surface
and bulk contributions to electron photoemission spec-
tra and the electron energy loss spectra [19], the low-
energy electron diffraction [20], and the angle-resolved
ultraviolet photoemission spectra [21]. The energy dif-
ference between the dangling Ga– and As– bonds for a
perfect surface of gallium arsenide, which was obtained
in this work, correlates with the energy difference be-
tween the corresponding peaks in the angle-resolved ul-
traviolet photoemission spectrum [22]. Unfortunately,
no unreconstructed structures were found for the (111)
surfaces of GaAs and ZnSe [23].
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ЕЛЕКТРОННI ВЛАСТИВОСТI ПОВЕРХНI (111) В A3B5

ТА A2B6 КРИСТАЛАХ

Т.B. Горкавенко, С.М. Зубкова, В.А. Макара, Л.М. Русiна,
О.В. Смелянський

Р е з ю м е

Для полярної поверхнi (111) в кристалах типу A3B5 i A2B6:
GaAs, ZnSe дослiджено електронну зонну структуру, локаль-
ну густину станiв (повну та пошарову) та розподiл зарядової
густини валентних електронiв. Окремо розглянуто властиво-
стi поверхонь, що закiнчуються катiоном та анiоном. Чисель-
ний розрахунок проведено самоузгодженим “тривимiрним” ме-
тодом псевдопотенцiалу в рамках моделi шаруватої надґратки.
В процесi самоузгодження використано оригiнальний iтератор,
який дозволяє подолати труднощi, зумовленi наявнiстю, у ви-
падку поверхнi, векторiв оберненої ґратки, менших 1 ат. од.
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