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The permittivity of plasma in the electric field of random waves
of moderate intensity is given in terms of the particle transition
probability between two points of the phase space. The transition
probability was found as an approximate solution of the Fokker–
Planck equation. Validity of this analytical approximation was
verified by the direct simulation of the particle diffusion in a field
of random waves.

1. Introduction

One of the mechanisms of wave decay in plasma is a res-
onance interaction between particles and a wave. To a
certain degree, the decay of a wave due to the resonance
interaction is a more delicate effect than the existence
of a wave by itself. Plasma oscillations can be described
by equations of hydrodynamics when the movement of
plasma components is considered as fluid flows. Along
with this, the wave decay is caused by the interaction
of a wave and only those particles that move with a
velocity close to the phase velocity of the wave. This
is manifested in that the oscillation frequency is given
through an integral of the particle distribution function
and, therefore, is not too much sensitive to its specific
form, and the wave decrement is given by a derivative of
distribution functions at the resonance velocity. Conse-
quently, a decrement is much more sensitive to a partic-
ular form of the distribution function in the resonance
region than an eigenfrequency.

When linear waves are considered, it is supposed that
a perturbation of the distribution function by a field is
small. However, along with this, it is necessary to de-

mand a small perturbation of their derivative, and this
is a stronger condition for the distribution function per-
turbation. In fact, the condition of a small field is not
equivalent to the smallness of a distribution function
derivative perturbation, and the validation of the latter
should be fulfilled in every particular case. It was shown
in the early work of Dawson [1] that the smallness of a
derivative perturbation is correct only on time intervals
less than the bounce time of a particle trapped into the
potential well of a wave. This corresponds to the condi-
tion that the perturbation of derivatives remains small
as compared with the derivative of an unperturbed func-
tion. It is obvious that, for any small but finite field,
there is a time interval beyond which a perturbation of
derivatives is not further negligible. In other words, the
criterion of small perturbation is not uniform and is not
met for any time.

Coming over from one regular wave to a superposition
of several waves, we may find that the situation become
even more complex. The main property of linear solu-
tions is that their superposition is a solution as well. So
the decrement of a wave, whether it is considered as a
linear one, should not depend on the presence of other
waves. Considering a motion of resonant particles in
a field that is formed by a superposition of waves, we
note that it becomes stochastic, i.e., it gains a new fea-
ture inappropriate for one wave. It seems this is the
first non-linear effect that should be accounted for weak
fields even if the waves may be still taken as linear in
all other aspects. In a case of several waves, the restric-
tion on an amplitude of a wave, in order that it may
be treated as a linear one is more rigorous than that for
one wave; and, in a case of many waves, such a restric-
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tion becomes much more rigorous. Any excitation in real
systems could hardly obey this restriction. Thus, it is
necessary to have a more rigorous description of resonant
particles behavior in the case where a lot of waves are
excited, as far this is typical of plasma in the turbulent
state.

Electrodynamic properties of plasma are described by
its permittivity. It is modified in the presence of an
external field or eigenwaves, and such a modification in-
creases with growth of the field strength. However, even
for a weak field of many ’linear’ waves, we may expect
a modification of the permittivity, as far as a particle
motion can not be further considered as free, or even as
regular. Instead of this, the behavior of resonant parti-
cles in a superposition of waves becomes stochastic. For
this reason, we may not consider waves as completely
linear, and our aim is to calculate a propagator of parti-
cles that reflects a distortion of the free particle motion
by its stochastic behavior in the resonance region.

The effects of orbits diffusion in a turbulent field was
described in early work of Dupree [2], where an approach
to the calculation of the renormalized plasma permittiv-
ity was proposed. His approach was criticized, however,
for an assumption that a particle behavior is described
by the same diffusion law on various time scales that
are more and less than the field correlation time. De-
spite this indication of inconsistency, his estimation for
a wave decay due to the orbit diffusion is still used till
nowadays.

Our aim is to find the particle propagator (transition
probability of a particle between two points of the phase
space) on different time scales in the presence of a ran-
dom wave field. In our previous works, we studied the
transition probability of a particle in the velocity space,
and an approximate analytical solution was found and
checked in direct simulations. Indeed, for the small Kubo
number K � 1, a distortion of the free particle propa-
gator δ(x−x′− v(t− t′))δ(v− v′) by a weak field can be
neglected. However, for stronger fields, when the Kubo
number becomes of the order of 1, it is necessary to take
a modification of the propagator into account. In this
work, we will generalize it from the velocity space to the
full coordinate-velocity phase space and use it to con-
struct the plasma permittivity in the presence of random
waves of moderate intensity (i.e., for the Kubo number
of the order of 1).

2. Basic Equation

To calculate the permittivity of plasma in an external
wave field, we take the equation for a distribution func-

tion of particles in the velocity and coordinate space in
the form(
∂

∂t
+ v

∂

∂x

)
F (x, v, t) +

e

m
E(x, t)

∂

∂v
F (x, v, t) = 0, (1)

where the total field is the sum

E(x, t) = E1(x, t) + Es(x, t) (2)

of a regular self-consistent electric field E1(x, t) and an
external random electric field Es(x, t), which is supposed
to be a Gaussian process homogeneous in space and
time. We take the total distribution function in cor-
respondence with the field representation, as the sum of
three terms

F (x, t) = F0(x, t) + F1(x, t) + Fs(x, t), (3)

where F0(x, t) is the averaged distribution function in
the absence of E1(x, t), F0(x, t)+F1(x, t) is the averaged
total distribution function , and Fs(x, t) is an excitation
of the distribution function by the external field.

3. Permittivity

In accordance with the representation of the field, we
write the equation for the distribution function (1) in
the following form:(
∂

∂t
+ v

∂

∂x

)
F (x, v, t) +

e

m
Es(x, t)

∂

∂v
F (x, v, t) =

= − e

m
E1(x, t)

∂

∂v
(F0(x, v, t) + Fs(x, v, t)). (4)

The equation for the self-consistent field reads

divE1 = 4πe
∫
dvF1(x, v, t). (5)

A solution for the distribution function can be given
through the transition probability of a particle between
two points of the phase space. The equation for the
transition probability W has the form(
∂

∂t
+ v

∂

∂x

)
W (x, v, t;x′, v′, t′)+

+
e

m
Es(x, t)

∂

∂v
W (x, v, t;x′, v′, t′) = 0. (6)

The initial condition for the transition probability is as
follows:

W (x, v, t′;x′, v′, t′) = δ(x− x)δ(v − v′). (7)
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Whether the solution of Eq. (4) is found and then
averaged, the excitation of the distribution function F1

takes the form

F1(x, v, t) = − e

m

t∫
0

dt′
∫
dx′dv′W̄ (x, v, t;x′, v′, t′)×

×E1(x′, t′)
∂

∂v′
F0(x′, v′, t′), (8)

Now the plasma permittivity can be given in terms of
the averaged transition probability W̄ :

εk(t) = δ(t)− i4πe
2

mk2

∫
dvdv′W̄k(v, v′, t)k

∂

∂v′
F0(v′, 0). (9)

Thus, to obtain the plasma permittivity, we should find
firstly the averaged transition probability.

4. Transition Probability

Taking Eqs. (6) and (7) into account, the equation for
the averaged transition probability W̄ can be given in a
form [5](
∂

∂t
+ v

∂

∂x

)
W̄ (x, v, t;x′, v′, t′) =

=
( e
m

)2 ∂

∂v

t∫
t′

dτ

∫
dyduW̄ (x, v, t; y, u, τ)×

×〈E(x, t)E(y, τ)〉 ∂
∂u
W̄ (y, u, τ ;x′, v′, t′) (10)

with the same initial conditions

W̄ (x, v, t′;x′, v′, t′) = δ(x− x)δ(v − v′).

Equation (10) is a non-linear integro-differential equa-
tion, and it has to be simplified in order to obtain an
explicit solution. When random fields are absent, the
solution of this equation is given by the free particle
propagator. As was shown in our previous paper [3] for
moderate fields, which correspond to the Kubo number
of the order of 1, this equation is reduced to the equation
of diffusion with a convective term:(
∂

∂t
+ v

∂

∂x

)
W̄ (x− x′, v, v′, t− t′) =

=
( e
m

)2 ∂

∂v

t∫
t′

dτ〈E2〉vτ,τ
∂

∂v
W̄ (x− x′, v, v′, t− t′).

After the Fourier transformation with respect to the
coordinate, this equation takes a form

∂W̄k(v, v0, t)
∂t

+ ikW̄k−

− ∂

∂v
D(v, t)

∂

∂v
W̄k(v, v0, t) = 0, (11)

where the time-dependent diffusion coefficient is given
through the field correlation function

D(v, t) =
( e
m

)2
t∫

0

〈E2
s 〉vτ,τdτ. (12)

The approximate solution for the transition probabil-
ity can be given as

W̄k(v, v0, t) = C(t)×

× exp

[
−ikv + ik

v∫
v0

du

t∫
0

dτak(v, v0, τ)

]
×

× exp

[
−

( v∫
v0

du
1 + ak(v, v0, τ)

2

√
t∫
0

D(u, τ)dτ

)2]
, (13)

where the following notation is used:

ak(v, v0, τ) =
2ik
v − v0

t∫
0

(t− τ)D(u, τ)dτ.

The normalization coefficient is given by

C−1 =
∫
dv exp

[
−

( v∫
v0

du

2

√
t∫
0

D(u, τ)dτ

)2]
.

The approximate solution (13) is a generalization of
the transition probability in the velocity space, which
was calculated earlier in [3]. Thus, the permittivity of
plasma in external random fields is given explicitly by
Eqs. (9) and (13).

As an illustration, let us consider a reduction of the ob-
tained results to the well-known equations. IfD = const,
this solution is reduced to

W̄k(v, v0, t) =
1

2
√
πDt)

exp(−ikv − (1/3)Dk2t3)×
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Fig. 1. Evolution of the velocity dispersion for resonant particles
and a moderate field. Initial stage. Time is given in units of a
wave period

× exp

[
− (v − ikDt2 − v0)2

4Dt

]
.

It has the same form as the exact solution of Eq. (11)
with a constant diffusion coefficient. If we neglect the
dependence on the velocity, we obtain the results of
Dupree [2].

In the limit of zero external fields, this solution is re-
duced to the free paricle propagator. For D = 0,

W̄k(v, v0, t) = exp(−ikv)δ(v − v0),

which gives the well-known linear permittivity of
plasma.

5. Comparison with the Results of Simulation

As an amendment, we give here some illustrative
material discussed in more details in our previous
works. It shows that a temporal evolution of the ve-
locity dispersion calculated through the approximate
transition probability is in a fairly good agreement
with the results of direct simulation. We believe
that such agreement validates the approximate solu-
tion for the transition probability up to moderate field
strengths (the Kubo number K = 2.5). An approxi-
mate form for the transition probability between two
points in the velocity space was proposed in our pa-
per [3], where the comparison of the results of ana-
lytical calculation and simulation was made. Later,
it was shown that the transition probability in such
form takes the particle trapping into account and de-
scribes the non-resonant interaction (which is much
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Fig. 2. Velocity dispersion for non-resonant particles and a weak
field. Initial stage
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Fig. 3. Evolution of the velocity dispersion for resonant particles
and a moderate field. Longer time interval

weaker than the resonant one) as well [4]. Here,
the comparison of the results of direct simulation
(NE), approximate analytical solution of the Fokker–
Planck eqation (WKB), and numerical solution of
the Fokker–Planck eqation (FP) for various fields is
given.

6. Conclusions

The permittivity of plasma in the electric field of
random waves of a moderate intensity is given via
the particle transition probability between two points
of the phase space. The transition probability was
found as an approximate solution of the Fokker–
Planck equation. The validity of this analytical
approximation was supported by a direct simula-
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tion of the particle diffusion in a field of random
waves.
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ДIЕЛЕКТРИЧНА ПРОНИКНIСТЬ ПЛАЗМИ
У ВИПАДКОВИХ ПОЛЯХ ПОМIРНОЇ
IНТЕНСИВНОСТI

В.I. Засенко, А.Г. Загороднiй, Я. Вейланд

Р е з ю м е

Дiелектричну проникнiсть плазми у випадкових полях помiр-
ної iнтенсивностi подано через ймовiрнiсть переходу частинки
мiж двома точками фазового простору. Ймовiрнiсть переходу
знайдено як наближений розв’язок рiвняння Фоккера–Планка.
Коректнiсть цього аналiтичного наближення пiдтверджується
прямим моделюванням дифузiї частинок у полi випадкових
хвиль.
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