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A kinetic master equation for state populations of a quantum sys-
tem comprised of separate quantum subsystems, is derived. The
equation allows one to describe the charge transfer processes in
molecular junctions, where the molecule operates as a transmitter
of electrons between the electrodes. Special attention is given to
the derivation of contact and distant rate constants responsible for
the formation of sequential (hopping) and direct (distant) compo-
nents of the current, as well as for the time evolution of molecular
state probabilities.

1. Introduction

In last two decades, the studies of charge transfer pro-
cesses in molecular devices like “electrode 1–molecule–
electrode 2” (1M2) have aroused a great interest [1–8].
This is dictated by a possibility to utilize the organic
molecules as basic elements of electronics. The theoret-
ical description of the charge transfer in 1M2-devices is
mainly analyzed in the model, where a molecule embed-
ded between two leads acts as a dynamic scattering cen-
ter. Respective description is based on the Landauer’s
approach with the use of the nonequilibrium Green func-
tion method in combination with quantum-mechanical
calculations. This allows one to derive the expressions
quite suitable for a numerical estimation of the current
through a molecule (see, for instance, [3, 7, 9]). The
Landauer’s approach gives a rather good description of
experimental results if only the multiparticle effects are
minor during the charge transmission [10].

Another approach is based on the nonequilibrium den-
sity matrix method [11–19]. Adaptations of this method
to the description of charge-transfer processes in molec-
ular devices can be found in [20–26], where the device is
considered as an open quantum system, while the macro-
scopic electrodes and the environmental vibrations refer
to the electron/hole and phonon reservoirs, respectively.
The method offers a unified description of the tunnel-
ing and hopping charge transfer processes with regard
for the Coulomb repulsion between the electrons cap-
tured by a molecule in the course of their transmission

through a molecule [22, 24, 25, 27–29]. The unified de-
scription is based on the reduction of the generalized
master equation for the state populations of the whole
transfer system to the kinetic equations for the states
belonging to separate parts of the system. In the case
of macroscopic electrodes and the fast vibrational re-
laxation within a molecule, the noted kinetic equations
appear in the form of linear balance-like equations for
populations of the electrode’s electrons and state popu-
lations of a neutral or charged molecule. The respective
transfer rates characterize both the contact (electrode-
molecule) and distant (electrode-electrode) charge tran-
sitions, as well as the intramolecular site-to-site transi-
tions. The form of transfer rates has been derived for
different particular cases.

In this paper, we derive a general form for both an
inter-electrode current and kinetic equations related to
molecular state populations. Simultaneously, the expres-
sions for the respective contact and distant transfer rates
are given. These expressions are used to calculate the
rate constants characterizing the different types of trans-
mission processes in a 1M2-device.

2. Basic Master Equation for State Populations
of a Quantum System

A rigorous description of the dynamics of a quantum
system (QS) is achieved with the Liouville equation for
the QS density matrix ρQS(t),

ρ̇QS(t) = −iL(t)ρQS(t), (1)

where L(t) = (1/~) [HQS(t), ...] is the Liouville superop-
erator associated with the Hamiltonian

HQS(t) = H0 + ΔH(t) + V (t) . (2)

Here,

H0 =
∑
a

E(a) |a〉〈a| (3)

is the main part of the QS Hamiltonian with E(a) and
|a〉 being its proper energy and proper state, respectively.
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Transitions between the QS states are determined by the
off-diagonal interaction

V (t) =
∑
a,b

Vab(t) (1− δa,b) |a〉〈b| . (4)

Operator (4) depends on time t if the transitions between
the QS states are caused not only by stationary (e.g.,
electron-vibrational) interactions but external or/and in-
ternal (fluctuation) fields. The term

ΔH(t) =
∑
a

ΔEa(t) |a〉〈a| (5)

characterizes the action of external regular or/and
stochastic fields shifting the energy levels in such a man-
ner that the QS energies Ea gain respective additions
ΔEa(t).

2.1. Exact master equations for diagonal and
off-diagonal parts of the QS density matrix

Using the method of projection operators [11, 12, 22, 24,
30], one can derive a system of coupled differential equa-
tions for the diagonal, ρd(t) =

∑
a 〈a|ρQS(t)|a〉|a〉〈a| ≡

T̂d ρQS(t), and off-diagonal, ρnd(t) =
∑
a,b (1 −

δab)〈a|ρQS(t)|b〉|a〉〈b| ≡ T̂nd ρQS(t), parts of the density
matrix. These equations read

ρ̇d(t) = −iT̂d LV (t)ρnd(t) ,

ρ̇nd(t) = −iT̂nd (L0(t) +LV (t))ρnd(t)− iLV (t)ρd(t) , (6)

where L0(t) = (1/~) [H0 + ΔH(t), ...] and LV (t) =
(1/~) [V (t), ...].

After the substitution of one equation in the other, the
following master equations are obtained for the diagonal
and off-diagonal parts of the density matrix:

ρ̇d(t) = −
t∫

0

dτ T̂d LV (t)S(t)S+(t−τ)LV (t−τ)ρd(t−τ)

(7)

and

ρ̇nd(t) = −iT̂nd (L0(t) + LV (t)) ρnd(t)−

−LV (t)T̂d

t∫
0

dτ LV (t− τ) ρnd(t− τ) , (8)

respectively. In Eq. (7),

S(t) = P̂ e−i
∫ t
0 dτ

′[L0(τ
′)+T̂nd LV (τ ′)] (9)

is the evolution superoperator (P̂ is the Dyson’s chrono-
logical operator). The master equations (7) and (8) have
been derived without use of any approximation in the in-
teractions V (t) and ΔH(t). Thus, these equations can
be employed as the basic ones for the calculation of
state populations P(a; t) = 〈a|ρd(t)|a〉 and coherences
Yab(t) = 〈a|ρnd(t)|b〉. In this paper, we deal only with
state populations. With use of Eq. (7) and in line with
the definition of the quantities P(a; t) and S(t), one de-
rives the following exact master equation for the state
occupancies:

Ṗ(a; t) = − 1
~2

∑
b(6=a)

t∫
0

dτ Gab(t, t− τ)[P(a; t− τ)−

−P(b; t− τ)], (10)

where the kernel

Gab(t, t− τ) =
∑
ll′

[
Ual(t, t− τ)VlbU+(t, t− τ)bl′Vl′a(t)−

−Val(t)Ull′(t, t− τ)Vl′b(U+(t, t− τ))ba + c.c.
]

(11)

is defined via the matrix elements Vll′(t) = 〈l|V (t)|l′〉
and Ull′(t, t− τ) = 〈l|U(t, 0)U+(t− τ, 0)|l′〉 = (U+(t, t−
τ))l′l with

U(t, 0) = P̂ e−(i/~)
∫ t
0 dτ

′[H0+ΔH(τ ′)+T̂ndV (τ ′)] (12)

being the propagator. Note that the integro-differential
equation (10) appears as a stochastic equation of the
non-Markovian type if only the interactions ΔH(t) and
V (t) are stochastic operators.

2.2. Coarse-grained master equation for QS
state populations

In numerous practically important applications, the de-
scription of transfer processes is carried out with much
simpler balance-like kinetic equations of the Markovian
type. There are different physical reasons for which the
exact master equation (10) could be reduced to the noted
equations. One of the reasons is that the transitions in
a QS are caused by the time-independent off-diagonal
interaction V in the presence of a fast stochastic field
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shifting the QS energy levels in a random way. Just such
a situation is considered in the present paper. It is sup-
posed that a stochastic field is created by high frequency
vibrations of a molecule, while the transitions between
the QS states are accompanied by low-frequency vibra-
tions (see the discussion in [31]).

Let the characteristic time of transition processes as-
sociated with the interaction V be τtr, and let the char-
acteristic time of random alterations of the energy posi-
tions be τstoch. If the strong inequality

τstoch � τtr (13)

is satisfied, then the averaging 〈〈...〉〉 of the master equa-
tion (10) over the random realizations of the fast stochas-
tic field leads to the decoupling procedure 〈〈Gab(t, t −
τ)P(b; t − τ)〉〉 ≈ Gab(τ)P (b; t − τ), where Gab(τ) =
〈〈Gab(t, t − τ)〉〉 and P (b; t − τ) = 〈〈P(b; t − τ)〉〉. An
important result is that the averaged kernel, Gab(τ),
exhibits an exponential decrease with their own char-
acteristic times τstoch (see the examples in [31–36]).
Therefore, owing to condition (13), one can shift the
upper limit in the integral from t to infinity and set
P (b; t − τ) ≈ P (b; t). Thus, the averaging of the mas-
ter equation (10) over the random realizations of the
fast stochastic field reduces this equation to the coarse-
grained kinetic equation

Ṗ (a; t) = −
∑
b( 6=a)

K(a; b)[P (a; t)− P (b; t)] (14)

valid on the time scale Δt ∼ τtr. In Eq. (14), the quan-
tity K(a; b) = (1/~2)

∫∞
0
dτ Gab(τ) is expressed through

the integral of the averaged kernel of the basic master
equation (10). Equation (14) describes an evolution of
averaged state occupancies P (a; t) that are coupled by
the normalization condition∑
a

P (a; t) = 1 . (15)

Particular cases of the noted reduction procedure can
be found in [31–36], where a stochastic field is given
by different types of discrete processes including well-
known dichotomous and trichotomous random realiza-
tions. The simplest form for the transfer rate K(a; b)
occurs if one ignores the broadening of the QS energy
levels caused by a stochastic field. In this case, following
the method offered in [30], one can represent the transfer
rate in the form [37]

K(a; b) =
2π
~
|V (tr)
ba |

2δ[E(a)− E(b)], (16)

where V (tr)
ba = 〈b|V (tr)|a〉 is the transition matrix element

on the energy surface E = Ea = Eb, and

V (tr) = V + V G(E)V (17)

is the transition operator. The latter contains the
Green’s operator G(E) = (E −H + i0+)−1 with

H = H0 + V (18)

being the QS Hamiltonian taken in the absence of a
stochastic field [38]. Forms similar to that of Eq. (17)
are widely employed for the description of scattering pro-
cesses when initial, |a〉, and final, |b〉, states belong to
the colliding particles with and without changes in their
compositions [39]. Note, however, that each state in
the scattering theory includes necessarily states of the
continuous spectrum of the particle. In our case, the
presence of the continuous spectrum is replaced by the
random shifts of the QS energy levels.

3. Nonlinear Kinetic Equation for a Quantum
Subsystem

The derivation of the kinetic equation (14) shows that
interstate transitions in the QS are characterized by the
averaged rate constants (16). Since the transitions oc-
cur between the states belonging to the whole QS, this
equation appears in a linear form. If, however, the QS is
associated with the complex system each part of which
refers either to a separate subsystem or/and to different
degrees of freedom (electronic, nuclear, spin), then the
kinetic equation for populations of the subsystem states
becomes nonlinear [30].

3.1. General form of a nonlinear kinetic
equation for the subsystem state
populations

We consider an important (in the practical sense) situ-
ation where the subsystems are weakly coupled to one
another, so that the common QS state |a〉 = |a1a2....aN 〉
(N is the number of subsystems in the QS) can be
represented as a product of separate subsystem states
|a1〉, |a2〉,..., i.e., |a〉 '

∏N
n=1 |an〉. Such a factoriza-

tion indicates that the off-diagonal interaction V does
not strongly perturb the states of separate subsystems.
This fact allows one to represent the state probability of
the QS as a product

P (a; t) = P (a1a2...aN ; t) '
N∏
n=1

P (an; t), (19)
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where each subsystem state probability P (an; t) satisfies
the normalization condition∑
an

P (an; t) = 1 . (20)

From the general point of view, the probability
P (an; t) of a realization of the an-th state in the common
QS is defined by the expression

P (an; t) =
∑
{a}6=an

P (a1a2...aN ; t) (21)

(symbol {a} denotes the summation over quantum num-
bers a1, a2, ...aN ). Therefore, the summation of the left-
and right-hand sides of Eq. (14) over all quantum num-
bers except for an yields

Ṗ (an; t) = −
∑
{a}6=an

∑
{b}6=an

K(a1a2...aN ; b1b2...bN )×

×
[
P (an; t)

∏
j 6=n

P (aj ; t)− P (bn; t)
∏
j 6=n

P (bj ; t)
]
. (22)

Equation (22) is a nonlinear kinetic equation describ-
ing the evolution of state probabilities P (an; t) of the
n-th separate quantum subsystem coupled to another
quantum subsystems by the off-diagonal interaction
V (tr), Eq. (17). The character of the nonlinearity
is dictated by three general factors. The first one is
associated with the number of states a1a2, ...aN and
b1b2....bN involved in the precise a1a2, ...aN � b1b2....bN
transition via the transition matrix element Vba =
〈b1b2...bN |V (tr)|a1a2...aN 〉. The second factor appears,
when certain subsystems in the common QS manifest
the properties of macroscopic systems. In this case,
the transitions between the microscopic subsystem (that
possesses a finite number of degrees of freedom) and the
macroscopic system does not change noticeably the state
populations of the macroscopic system. The third fac-
tor is associated with external sources that are able to
support a stationary population of the subsystem levels.

3.2. Linearization of the kinetic equation

As an example, let consider the QS that consists of
three subsystems A, B, and C with respective states
|α〉, |β〉 and |γ〉. We also assume that the off-
diagonal interaction V couples the states of subsys-
tem B with the states of subsystems A and C, but
does not couple the states of subsystems A and C (the

states |α〉 and |γ〉 can be only coupled by the sec-
ond term in Eq. (17), i.e., by the operator V G(E)V ).
This yields 〈α′β′γ′|V (tr)|αβγ〉 = δγ′,γ(1 − δα′α)(1 −
δβ′,β)〈α′β′|V |αβ〉+δα′α(1−δβ′,β)(1−δγ′,γ)〈β′γ′|V |βγ〉+
(1−δα′,α)(1−δγ′,γ)〈α′β′γ′|V G(E)V |αβγ〉. Bearing this
relation in mind, one can derive a nonlinear kinetic equa-
tion for each population P (ξ; t), (ξ = α, β, γ). Thus, for
instance, the time evolution of population P (α; t) is gov-
erned by the kinetic equation

Ṗ (α; t) = −
∑
α′β′

{∑
β

K(α′β′;αβ) (1−δα′,α)(1−δβ′,β)×

×
[
P (α; t)P (β; t)− P (α′; t)P (β′; t)

]
+

+
∑
βγγ′

K(α′β′γ′;αβγ) (1− δα′,α)(1− δγ′,γ)×

×
[
P (α; t)P (β; t)P (γ; t)−P (α′; t)P (β′; t)P (γ′; t)

]}
. (23)

In Eq. (23), the transfer rate K(α′β′;αβ) is calcu-
lated in line with Eq. (16) at V

(tr)
ab = 〈α′β′|V |αβ〉,

E(a) ' Eα + Eβ and E(b) ' Eα′ + Eβ′ . Since only
the states belonging to two subsystems are involved in
the transitions, the respective term on the right-hand
side of the kinetic equation exhibits the second order of
nonlinearity. At the same time, the formation of the
transfer rate K(α′β′γ′;αβγ) involves the states belong-
ing to three subsystems in the transition process. This
conclusion follows from the analysis of Eq. (16), where
now V

(tr)
ab = 〈α′β′γ′|V |αβγ〉, E(a) ' Eα +Eβ +Eγ and

E(b) ' Eα′ + Eβ′ + Eγ′ . The given circumstance leads
to the third order of nonlinearity in the kinetic equation
(Eq. (23) contains the term with the product of three
populations).

The kinetic equation (23) reduces its nonlinearity if
one or two subsystems possess the macroscopic proper-
ties. Let, for instance, A is the macroscopic subsystem,
while B and C are the microscopic ones. Since the tran-
sitions between the microscopic and macroscopic subsys-
tems do not noticeably perturb the state populations of
the macroscopic subsystem, one can set

P (α; t) 'WA(α) + ΔP (α; t), (24)

where the inequality

ΔP (α; t)�WA(α) (25)
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is assumed to be supported at any time t. In Eq. (24),
the quantity WA(α) is the equilibrium distribution func-
tion for subsystem A. Relation (24) allows one to reduce
the nonlinear kinetic equation (23) to the form

Ṗ (α; t) = −
∑
α′

(1− δα′,α)
{∑
ββ′

(1− δβ′,β)×

×
[
K(α′β′;αβ)WA(α)−K(α′β;αβ′)WA(Eα′)

]
P (β; t)+

+
∑
ββ′

∑
γγ′

(1− δγ′,γ)
[
K(α′β′γ′;αβγ)WA(α)−

−K(α′βγ;αβ′γ′)WA(α′)
]
P (β; t)P (γ; t)

}
, (26)

which offers a more weak nonlinearity. If the A and the C
are both macroscopic subsystems, while the B remains a
microscopic subsystem, then the nonlinear kinetic equa-
tion reduces to a completely linear one,

Ṗ (α; t) = −
∑
α′

(1− δα′,α)
{∑
ββ′

(1− δβ′,β)×

×
[
K(α′β′;αβ)WA(α)−K(α′β;αβ′)WA(α′)

]
P (β; t)+

+
∑
ββ′

∑
γγ′

(1− δγ′,γ)
[
K(α′β′γ′;αβγ)WA(α)WC(γ)−

−K(α′βγ′;αβ′γ)WA(α′)WC(γ′)
]
P (β; t)

}
. (27)

Here, WC(γ) is the equilibrium distribution function of
subsystem C.

4. Kinetic Equations for a 1M2 Device

We consider the transmission of electrons through
the 1M2 device under conditions, when the molecule-
electrode couplings do not destroy individual properties
of a molecule, so that the molecule can be characterized
by its proper states and proper energies. As such, the
1M2 device can be considered as a QS composed from
three quantum subsystems, one microscopic subsystem
(molecule) and two macroscopic subsystems (electrodes
1 and 2). To employ the results derived in the pre-
vious section, let us associate subsystem A with elec-
trode 1, subsystem B with the molecule and subsystem
C with electrode 2. We denote the respective quantum

states as α = N1kσ, β = M(ν), and γ = N2k′σ′ . Here,
Nrkσ = 0, 1 is the number of electrons with wave vector
k and spin projection σ occupying the conduction band
of the r(= 1, 2)-th electrode. The symbol M(ν) stands
for a set of electronic, vibronic and spin quantum num-
bers of the molecule being in its ν(= 0,±1,±2, ...)-th
charge state. With the use of the given designations, we
set

E(ζ) = ErkσNrkσ , (r = 1(2) if ζ = α(γ)) (28)

and

WZ(ζ) = Nrkσfr(Erkσ) + [1−Nrkσ][1− fr(Erkσ)] ,

(r = 1(2) if Z = A(C), ζ = α(γ)) . (29)

In Eq. (29),

fr(Erkσ) =
1

exp [(Erkσ − µr)/kBT ] + 1
(30)

is the Fermi distribution function (µr is the chemical
potential for the r(= 1, 2)-th electrode, kB is the Boltz-
mann constant, and T is the absolute temperature) of
electrons occupying the conduction band of the r-th elec-
trode.

4.1. Kinetic equations and partial transfer rates

We give a reading form of the kinetic equations for
the single-electron probabilities P (rkσ; t) ≡ P (1rkσ; t)
(characterizing the occupancy of the conduction band of
the r-th electrode), as well as for molecular state occu-
pancies P (M(ν); t). The first equation follows from Eq.
(27) written for α = 1kσ with regard for the inequality
ΔP (rkσ; t) � fr(Erkσ) (particular case of inequality
(25)). The desirable kinetic equation reads (r, r′ = 1, 2)

Ṗ (rkσ; t) = −
∑
MM ′

∑
ν

{[
K
(
rkσM(ν)→M ′(ν + 1)

)
−

−K
(
M(ν)→ rkσM ′(ν − 1)

)]
+

+
∑

r′k′σ′( 6=rkσ)

[
K
(
rkσ, r′k′σ′M(ν)→M ′(ν + 2)

)
−

−K
(
M(ν)→ rkσ, r′k′σ′M ′(ν − 2)

)]
+
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+
∑
k′σ′

(1− δr′,r)
[
K
(
rkσM(ν)→ r′k′σ′M ′(ν′)

)
−

−K
(
r′kσM(ν)→ rk′σ′M ′(ν)

)]}
P (M(ν); t), (31)

where

K
(
rkσM(ν)→M ′(ν + 1)

)
=

2π
~
|VM ′(ν+1);rkσM(ν)|2×

×fr(Erkσ) δ[Erkσ + EM(ν) − EM ′(ν+1)] (32)

and

K
(
M(ν)→ rkσM ′(ν − 1)

)
=

2π
~
|VrkσM ′(ν−1);M(ν)|2×

×[1− fr(Erkσ)] δ[EM(ν) − Erkσ − EM ′(ν−1)] (33)

are the partial (forward and backward, respectively)
single-electron transfer rates characterizing the hopping
of an electron between the the r-th electrode and the
molecule. Hereafter, we use the following designation
for the transient matrix element:

VM ′(ν+1);rkσM(ν) = V ∗rkσM(ν);M ′(ν+1) =

= 〈0rkσM ′(ν + 1)|V |1rkσM(ν)〉 . (34)

The two-electron hopping transfer rates are given by the
expressions

K
(
rkσ, r′k′σ′M(ν)→M ′(ν + 2)

)
=

=
2π
~
fr(Erkσ) fr′(Er′k′σ′)×

×
∣∣∣∑
M̃

VM ′(ν+2);r′k′σ′M̃(ν+1)VM̃(ν+1);rkσM(ν)

Erkσ + E(M(ν))− E(M̃(ν + 1))

∣∣∣2×
×δ[Erkσ + Er′k′σ′ + EM(ν) − EM ′(ν+2)] (35)

and

K
(
M(ν)→ rkσ, r′k′σ′M ′(ν − 2)

)
=

=
2π
~

[1− fr(Erkσ)] [1− fr′(Er′k′σ′)]×

×
∣∣∣∑
M̃

Vr′k′σ′M ′(ν−2);M̃(ν−1)VrkσM̃(ν−1);M(ν)

Erkσ + E(M̃(ν − 1)− E(M(ν)))

∣∣∣2×
×δ[EM(ν) − Erkσ − Er′k′σ′ − EM ′(ν−2)] . (36)

(At r = r′, one has only to remain the terms, where
k′σ′ 6= kσ).

The above-given single-electron and two-electron par-
tial transfer rates characterize the transmission processes
accompanied by a molecular recharge. At the same
time, the kinetics of charge transfer includes the pro-
cesses at which an electron transmission does not bring
to the molecular charging but initiate molecular transi-
tions M(ν) � M ′(ν). The respective transfer rate reads
(r′ 6= r)

K
(
rkσM(ν)→ r′k′σ′M ′(ν)

)
=

=
2π
~
fr(Erkσ) [1− fr′(Er′k′σ′)]×

×
∣∣∣∑
M̃

[VM ′(ν);r′k′σ′M̃(ν−1)VrkσM̃(ν−1);M(ν)

E(M(ν))− Er′k′σ′ − E(M̃(ν − 1))
+

+
Vr′k′σ′M ′(ν);M̃(ν+1)VM̃(ν+1);rkσM(ν)

Erkσ + E(M(ν))− E(M̃(ν + 1))

]∣∣∣2×
×δ[Erkσ + EM(ν) − Er′k′σ′ − EM ′(ν)]. (37)

In Eqs. (35)-(37), the quantity

E(M(ν)) ' EM(ν) + Σ(1)
M(ν)(E) + Σ(2)

M(ν)(E) (38)

is the modified molecular energy that contains self-
energies (r = 1, 2)

Σ(r)
M(ν)(E) '

∑
kσ

∑
M ′

|VM(ν);rkσM ′(ν−1)|2

E − (Erkσ + EM ′(ν−1)) + i0+
.

(39)

The appearance of the self-energy is caused by the in-
teraction of the molecule with the electrodes [40]. The
imaginary part of the self-energy,

Γ(r)
M(ν)(E) =

=
∑
M ′

Γ(r)
(
M ′(ν − 1)→M(ν); E − EM ′(ν−1)

)
, (40)
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defines the broadening of molecular levels through the
transition width parameters

Γ(r)
(
M ′(ν − 1)→M(ν); E − EM ′(ν−1)

)
' 2π×

×
∑
kσ

|VM(ν);rkσM ′(ν−1)|2δ[(E −EM ′(ν−1))−Erkσ] . (41)

The kinetic equation for molecular state occupancies
is derived analogously. It reads

Ṗ (M(ν); t) = −
∑
M ′

∑
rkσ

{[
K
(
rkσM(ν)→M ′(ν + 1)

)
+

+K
(
M(ν)→ rkσM ′(ν − 1)

)]
P (M(ν); t)−

−
[
K
(
M ′(ν + 1)→ rkσM(ν)

)
P (M ′(ν + 1); t)+

+K
(
rkσM ′(ν − 1)→M(ν)

)
P (M ′(ν − 1); t)

]}
−

−
∑
M ′

∑
rkσ

∑
r′k′σ′

(1− δr′k′σ′,rkσ)×

×
{[
K
(
rkσ, r′k′σ′M(ν)→M ′(ν + 2)

)
+

+K
(
M(ν)→ rkσ, r′k′σ′M ′(ν − 2)

)]
P (M(ν); t)−

−
[
K
(
M ′(ν + 2)→ rkσ, r′k′σ′M(ν)

)
P (M ′(ν + 2); t)+

+K
(
rkσ, r′k′σ′M ′(ν − 2)→M(ν)

)
P (M ′(ν − 2); t)

]
+

+
∑
r′

∑
rkσ

∑
r′k′σ′

[
K
(
rkσM(ν)→r′k′σ′M ′(ν)

)
P (M(ν); t)−

−K
(
r′kσM(ν)→ rk′σ′M ′(ν)

)
P (M ′(ν); t)

]}
−

−
∑
M ′

∑
rkσ

[
K
(
rkσM(ν)→ rkσM ′(ν)

)
P (M(ν); t)−

−K
(
rkσM ′(ν)→ rkσM(ν)

)
P (M ′(ν); t)

]
. (42)

Here, all charge transfer rates are defined by Eqs. (32)-
(37) except the transfer rate

K
(
rkσM(ν)→ rkσM ′(ν)

)
=

=
2π
~

{
fr(Erkσ)

∣∣∣∑
M̃

VrkσM ′(ν);M̃(ν+1)VM̃(ν+1);rkσM(ν)

Erkσ + E(M(ν))− E(M̃(ν + 1))

∣∣∣2+

+(1−fr(Erkσ))
∣∣∣∑
M̃

VM ′(ν);rkσM̃(ν−1)VrkσM̃(ν−1);M(ν)

E(M(ν))− Erkσ − E(M̃(ν − 1))

∣∣∣2}×
×δ[EM(ν) − EM ′(ν)] . (43)

This rate characterizes an electron transition within the
1M2 device when the transmission is not accompanied
by a molecular recharge.

4.2. Currents in the 1M2 device

In the 1M2 device, the current from the r-th electrode
to the attached molecule is defined as

Ir(t) = eṄr(t), (44)

where e = −|e| is the electron charge, and Nr(t) is
the number of electrons in the conduction band of the
r-th electrode. By virtue of the fact that Ṅr(t) =∑

kσ Ṗ (rkσ; t), one derives the expression for the cur-
rent as the sum of two components,

Ir(t) = I(r)
seq(t) + I

(r)
dir (t) . (45)

The first component,

I(r)
seq(t) = I0 π~

∑
MM ′

∑
ν

{[
K
(
rM(ν)→M ′(ν + 1)

)
−

−K
(
M(ν)→ rM ′(ν−1)

)]
+
[
K
(
rr′M(ν)→M ′(ν+2)

)
−

−K
(
M(ν)→ rr′M ′(ν − 2)

)]}
P (M(ν); t), (46)

is formed owing to the single-electron and two-electron
hopping processes in the 1M2 device (the first and second
terms on the right-hand side of Eq. (46), respectively).
The second current component,

I
(r)
dir(t) = I0 π~

∑
MM ′

∑
ν

[
K
(
rM(ν)→ r′M ′(ν)

)
−

−K
(
r′M(ν)→ rM ′(ν)

)]
(1− δr,r′)P (M(ν); t) , (47)

reflects the presence of the direct electron transmission
from one electrode to another. (In Eqs. (46) and (47),
I0 = |e|/π~ ≈ 77.6µA is the current unit [3]).
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It follows from Eqs. (46) and (47) that the time behav-
ior of the current is completely determined by the evolu-
tion of molecular state probabilities. In accord with Eq.
(42), this evolution is described by the kinetic equation

Ṗ (M(ν); t) = −
∑
M ′

∑
r

{[
K
(
rM(ν)→M ′(ν + 1)

)
+

+K
(
M(ν)→ rM ′(ν − 1)

)
+

+
∑
r′

[
K
(
rr′M(ν)→M ′(ν + 2)

)
+

+K
(
M(ν)→ rr′M ′(ν − 2)

)
+

+K
(
rM(ν)→ r′M ′(ν)

)]]
P (M(ν); t)−

−
[
K
(
M ′(ν + 1)→ rM(ν)

)
P (M ′(ν + 1); t)+

+K
(
rM ′(ν − 1)→M(ν)

)
P (M ′(ν − 1); t)+

+
∑
r′

[
K
(
M ′(ν + 2)→ rr′M(ν)

)
P (M ′(ν + 2); t)+

+K
(
rr′M ′(ν − 2)→M(ν)

)
P (M(ν − 2); t)+

+K
(
r′M ′(ν)→ rM(ν)

)]
P (M ′(ν); t)

]}
. (48)

4.3. Rate constants

It follows from expressions (46), (47), and (48) that,
within the kinetic approach, the current formation and
the transitions between molecular states are character-
ized by the common rate constants. The latter are cal-
culated as the sum (over single-electron band states kσ
and k′σ′) of above partial transfer rates. The form of
rate constants is determined by transmission processes
in the precise 1M2 device. Nevertheless, in certain cases,
one can derive a rather simple reading form for the rate
constants. As an example, we consider two of them.

Contact rate constants. The forward contact rate
constant characterizes the hopping of an electron from
the r-th electrode to the molecule. It is deter-
mined by the expression K

(
rM(ν) → M ′(ν + 1)

)
=

∑
rkσ K

(
rkσM(ν) → M ′(ν + 1)

)
, which can be repre-

sented in the form

K
(
rM(ν)→M ′(ν+1)

)
=

1
~

Γ(r)
(
M(ν)→M ′(ν+1);E

)
×

×N
(
ΔE(r)

M ′(ν+1),M(ν)

)
. (49)

Here, the first multiplier is defined by Eq. (41) at E =
EM ′(ν+1) − EN(ν), whereas

N
(
ΔE(r)

M ′(ν+1),M(ν)

)
=
{

exp
[ΔE(r)

M ′(ν+1),M(ν)

kBT

]
+ 1
}−1

(50)

is the distribution function with

ΔE(r)
M ′(ν+1),M(ν) = E

(r)
M ′(ν+1) −

(
E

(r)
M(ν) + µr

)
(51)

being the transmission gap for the rM(ν)→ M ′(ν + 1)
charge transfer route (µr is the chemical potential of
the r-th electrode). The expression for the backward
contact rate constant, K

(
M ′(ν + 1) → rM(ν)

)
, follows

from Eq. (49), if one substitutes N
(
ΔE(r)

M ′(ν+1),M(ν)

)
for

(
1 − N

(
ΔE(r)

M ′(ν+1),M(ν)

)
. In the absence of mag-

netic interactions, a spin state of the molecule and a
spin projection of the transferred electron are good quan-
tum numbers. Therefore, to specify a molecular state,
one has to indicate a molecular term along with respec-
tive vibration states. Let, for instance, the ground state
of the molecule has zero charge (ν = 0) and zero spin
(S = 0). In the Condon approximation, the noted state
can be indicated as M(0) = M0v0 (v0 is the set of
vibrational quantum numbers in the ground molecular
state). When the molecule captures an extra (trans-
ferred) electron, it becomes negative. Indicating this
fact by sign “−”, we set M ′(1) = M−v−. This yields
VM ′(ν+1);rkσM(ν) = VM−;rkM0〈v−|v0〉, where VM−;rkM0

is the pure electronic matrix element, and 〈v−|v0〉 is the
overlap integral for nuclear wave functions. Thus, in the
Condon approximation, Γ(r)

(
M(ν) → M ′(ν + 1);E

)
=

Γ(r)
M0→M−(E)〈v−|v0〉2. The form for Γ(r)

M0→M−(E) can be
simplified if one employs the wide-band approximation
[3, 8], whereby the width parameter could be chosen as
energy-independent. If the M0 → M− transition is as-
sociated with the appearance of an extra (transferred)
electron at the λth molecular orbital, then the quan-
tity Γ(r)

λ ≡ Γ(r)
M0→M−(E) can be considered as the de-

vice parameter. As a result, the rate constant for the
rM0 →M ′(1) transition reduces to the simple form

K
(
rM(0)→M ′(1)

)
=

1
~

Γ(r)
λ 〈v−|v0〉

2×
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×N
(
ΔE(r)

M−v−,M0v0

)
, (52)

where

ΔE(r)
M−v−,M0v0

= ΔE(r)
−0 + ~(ω−v− − ω0v0) . (53)

In Eq. (53), the quantities ω− and ω0 indicate the vi-
brational modes for respective molecular terms, whereas

ΔE(r)
−0 = E− − (E0 + µr) (54)

is the pure electronic transmission gap. [The lowest ener-
gies E− and E0 of the term include the energies ~ω−/2
and ~ω0/2 of respective zero-point vibrations]. In the
Holstein model, the frequencies of vibrational modes do
not depend on electronic state of a molecule so that
ω− = ω0. At negligible nuclear displacements, one can
also set 〈v−|v0〉 ≈ δv−,v0 . Thus, the simplest form for
the contact rate constant reads

K
(
rM(0)→M ′(1)

)
=

1
~

Γ(r)
λ δv−,v0 N

(
ΔE(r)
−0

)
. (55)

Distant rate constants. These rate constants charac-
terize two types of transitions. One type reflects two-
electron hopping processes at which two electrons be-
longing to different electrodes charge the molecule (re-
spective rate constant is K(rr′M(ν) → M ′(ν + 2))) or
the molecule returns two electrons to different electrodes
(respective rate constant is K(M ′(ν + 2) → rr′M(ν))).
The second type of rate constants characterizes the dis-
tant single-electron one-step transition process at which
an electron is transferred from one electrode to an-
other one. During such a process, the molecule can
conserve or change its electronic state, but the molec-
ular charge is not varied (respective rate constant is
K(rM(ν) → r′M ′(ν))). As an example, we give a
reading form for the rate constants characterizing the
1M(0) → 2M ′(0) inter-electrode electron transfer at
M ′ = M and M ′ = M∗, where M∗ denotes the ex-
cited state of the molecule. The desirable rate constant
is estimated in line with the expression K(rM(ν) →
r′M ′(ν)) =

∑
rkσ

∑
r′k′σ′ K

(
rkσM(ν) → r′k′σ′M ′(ν)

)
at ν = 0, r = 1, r′ = 2. It follows from Eq. (37) that the
intermediate molecular states M̃ refer either to the neg-
atively or positively charged molecule. In the first case,
the intermediate states are associated with the molecule,
where an extra electron occupies one of the lowest unoc-
cupied molecular orbitals (LUMOs). In the second case,
one electron is absent at one of the highest occupied
molecular orbitals (HOMOs). The model under consid-
eration supposes a negligible nuclear displacement dur-
ing the transmission, as well as the participation of only

two frontier MOs, one LUMO, and one HOMO (LUMO-
HOMO model) in the transfer process. As a result, the
summation over the M̃ is removed, and one can intro-
duce the width parameters Γ(r)

L and Γ(r)
H associated with

the LUMO (L) and HOMO (H). The calculations give

K(1M(0)→ 2M(0)) =
2
π~
×

×
{Γ(1)

L Γ(2)
L

ΓL

[
arctg

2ΔE(2)
−0

ΓL
− arctg

2ΔE(1)
−0

ΓL

]
+

+
Γ(1)

H Γ(2)
H

ΓH

[
arctg

2ΔE(1)
+0

ΓH
− arctg

2ΔE(2)
+0

ΓH

]
, (56)

where Γλ = Γ(1)
λ + Γ(2)

λ , (λ = L,H). The transmission
gaps ΔE(1)

−0 and ΔE(2)
−0 are given by Eq. (54), while

transmission gaps ΔE(1)
+0 and ΔE(2)

+0 read (r = 1, 2)

ΔE(r)
+0 = (E+ + µr)− E0. (57)

Here, E+ is the lowest energy of the electronic term be-
longing to the oxidized molecule.

The appearance of molecular state M∗ is associated
with the transition of an intramolecular electron from
the HOMO to the LUMO. In the framework of the
LUMO-HOMO model, one derives

K(1M(0)→ 2M∗(0)) =
1
π~
×

×
{Γ(1)

L Γ(2)
H

ΓL

[
arctg

2ΔE(2)
−∗

ΓL
− arctg

2ΔE(1)
−0

ΓL

]
+

+
Γ(1)

L Γ(2)
H

ΓH

[
arctg

2ΔE(1)
+∗

ΓH
− arctg

2ΔE(2)
+0

ΓH

]
, (58)

where

ΔE(r)
−∗ = E− − (E∗ + µr) (59)

and

ΔE(r)
+∗ = (E+ + µr)− E∗ (60)

are the transmission gaps associated with the presence
of the excited molecular state (E∗ is the lowest energy
of an electronic term belonging to the excited molecule).
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5. Conclusion

In the present paper, the method of nonequilibrium den-
sity matrix is used to derive a generalized master equa-
tion for the averaged (over the fast stochastic field) state
probabilities of the quantum system, Eq. (14). Under
conditions of a weak interaction between the subsystems
forming the common quantum system, the nonlinear ki-
netic equation (22) has been derived for a separate sub-
system. The nonlinear kinetic equation is transformed
into a linear one, if the microscopic subsystem interacts
with macroscopic subsystems. This general result has
been demonstrated by the example of the transforma-
tion of the nonlinear kinetic equation (23) into the linear
balance-like equation (27). Associating two macroscopic
subsystems with the electrodes and a microscopic sub-
system with the molecule, we deduce the kinetic equa-
tion for the band state probabilities, Eq. (31), and spec-
ify the form of the respective transfer rates (35)–(37).
The application of the density matrix approach to the
description of the charge transmission in the 1M2 de-
vice allows us to derive the expressions for the sequen-
tial (hopping) and direct (distant) components of the
current (cf. respective equations (46) and (47)). Addi-
tionally, we have at hand the closed system of kinetic
equations for molecular state probabilities, Eq. (48). [In
separate cases, one can derive rather simple analytic ex-
pressions for the contact and distant rate constants, cf.
Eqs. (52), (56), and (58).] The general expressions de-
rived for the current and the state occupancies, can be
applied to the description of various regimes of current
formation in various molecular junctions including those
with a magnetic ordering.
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КIНЕТИКА ЗАРЯДОВО-ТРАНСПОРТНИХ
ПРОЦЕСIВ У МОЛЕКУЛЯРНИХ З’ЄДНАННЯХ

Е.Г. Петров

Р е з ю м е

Отримано керуюче кiнетичне рiвняння для ймовiрностей ре-
алiзацiї станiв квантової системи, що складається з окремих
квантових пiдсистем. Рiвняння дозволяє проводити опис про-
цесiв транспорту зарядiв у молекулярних з’єднаннях, в яких
молекула, що вбудована мiж електродами, виконує роль транс-
мiтера електронiв. Особливу увагу придiлено отриманню вира-
зiв для контактних та дистанцiйних констант швидкостей, що
вiдповiдають за формування послiдовної (стрибкової) та пря-
мої (тунельної) компонент струму, а також за часову еволюцiю
ймовiрностей реалiзацiї молекулярних станiв.
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