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The ΔI = 1 “staggering” effect is investigated in the energy spec-
trum of positive and negative parities of the yrast band of even-
even actinide nuclei. The “staggering” effect is described by the
formula proportional to the discrete approximation of the fourth-
order derivative of the function ΔE(I). It is shown that the “stag-
gering” effect is characterized by the “zigzag” behavior and does
not vanish within the observed range of angular momenta.

1. Introduction

Rotational nuclear spectra were previously determined
by quadrupole deformations (β2) [1] corresponding to
nuclei in the form of an ellipsoid of revolution. In this
case, low-lying excited states of even-even nuclei are de-
scribed in the geometrical approximation as levels cor-
responding to harmonic oscillations and rotations of a
deformed surface [1].

Octupole deformations (β3) take place in actinides [2]
and in nuclei with the mass number A ≈ 150 [3, 4] cor-
responding to pearlike nuclear shapes [5–7].

The properties of nuclei with octupole degrees of free-
dom have been recently widely studied in the framework
of various geometrical, algebraic, and microscopic ap-
proximations when describing the nuclear structure [7].
It is worth noting that quadrupole and octupole defor-
mations of the nuclear surface are difficult to be simulta-
neously taken into account both in the microscopic ap-
proximation, due to the violation of the reflection sym-
metry of a nuclear shape, and in the geometrical one, due
to the complicacy of the determination of the total ten-
sor of inertia of the system. However, one can consider
a simplified form of this problem for axially symmetric
nuclei, i.e. at K = 0 (K is the projection of the total

angular momentum I on the symmetry axis of a nucleus)
in the geometrical approximation.

The energy levels of positive- and negative-parity
excited states, as well as the reduced probabilities
of dipole, quadrupole, and octupole transitions be-
tween these states, were determined in [8] for the
case of the axially symmetric nuclei 144,146Ba, 146Ce,
146,148,150Nd, 150Sm, 151Pm, 220,222Rn, 217,219,221Fr,
218−228Ra, 219,223,225,227Ac and 220−229Th, with the use
of the Davidson potential [9] for surface deformations.

The alternative parity energy levels of the axially sym-
metric even-even nuclei 150Sm, 154Dy, 162Dy, 232Th, and
232,236,238U were also considered in [10] for the oscilla-
tory potential energy of surface deformations. The en-
ergy spectrum and the wave functions of excited states
were obtained. The energy levels are described by three
theoretical parameters: the energy multiplier ~ω, the pa-
rameter ε′ν proportional to the eigenvalue of the angular
part of the Schrödinger equation in polar coordinates
εν , and the dimensionless parameter µ that describes
the “softness” of a nucleus with respect to a deformation
of its surface.

In the cited works [8, 10], nuclei with octupole defor-
mation have two minima of the potential energy corre-
sponding to the opposite values of the octupole defor-
mation parameter β3. They are also characterized by
the two-fold level degeneracy which is eliminated due to
a tunnel transition through the potential barrier sepa-
rating the β3 and -β3 configurations that allow one to
simultaneously reproduce bands with positive and nega-
tive parities. These bands are related to symmetric and
antisymmetric combinations of the wave functions [8].
The parameters of the quadrupole β2 and octupole β3

deformations in these nuclei are of one order of magni-
tude [11].
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The excited-state energies were described in [8, 10]
with the use of the following potential energies of surface
deformations: Davidson potential [9] and oscillatory one
[12]. These potentials are widely used to describe the
energy levels of individual bands of excited states of dif-
ferent multipolarities [13–15].

Another difference between the cited works concerns
the kinetic part of the Hamiltonian. In [8], it corresponds
to the Hamiltonian for nonaxial even-even nuclei [12]
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where B2 and B3 are the mass parameters.
The kinetic part of the Hamiltonian in [10] corre-

sponds to the Hamiltonian of axially symmetric nuclei
[16],
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Calculating the difference between these Hamiltonians,
we obtain
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After passing to the polar coordinates, this difference
vanishes [8, 10], and there remains only the second term
of formula (9) present in [8] and absent in [10]. This
term was omitted in the further computations due to
its small contribution to the energies of levels at large
spins [13, 14]. Thus, the difference of the kinetic parts of
Hamiltonians (1) and (2) does not make any contribution
to the final result.

There exist several well-studied types of deviations of
the nuclear collective motion (in the first approximation)
from the purely rotational one [1, 17]. These deviations
result in high-order effects in the structure of the nuclear
rotational spectrum, such as “squeezing”, “backbending”,
and “staggering” [18–22]. Investigations of these fine ef-
fects in the structure of collective interaction and the

corresponding energy spectra of nuclei suppose a com-
plex behavior of collective characteristics. Among them,
there are rotation, vibration, pair vibration, and oth-
ers [1, 12, 13]. These collective modes represent complex
and diverse excitations with simultaneous participation
of many nucleons that, nevertheless, can be theoretically
described with the use of a small number of degrees of
freedom [1, 12, 13].

The application of discrete approximations of high-
order derivatives of the given nuclear characteristic as a
function of a particular physical quantity demonstrates
various kinds of “staggering” effects that bear informa-
tion about fine properties of the nuclear interaction and
corresponding high-order correlations in the collective
dynamics of a system.

The “staggering” effects represent the branchings of
rotational bands in the sequence of states differing by
several units of the angular momentum. These ΔI = 1,
ΔI = 2, and ΔI = 4 “staggering” effects are observed
in the energy bands of superdeformed nuclei [21–24].
These effects are very well studied in even-even nu-
clei [1] and allow one to test various collective mod-
els [25].

The ΔI = 2 “staggering” effect appears in the case
where levels with I = 2, 6, 10, 14, . . . are shifted with
respect to those with I = 0, 4, 8, 12, . . ., i.e. the level
with the angular momentum I is shifted relative to its
neighboring levels with the angular momentum I ± 2 in
the energy levels of the principal band of deformed nuclei
[24].

It was already mentioned that, in the geometrical
model, the appearance of reflection-asymmetric shapes
in atomic nuclei is related to the manifestation of the
octupole degree of freedom. The main physical char-
acteristic of a system with the reflection asymmetry is
related to the violation of the R and P symmetries. It
is known that these symmetries are violated separately,
whereas the system remains invariant with respect to
their product PR−1 [1]. In this case, the spectrum
of the system is characterized by the presence of en-
ergy bands with angular momenta of alternative par-
ity. Consequently, a band of negative parity with the
sequence of levels Iπ = 1−, 3−, 5−, 7−, . . . , combining
with a band of positive parity with the sequence of levels
Iπ = 0+, 2+, 4+, 6+, . . ., forms a band with the sequence
of levels Iπ = 0+, 1−, 2+, 3−, 4+, 5−, . . ..

Such a band is observed in even-even rare-earth nu-
clei and in actinides [2–4, 6, 7, 26, 27]. In these bands of
even-even nuclei, the energy levels with odd I and neg-
ative parity are shifted with respect to the energy levels
with even I and positive parity. In other words, the
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Fig. 1. Theoretical and experimental [33] behaviors of the “staggering” effect in the energy spectra of the U230 and Th232 nuclei

level with angular momentum I is shifted relative to the
neighboring state with the angular momentum I±1 [18].
This quantity, usually called the odd-even “staggering”
or ΔI = ±1 “staggering”, must vanish if even and odd
energy levels form a single band.

The ΔI = 1 “staggering” effect of such a kind takes
place in the γ-band of even-even nuclei, but it dif-
fers from the “staggering” effect of the energy bands of
octupole-deformation nuclei in that the energy levels in
the γ-band of these nuclei have a positive parity alone
[25].

In [28], the authors discussed the experimental behav-
ior of the odd-even “staggering” effect in the bands of the
rare-earth nuclei 144,146Ba, 150,152,154Sm, 154,156,162Dy,
152,154,156,160Gd, and 162,164Er, as well as the actinides
220,224Ra, 226,228,230,232,234Th, and 230,232,234,236,238U.
These effects have different forms but their behavior
is the same. It is noted that the energy bands of the
above-mentioned nuclei are free from the “backbend-
ing/upbending” effects [29].

It is worth noting that the odd-even “staggering” effect
with the angular momentum I ± 1 was not considered
in [8, 10]. The analysis and the interpretation of this
effect are, however, of special interest, because it bears
information about properties of the collective dynamics
in various nuclei. In addition, it is very sensitive to the
fine structure of the rotational spectrum, and provides
an explicit ΔI = 1 “staggering” behavior in various ro-
tational bands.

This work considers the behavior of the “staggering”
effect in the energy spectra of even-even actinide nu-
clei.

2. I ± 1 “Staggering” Effect in Axially
Symmetric Even-even Nuclei

Let us consider the odd-even “staggering” effect propor-
tional to the discrete approximation of the fourth-order
derivative of the function ΔE(I) = E(I+1)−E(I) pre-
sented by the formula [30]:

Stag(I) = 6ΔE(I)− 4ΔE(I − 1)−

−4ΔE(I + 1) + ΔE(I + 2) + ΔE(I − 2), (4)

where E(I) is the energy of excited states. It is worth
noting that there are other alternative formulas for the
description of the behavior of the odd-even ΔI = 1 “stag-
gering” effect [28]. However, its behavior does not de-
pend on the form of these formulas [28].

It is traditionally believed that the odd-even “stag-
gering” effect in bands with octupole deformation starts
from relatively high values at low spins and after that
gradually decreases to zero, thus indicating the forma-
tion of a reflection-asymmetric band. However, using
the recent data obtained for actinides [31], it was found
that, in light actinides, the odd-even “staggering” effect
demonstrates a “zigzag” behavior [30]. In other words,
the quantity measuring the odd-even “staggering” effect
does not remain zero after reaching a vanishing value
for the first time, but goes on to oscillate (in the abso-
lute magnitude) with increase in I, by forming a zigzag
shape.

As an example, Figures 1–3 show the theoretical and
experimental [33] behaviors of the ΔI = 1 “staggering”
effect in the energy spectra of 232Th and 230,234,236,238U
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Fig. 2. Theoretical and experimental [33] behaviors of the “staggering” effect in the energy spectra of U234 and U236 nuclei

Fig. 3. Theoretical and experimental [33] behaviors of the “stag-
gering” effect in the energy spectra of U238 nucleus

nuclei. The figures also demonstrate the values of the pa-
rameters used in the proposed model for the description
of the energy levels and the root-mean-square deviation
of the theoretical and experimental values of these lev-
els that lie within the allowed range. One can see from
the figures that the “staggering” effect demonstrates a
“zigzag” behavior and does not vanish in the observed
range of angular momenta. The theoretical and experi-
mental behaviors of this effect for 230,234,238U nuclei are
in good agreement.

The highest value of the “staggering” effect is char-
acteristic of 232Th nucleus at low values of the angular
momentum I. With increase in I, the value of the “stag-

gering” effect rapidly decreases, moreover, the experi-
mental values decrease faster than the theoretical ones.
A similar picture can be observed in the behavior of the
“staggering” effect in 236U nucleus.

It is worth noting that there exists a certain deviation
in the behavior of the “staggering” effect in the consid-
ered nuclei at large spins, which is related to a deviation
of their energy spectrum from the purely rotational one.
So, the behavior of the “staggering” effect in 230,234,238U
nuclei is similar to that in some rare-earth ones [34].

Consequently, the obtained results allow one to make
a conclusion that, at low values of angular momentum
of the energy spectrum, the “staggering” effect appears
mainly due to the changing parity, whereas it is caused
at high angular momenta by the interaction between the
rotation of a nucleus as a whole and the deformation of
its surface.

Thus, the proposed model describes well the behavior
of the “staggering” effect of these nuclei. It also allows
one to compare the effects of collective interaction and
nuclear shapes in various nuclear regions. It is worth
noting that the “backbending/upbending” effects are not
registered in the energy levels of the considered nuclei
[32, 33].

The theoretical values of the energy spectra of the
studied nuclei are calculated using formula (31) from
[10].
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“STAGGERING” ЕФЕКТ У ПАРНО-ПАРНИХ ЯДРАХ
З КВАДРУПОЛЬНОЮ I ОКТУПОЛЬНОЮ
ДЕФОРМАЦIЯМИ

М.С. Надирбеков, Г.А. Юлдашева

Р е з ю м е

Дослiджено ΔI = 1 “staggering” ефект в енергетичному спектрi
позитивної i негативної парностi iраст-полоси парно-парних
ядер в областi актинiдiв. Використано формулу “staggering”
ефекту, який пропорцiйний дискретному наближенню похiдної
четвертого порядку вiд функцiї ΔE(I). Показано, що “staggeri-
ng” ефект має “зигзагоподiбну” поведiнку i зникнення цього
ефекту в енергетичному спектрi не вiдбувається в межах спо-
стережуваної областi кутового моменту.

ISSN 2071-0194. Ukr. J. Phys. 2011. Vol. 56, No. 6 515


