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The Mie theory is generalized to the case of a sphere with spa-
tially dispersive permittivity with regard for longitudinal electro-
magnetic waves and transverse ones with a single-valued depen-
dence of the wavenumber on the frequency. The generalized Mie
coefficients are determined with the help of the method of addi-
tional boundary conditions using the condition of electron opacity
of the surface. The theory is applicable for the modeling of optical
processes involving metals, does not require to simplify the depen-
dence of the permittivity on the light frequency and wavenumber,
and does not apply the electrostatic approximation. A relative er-
ror of this approximation in calculating the extinction cross-section
of a 10 nm-radius silver sphere is shown to exceed 50% in a wide
frequency interval.

Optical processes involving metal nanoparticles at-
tracted attention of investigators in the past and are
studied till now. An important role in these processes
can be played by the spatial dispersion of the permittiv-
ity ε, i.e., by the dependence of ε not only on the angular
frequency of light ω, but also on the wave vector k [1–14].
The theories allowing for ε(ω, k) are called non-local.
In particular, the non-local theory of the electromag-
netic response of a small sphere [1, 2] was constructed
with the use of the notion of effective permittivity (EP).
The EP concept was applied to the modeling of the flu-
orescence and the decay of excited molecules in a neigh-
borhood of metal nanospheres [3–6], surface-enhanced
Raman scattering [7–9], optical response of composite
materials [10] and metal nanoshells [11], electromagnetic
coupling between an atomic-microscope probe and a sub-
strate [12, 13], and van der Waals interaction between a
molecule and a spherical cavity in a metal [14]. How-

ever, the effective permittivity is expressed through an
integral that can be analytically calculated only for cer-
tain idealized functions ε(ω, k). That is why works [3–
7, 10, 11, 14] used the Drude dielectric function modified
with regard for the spatial dispersion. As will be shown
below, this function provides no accurate description of
metal properties. In addition, the EP model employs the
electrostatic approximation, whose error is also found in
this study.

A powerful technique of simulating the optical pro-
cesses involving spherical particles is the Lorenz–Mie
theory (see [15–18] or the site www.scattport.org with
available classical works by Lorenz, Love, Mie, and De-
bye). When studying the properties of a plasma sphere,
the authors of independent studies [19,20] took non-local
effects into account and extended the Mie theory. They
noted a possibility of the excitation of synchronous lon-
gitudinal oscillations of the electromagnetic field and the
charge in plasma – plasma oscillations [15]. In [19, 20],
the generalized Mie coefficients were determined for the
scattered electromagnetic field and the field inside a
sphere with regard for plasma oscillations. Based on
these formulas, work [20] predicted the existence of ad-
ditional resonances in spectra of the extinction cross-
section with frequencies exceeding the plasma one. Us-
ing the electrostatic approximation and the hydrody-
namic plasma model, the frequencies and the widths of
these resonances were determined.

Among the pioneer studies taking the spatial disper-
sion of ε into account, we mention work [21]. Its aim
was to investigate the thermal emission of a radially in-
homogeneous plasma sphere considered as an assembly
of homogeneous layers. The theory used the hydrody-
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namic model of the motion of plasma electrons and the
Lorenz model [15] to take the polarization of a molecular
subsystem into account. The sphere was surrounded by
a medium with ε 6= 1. The model [21] predicted the exci-
tation of longitudinal (plasma) oscillations of the electro-
magnetic field. For the determination of the amplitudes
of vector spherical harmonics in layers of the sphere, the
additional boundary conditions of the continuity of the
radial component of the hydrodynamic electron velocity
and the electromagnetic pressure at the boundaries of in-
ner layers, as well as the condition of zero hydrodynamic
electron velocity on the sphere surface, were used. Thus,
the theoretical model [21] adequately involves the pecu-
liarities of plasma formations of the ionosphere and the
properties of metallic [15] and stratified metal-dielectric
spheres [22]. While studying the thermal emission, the
authors of work [21] solved a number of other important
problems, in particular, they found the electromagnetic
field created by a point electric dipole. Thereby, they
actually derived the Green tensor of the electromagnetic
field for a multilayer sphere with regard for non-local
effects. The obtained characteristics of the electromag-
netic field play a key role in the theory of spontaneous
phototransitions of atoms and molecules in a vicinity of
conducting bodies and (or) those absorbing electromag-
netic radiation [22–24]. Commenting their calculations,
the authors of work [21] have extended the Lorenz–Mie
theory of the diffraction of a plane electromagnetic wave
to the case of a multilayer sphere with regard for the
excitation of longitudinal electromagnetic waves. Such a
generalization is of great importance even if neglecting
the dependence of ε on k [25].

It is worth noting that the first studies [19,20], as well
as other extensions of the Lorenz–Mie theory [26,29] ap-
plied the continuity condition for the normal component
of the electric field strength er ·E on the sphere surface
(r = a). This condition follows from a more general con-
straint imposed on the current density, er · j(r = a) = 0,
and is satisfied if a rarefied plasma or a simple metal is
located in a medium with ε = 1. However, the use of the
continuity condition er ·E can lead to invalid conclusions
for real metals.

The continuity condition er · E can be regarded as
an additional boundary condition (ABC). The ABC
method in crystal optics was studied by Pekar [30, 31]
in details. According to review [32], the Pekar ABC (the
condition of zero exciton part of the polarization vec-
tor of a medium on the sphere surface) provided a bet-
ter agreement with experimental data than other ABCs.
The Pekar conditions allowed one to derive the gener-
alized Mie coefficients [27] and to construct the electro-

dynamic theory of a spatially dispersive medium with a
spherical inclusion [28]. The generalization of the Mie
theory proposed in [27] used two roots kT

1 and kT
2 of the

dispersion equation for transverse waves

k2 − (ω/c)2 εT(ω, k) = 0, (1)

where c is the velocity of light in vacuum. However, as
will be shown below, Eq.(1) sometimes has only one real
root. In this case, the use of the theory proposed in [27]
yields results contradicting research data.

The given work proposes a new version of the Mie the-
ory that can be applied when longitudinal electromag-
netic waves and transverse waves with the single-valued
dependence kT(ω) propagate in a sphere. In Section 2,
a formula for the generalized Mie coefficients is obtained
with the use of the condition of electron opacity of the
particle surface. The proposed theory allows one to use
the realistic permittivities of metals or dielectrics. In
Section 3, we determine the error of the electrostatic
approximation in the optics of metal nanoparticles. Sec-
tions 4 and 5 compare various versions of the Mie theory
and the EP concept. In particular, Section 5 indicates
the importance of taking the interband transitions in
metals into account.

1. Electromagnetic Waves in a Medium with
Spatially Dispersive Permittivity

First, we compare the characteristics of electromagnetic
waves in media with and without spatial dispersion of
the permittivity. We will consider media with diagonal
permittivity tensors and equal diagonal elements ε. If
the spatial dispersion is absent, then all electromagnetic
waves are transverse and have the wavenumber

kT
0 = (ω/c)

√
ε(ω). (2)

Hereinafter, the time dependence of the electric and
magnetic field vectors is described by the factor
exp(−ı ω t).

If ε depends on k, then Eq. (1) can have two solutions:
kT
1 and kT

2 . In addition, the longitudinal electromagnetic
waves with the wavenumber kL determined by the equa-
tion

εL(ω, k) = 0 (3)

also can propagate in the medium.
The hydrodynamic model of electrons in metals yields

the following permittivities [29, 33, 34]:

εT(ω) = εg + εh(ω, 0), εL(ω, k) = εg + εh(ω, k), (4)
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where εg is the part of the permittivity independent of
plasma oscillations. For simple metals, we obtain εg = 1,

εh(ω, k) =
−ω2

p

ω2 + iΓω − (βk)2
, (5)

where ωp and Γ are the plasma frequency and the damp-
ing constant, respectively, β =

√
3/5 vF, vF is the Fermi

velocity of electrons in a metal. The phenomenological
parameter Γ for a metal sphere is introduced as follows
[15]:

Γ = Γb +AvF/a, (6)

where a is the sphere radius. For a silver nanosphere in
vacuum, A = 0.25 [35].

Realistic models of metals use values of εg different
from 1 in formulas (4), (8). The permittivity εg 6= 1 is
related to the existence of interband transitions in metals
[15, 24]. According to [36], we have for silver: ωp = 9.17
eV, Γb = 0.021 eV,

εg = 1 +
2.2ω2

ib

ω2
ib − ω2 − ıΓib ω

, (7)

where ω ib = 5.27 eV, and Γib = 1.14 eV. Here, the fre-
quencies in energy units represent the products of the an-
gular frequencies measured in s− 1 by ~ = h/(2π), where
h is the Planck constant.

Formula (4) for εT does not suppose the spatial dis-
persion for transverse waves in metals. However, works
[1–8, 11, 12, 14] used the single permittivity for longitu-
dinal and transverse waves:

ε(ω, k) = εg + εh(ω, k). (8)

If relation (8) is used to simulate metal properties,
there appears the problem of determination of true and
fictitious roots of the dispersion equation (1). In contrast
to the true root of the dispersion equation, the fictitious
one predicts the existence of waves absent in nature. The
appearance of fictitious roots was explained in [31] by the
example of solving the approximate algebraic equation

0.1 = ln(1 + x) ' x− 1
2
x2. (9)

One of the roots of the approximate equation x1 =
0.1056 is close to that of the accurate one x0 = 0.1052.
The other root x2 = 1.8944 differs from the accurate
value x0 by an order of magnitude, whereas ln(1+x2) '
1.06 >> 0.1. The root x2 is fictitious.

Let us compare the roots of Eq.(1) with permittivities
(4) and (8), by calculating them for the typical param-
eters ω = 3.5 eV, a = 10 nm, and those given above for

Ag [36]. The real and imaginary parts of kT
1 (one of the

roots obtained for (8)) and kT
0 of Eq.2) that follows from

(1) and (4) coincide to within four significant figures. Re-
spectively, the permittivity εT1 = −2.171+ı 1.035 is close
to εT0 = −2.170+ı 1.035. On the contrary, the other root
considerably differs from kT

0 . The real part of kT
2 exceeds

Re kT
0 by a factor of 814 and εT2 = 7.75×104+ı 972. The

latter estimate testifies to the fact that the real part of
the permittivity of silver in the visible spectral region is
positive but not negative; moreover, it exceeds the per-
mittivity of diamond by more than four orders of mag-
nitude. The discrepancy of this prediction with research
data can be explained in two ways: 1) the permittiv-
ity εT does not depend on k as is supposed by the first
formula (4); in this case, the wavenumber of transverse
waves is determined by Eq.(2); 2) the root kT

2 of Eq.(1)
with the permittivity of a noble metal (8) is fictitious.

The theory developed in the following section uses one
parameter of transverse waves — kT. It can be equal to
kT
0 if applying Eqs.(4) or kT

1 ' kT
0 if using Eq. (8).

2. Generalization of the Mie Theory

The Lorenz–Mie theory determines the electromagnetic
fields inside and outside a sphere with are excited by an
incident plane electromagnetic wave. In order to solve
the problem, the electric field vector of the plane wave
is expanded in terms of vector spherical harmonics [15,
16, 32, 37]:

E = E0e
−ı ω t Ξ̂l (M

(1)
o1l − ıN

(1)
e1l), (10)

where the symbol Ξ̂l means
∞∑
l=1

ıl
2 l + 1
l (l + 1)

,

M
(1)
(3)
σm l = ∇× [r

jl
hl

(kr)Yσm l(θ, φ)], N =
1
k
∇×M,

Lσm l =
1
k
∇ [

jl
hl

(kr)Yσm l(θ, φ)], (11)

the upper indices (1) and (3) indicate the use of the
spherical Bessel function jl and the first-order spherical
Hankel function hl, respectively,

Y e
om l(θ, φ) = Pml (cos θ)

cos
sin

(mφ), (12)

where Pml are the associated Legendre functions.
The vector wave functions M , N , and L form the fun-

damental system of solutions of the wave equation

∇×∇× F− k2 F = 0, (13)
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to which the Maxwell equations for a monochromatic
field is reduced [15, 16, 37]. In Eq. (13), F can stand for
either the electric or magnetic field. The incident wave
(10) creates a reflected field and a field in the sphere.
Applying the indicated fundamental system of solutions,
these electric fields can be put down in the form

ER = E0e
−ı ω t Ξ̂l (alM

(3)
o1l − ı blN

(3)
e1l), (14)

ET = E0e
−ı ω t Ξ̂l (aT

l M(1)
o1l − ı b

T
l N(1)

e1l + bLl Le1l). (15)

The same way as the incident wave (10), field (14) is a
function of kµ = (ω/c)√ εµ, where εµ is the permittivity
of a medium surrounding the sphere. (That is why ex-
pansions of 10) and (14) do not contain the functions L).
In what follows, the products of the wavenumbers by a
will be denoted as x = kµ a, z = kT a, and zL = kL a.

Five relative amplitudes al, bl, aT
l , bTl , and bLl must be

found from the boundary conditions on the sphere sur-
face. The continuity conditions of the tangential com-
ponents of the electric and magnetic fields allow one to
determine only four amplitudes (for each l). In order
to calculate all amplitudes, one should use an additional
boundary condition. This work proposes to use the con-
dition of the surface opacity for electrons of a metal par-
ticle as an ABC:

(j n) |r∈S = 0. (16)

Here, j stands for the current density induced by the
action of the electromagnetic field on electrons of the
conduction band, and n is the normal vector to the sur-
face S restricting the electron motion. The vector of
electric displacement D is connected with E and j by
the relation

D = E + 4π
(
P0 +

ı

ω
j
)
, (17)

where P0 is a part of the polarization vector of the
medium independent of j. Using the notation Pex =

ı

ω
j,

condition (16) can be rewritten in a more general form
[1]:

(Pex n) |r∈S = 0, (18)

where Pex is the “exciton” part of the polarization vector
of a medium. In our problem,

Pex ∝ Ξ̂l
[
ı bTl (εg − εT1 )N(1)

e1l + bLl εh(ω, kL)Le1l

]
. (19)

For a simple metal (P0 = 0) in air (εµ = 1), Eq. (18) can
be formulated as the continuity condition of the normal

component of E. This ABC was used in the previous
studies [1, 26, 29, 34, 38].

Equation (18) with term (19) determines the relation
between the coefficients bLl and bTl ,

− bLl = bTl
εT1 − εg
εg

l (l + 1)
jl(z)
z j′l(zL)

. (20)

The relative amplitudes al and bl in formula (14) rep-
resent the Mie coefficients for transverse electric (TEl)
and magnetic (TMl) waves, respectively. If there exists
only one true wavenumber kT(ω), then the formula for
al coincides with that in the classical Mie theory,

al = − jl(x)ψ′l(z)− jl(z)ψ′l(x)
hl(x)ψ′l(z)− jl(z) ζ ′l(x)

, (21)

where ψl(z) = z jl(z), ζl(x) = xhl(x). The modified
coefficient bl can be presented in the form

bl = − (1 + δl)xψl(x)ψ′l(z)− z ψl(z)ψ′l(x)
(1 + δl)x ζl(x)ψ′l(z)− z ψl(z) ζ ′l(x)

, (22)

where

δl =
εT1 − εg
εg

l (l + 1) jl(z) jl(zL)
ψ′l(z) zL j′l(zL)

. (23)

In some cases, formulas (21) and (22) represent pub-
lished data. At εg = εµ, a coincidence with the results
of work [26] is achieved. If εg = 1, we obtain the Mie
coefficients from work [29]. Finally, the formula for the
classical coefficient bl follows from Eq.(22) at βk = 0,
which yields δl = 0.

Formulas (21), (22), and (14) provide a complete de-
scription of the scattered field. In particular, an impor-
tant characteristic of light scattering and absorption is
the extinction cross-section normalized to the geometri-
cal cross-section of the sphere π a2,

Qext =
2
x2

∞∑
l=1

(2l + 1) Re (− al − bl). (24)

3. Electrostatic Approximation in the Optics of
Metal Nanoparticles

The electrostatic approximation in the optics of metal
nanoparticles is applied if the dimensions of particles are
much smaller than the light wavelength λ. In this case,
the time derivatives in the wave equations are omitted.
Respectively, when simulating the properties of spheres,
the Riccati–Bessel functions ψl and the Riccati–Hankel
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Fig. 1. Relative error (31) of the electrostatic approximation found
within classical electrodynamics (dashed curve) and non-local the-
ory. Solid curve demonstrates the error of calculating the real part
of the coefficient b1 by formulas (29) with effective permittivity
(33). The sphere radius is 10 nm, calculations are performed for
εg = 1 and parameters of silver taken from [5, 6, 11]

ones ζl = ψl + ı χl are replaced by their approximate
values according to the formulas

ψl(z) '
zl+1

(2 l + 1)!!
, χl(z) '

(2 l − 1)!!
zl

, |z| � 1. (25)

The use of formulas (25) for calculating coefficients
(21) and (22) yields al ' 0 and the approximate value
of the coefficient bl:

b̃l ' ıΔl −Δ2
l , (26)

where

Δl =
(l + 1) (ε− 1)x2l+1

(2 l − 1)!! (2 l + 1)!! (l ε+ l + 1)
. (27)

Here, ε = εT/εµ is the relative permittivity of the sphere.
The quantity Δl is proportional to the multipole po-

larization of a small sphere

αl =
l ε− l

l ε+ l + 1
a2l+1. (28)

In particular, the coefficient b̃1 can be expressed in terms
of the electric dipole polarization of the sphere α1:

b̃1 = ı
2
3
k3
µ α1, α1 =

ε− 1
ε+ 2

a3. (29)

It is worth noting that the error of the electrostatic
approximation can be large even at a � λ. It is due
to the inaccurate calculation of the differences in the
denominators of the Mie coefficients. In particular, the
quantity ε+ 2 in the denominator of the formula for the

electric dipole polarization α1 is the approximate value
of the difference

z
ψ′l(z)
ψ(z)

− ε x χ
′
l(x)
χ(x)

= A−B + C. (30)

Here, A = l + 1 ' z
ψ′l(z)
ψ(z)

, B = −ε l ' ε x
χ′l(z)
χ(z)

, C =

z
ψ′l(z)
ψ(z)

− ε x χ
′
l(x)
χ(x)

− A + B, l = 1. Moreover, |A| �

|C| and |B| � |C|. Thus, according to the logic of the
electrostatic approximation, A − B + C ' A − B even
at A − B ' 0. In fact, in the region of the Fröhlich
resonance, where the value of (30) is close to zero, the
following inequality can be satisfied: |C| � |A− B|. In
this case, approximations (25) will be too rough. Let us
check this statement by numerical estimates.

The calculations performed in [5, 6, 11] were based
on the electrostatic approximation and permittivity (8)
with the parameters of silver: εg = 1, ωp = 1.36 × 1016

s−1, Γ = Γb + AvF/a, Γb = 2.56 × 1013 s−1, A = 0.25,
and vF = 1.40× 106 m s−1. For a silver sphere with the
given ε(ω, 0) and the radius a = 10 nm, we obtain that
|C| > |A − B| for all frequencies ω ≤ 0.8ωp. At the
Fröhlich frequency ω = ωp/

√
3 (for a � λ = 240 nm ),

we derive |C| = 128 |A − B|, which conflicts with the
assumption of electrostatics |C| � |A−B|.

The experimentally measured quantity is the extinc-
tion cross-section Qext. At x� 1, the value of Qext de-
pends significantly on the real part of the coefficient b1
[see formulas (24), (26), and (27)]. Thus, the relative er-
ror of the electrostatic approximation can be determined
as

E =

∣∣∣∣∣Re (b1 − b̃1)
Re b1

∣∣∣∣∣ × 100%. (31)

The results of calculating the quantity E are presented
in Fig. 1. They show that the relative error of the elec-
trostatic approximation is worse than 50% almost in the
whole frequency range and exceeds 2000% at some fre-
quencies in the region of the Fröhlich resonance. This
error appears due to the use of approximate formulas
(25). Taking the spatial dispersion of ε into account (for
example with the help of the EP concept), it is impossi-
ble to improve the value of E.

4. Concept of Effective Permittivity

Let us compare the proposed model with the only non-
local theory known in metal optics, namely the concept
of effective permittivity. The EP model is based upon
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the electrostatic approximation and the ABC method.
The use of these approximations in [1, 2] allowed the au-
thors to find the formula for the l-th order polarizability
of a small sphere in air in the form (28) but with ε re-
placed by the effective permittivity εl = εl(ω, a),

εl(ω, r) =

 2
π

(2l + 1) a

∞∫
0

jl(kr) jl(ka)
ε(ω, k)

dk

− 1

. (32)

In some cases, the quantity εl can be calculated analyt-
ically. In particular, for permittivity (8), we obtain

εloc

εl
= 1 + (

εloc

εg
− 1) (2l + 1) Il+ 1/2

(u)Kl+ 1/2
(u), (33)

where εloc = ε(ω, 0), Iν , Kν are the modified Bessel func-
tions, u = (a/β) (ω2

p/εg − ω2 − i ω Γ)1/2.
As one can see from Fig. 1, a significant disadvan-

tage of the EP concept is its construction on the basis
of the electrostatic approximation. At the same time,
this theory is “sensitive” to effects related to the spatial
dispersion of the permittivity. The result of replacing
ε(ω) by the effective permittivity εl(ω, a) determined by
Eq.(32) is illustrated in Fig. 2. This figure shows cross-
section (24) calculated according to the classical formula
for bl [(22) with δl = 0], but using εl. The dependence
Qext(ω) derived in this way is compared to the results of
calculations performed according to formulas (21)–(24)
and the result of classical local electrodynamics. Two
dependences Qext(ω) obtained with regard for the spa-
tial dispersion of ε almost do not differ in Fig. 2 – the
respective lines actually coincide.

The both non-local models predict the existence of
additional resonances in the extinction spectrum at ω >
ωp. Their appearance looks somewhat mysterious if re-
stricting oneself to electrostatics and neglecting the exci-
tation of waves of various types. However, the additional
maxima in the cross-section of light extinction by metal
nanospheres were predicted in [26] and can be simply
explained within the generalized Mie theory. Above the
plasma frequency, the attenuation of longitudinal waves
is not too large. Thus, there appear the additional en-
ergy sinks, and the light absorption intensifies. The inset
in Fig. 2 demonstrates that, indeed, the additional max-
ima of Qext correlate with the maxima of the absolute
ratio

∣∣bL1/bT1 ∣∣ determined by formula (20).

5. Light Extinction by a Silver Nanosphere

If εg = 1, then the absolute maximum of Qext known as
the Fröhlich resonance is attained at ω/ωp ' 1/

√
3 '

Fig. 2. Normalized extinction cross-section obtained for a silver
sphere with the help of different versions of the Mie theory – clas-
sical one (dashed line), the model proposed in this work (solid
one), and the classical one with the use of effective permittivity
(33) (dotted line). The inset shows the enlarged part of the graph
and the absolute value of the ratio bL1 /bT1 . The parameters of a
silver nanosphere are the same as those used in the calculations
represented in Fig. 1

0.577 (see Fig. 2). The corresponding value of ω ' 5.1
eV significantly contradicts the research data. In exper-
iment [39], silver particles with diameters ranging from
2 to 150 nm were formed due to the homogeneous nucle-
ation in the flux of a mixture of a noble gas with silver
vapors. The resonance in the light scattering spectrum
was observed at 367 ± 5 nm (ω ' 3.38 eV). The main
contribution to the spectrum was made by silver parti-
cles with diameters in the interval 40–60 nm. In [35],
Ag clusters with diameters of 2–4 nm formed a sharp
peak in the light absorption spectra with a maximum at
ω = 3.65 eV. During the display of 80-nm silver spheres
against the dark background [40], the intensity spectrum
of scattered light had a maximum at ω = 2.9 eV.

The theory agrees with the experimental data if εg 6=
1. For example, formula (7) and Ag parameters from [36]
allow one to calculate the spectra presented in Fig. 3.
Comparing Figs. 2 and 3, one can see that the appli-
cation of the simplified Drude model overestimates the
peak value of Qext by a factor of 30. According to Fig. 3,
there are no considerable differences between the gener-
alized and classical Mie theories. At the same time, the
classical Lorenz–Mie theory agrees well with experimen-
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Fig. 3. Normalized extinction cross-section of a realistic silver
sphere found with the help of the classical (dashed line) and the
proposed generalized (solid curve) Mie theories. The sphere radius
is 10 nm, the parameters of Ag are taken from [36]. The dotted
line shows the prognosis of the Mie theory from [27]

tal data [15] (though with the use of the phenomenolog-
ical parameter A in formula (6) [15, 36, 41]).

The developed theory uses only one root kT
1 (ω) '

kT
0 (ω) of Eq.(1) with permittivity (8), whereas the root
kT
2 (ω) is discarded. One may assume that the additional

transverse waves with wave vectors kT
2 (ω) really exist in

metals, but have low amplitudes. In this case, formu-
las of [27] should be applied. The respective result is
depicted in Fig. 3 by a dotted line. It is seen that the
non-local model [27] predicts anomalous oscillations of
Qext(ω), and the spectrum of Qext(ω) has a double max-
imum with a gap in the region of the Fröhlich resonance.
No spectral peculiarities of this kind were observed ex-
perimentally. They are due to the interference of trans-
verse waves with true and fictitious wavenumbers. Thus,
the theory proposed in [27] turns out to be inapplicable
for simulating the properties of metal particles.

Theoretical work [34] was devoted to the study of light
scattering by dimers of silver nanospheres with equal
radii of 5 and 50 nm. One of the main conclusions made
there was that about a failure of the classical Mie theory
and the necessity of taking longitudinal electromagnetic
waves in a metal into account. Calculations performed
in [34] employed the theory of light scattering by clusters
of metal spheres described in [38] that, in turn, used the
non-local version of the Mie theory proposed in [26]. The
latter theory differs from the proposed here only in the
choice of the ABC as a continuity condition of the normal
component of the electric field. Respectively, formulas
[26] for the generalized Mie coefficient can be applied
only in the case where metal spheres have an idealized
permittivity with εg = 1 and are located in air [34]. In
practice, however, the role of the permittivity εg 6= 1

in the light scattering can appear more important than
that of the dependence of ε on k.

6. Conclusions

The work extends the Lorenz–Mie theory by consider-
ing the longitudinal electromagnetic waves that can exist
in a sphere due to the spatially dispersive permittivity.
The model is applicable if the transverse electromagnetic
waves in a sphere have a single-valued frequency depen-
dence of the wavenumber. The theory uses the condition
of the surface opacity for electrons of the metal particle.
It can be put down as the condition of of vanishing the
normal component of the exciton part of the polarization
vector on the surface of a medium with spatially disper-
sive permittivity. Similar ABC was used in the alter-
native approach proposed in works [1, 2] developing the
concept of the effective permittivity of a small sphere. In
contrast to [1,2], the proposed model does not apply the
electrostatic approximation. According to the numerical
estimates performed with the use of the literature data
for a 10 nm-radius silver sphere, the relative error of
this approximation near the plasmon resonance can ex-
ceed 2000%. In addition, the proposed theory requires
no simplification of the dependence of the permittivity
on the light frequency and the wavenumber.
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УЗАГАЛЬНЕННЯ ТЕОРIЇ
МI ДЛЯ КУЛI З ПРОСТОРОВОЮ
ДИСПЕРСIЄЮ ДIЕЛЕКТРИЧНОЇ ПРОНИКНОСТI

В.В. Дацюк

Р е з ю м е

Теорiю Мi узагальнено на випадок кулi з просторовою диспер-
сiєю дiелектричної проникностi, враховуючи iснування поздов-
жнiх електромагнiтних хвиль та поперечних хвиль з однозна-
чною залежнiстю хвильового числа вiд частоти. Узагальненi
коефiцiєнти Мi визначено методом додаткових межових умов,
використовуючи умову непрозоростi поверхнi для електронiв.
Теорiя застосовна для моделювання оптичних процесiв за уча-
стi металiв i не потребує спрощення залежностi дiелектричної
проникностi вiд частоти i хвильового числа свiтла. Модель не
використовує електростатичне наближення. Показано, що вiд-
носна помилка цього наближення при обчисленнi перерiза екс-
тинкцiї свiтла срiбною кулею радiуса 10 нм у широкому iнтер-
валi частот перевищує 50%.
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