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The cluster nuclei 6Li, 6He, 10Be, and 10C are studied as systems
consisting of α-particles and two extra nucleons. The structure
functions of these nuclei are found within the variational approach.
The charge density distributions, form factors, and pair correlation
functions are presented and explained.

1. Introduction

In the present paper, we consider some of the light clus-
ter nuclei consisting of an α-cluster and two extra nu-
cleons (they are 6Li and 6He nuclei) or consisting of two
α-clusters and two extra nucleons (like the mirror nu-
clei 10Be and 10C). The α-clusters are usually treated
as particles [1–3] or as systems of nucleons [4–7], and
these approaches are competitive in accuracy. The main
purpose of our consideration is to study the structure
functions of the above-mentioned nuclei, especially those
connected with the extra nucleons, within the approach
[8–10], where the nuclei are considered as consisting of
α-particles and two extra nucleons.

To treat the nuclei within such an approach with
enough accuracy, one has to deal with the following two
problems. The first lies in constructing the αα- and Nα-
interaction potentials which together with corresponding
NN -potentials should provide the description of both
the experimental phase shifts at low energies and the
main characteristics (binding energy and radius) of the
nucleus under consideration. We demonstrate below how
this problem is solved. The second one is to calculate the
three- and four-body systems with enough accuracy. To
study the bound states of nuclear systems, we use well-
developed precise calculation procedures based on the
variational method with Gaussian bases [11] (see also

[12]). This approach is known to have a high accuracy
for various few-body problems including the problem of
near-threshold weakly bound states [13], and it is used
successfully even for studying the asymptotics of struc-
ture functions of light nuclei [10, 14–17]. In the present
paper, we discuss mainly the statement of the problem
and physical results obtained, omitting the details of
variational calculations.

2. Statement of the Problem

Consider the six-nucleon nuclei 6Li and 6He within a
three-particle model [8, 9] (an α-particle plus two nu-
cleons). The Hamiltonian of 6Li nucleus is used in the
form

Ĥ =
p2
p

2mp
+

p2
n

2mn
+

p2
α

2mα
+

+Vnp (rnp) + V̂pα (rpα) + V̂nα (rnα) + VC (rpα) . (1)

The Hamiltonian for 6He nucleus with two halo neutrons
has a form similar to (1), but without the Coulomb po-
tential VC.

Nuclei 10Be and 10C (in the ground state with Jπ =
0+), each containing ten nucleons, are considered within
a four-particle model [10] (two α-particles plus two nu-
cleons). The four-particle Hamiltonian for 10C nucleus
differs from (1) mainly by an additional term in the ki-
netic energy (due to the presence of one more α-particle),
an additional interaction potential V̂αα between the α-
particles, and by Coulomb interactions between each
pair of the charged particles. The Hamiltonian for 10Be
nucleus is similar to that of 10C, but with neutrons in-
stead of protons and with only one Coulomb potential
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(between the α-particles). We do not indicate these obvi-
ous formulae for brevity. It should be noted that we use
the Coulomb potential in the form VC = Z1Z2e

2/r valid
for charged “point-like” particles, although α-particles
and nucleons are known to have a certain charge distri-
bution. This is explained by two reasons. The first lies
in a comparatively small contribution of the Coulomb
interaction at short distances into the energy and other
parameters of the system, thus a modification of this in-
teraction at these distances makes even less contribution.
The second one lies in the fact that we have to construct
an effective nuclear potential between a pair of particles
by fitting its parameters in order to describe the experi-
mental phase shift obtained after the subtraction of the
purely Coulomb phase shift. To be consistent, we have
to use the obtained nuclear potential together with the
same purely Coulomb interaction.

The main problem is to choose the set of interaction
potentials in the Hamiltonian in such a way that to de-
scribe the main parameters of a nucleus under consider-
ation (such as the energy and the charge radius of the
nucleus). Only under such a condition, the model of a
nucleus may seem to be realistic. The potentials of inter-
action between halo nucleons are taken in the form pro-
posed in works [8, 9]. These local spin-dependent poten-
tials allow one to describe the phases of two-nucleon scat-
tering and their low-energy parameters with sufficient
accuracy. The np-interaction potential in the triplet
state also gives the basic parameters of a deuteron (the
experimental binding energy and the charge radius).

The potentials between a nucleon and an α-particle
are known to be essentially dependent on the angular
momentum, and they should reflect the Pauli principle
in the S-state interaction. The scattering phase shift
in the S-state should also be equal to π at zero energy
[8] in spite of the fact that a nucleon does not form a
bound state with an α-particle. All these conditions can
be satisfied in a model of Nα interaction potential [8,
9] in the form of a superposition of local and non-local
operators, which generalizes the model of potentials with
forbidden states [2, 18]. We use the simplest version of
a non-local operator with one separable term, thus the
Nα-potential operator has the form:

V̂
Nα
ψ(r) = V (r)ψ(r) + gu(r)

∫
u(r1)ψ(r1)dr1. (2)

For local potentials, one of the simplest methods to cal-
culate the phase shifts and their low-energy parameters
is the variable phase approach [19, 20]. But, for non-
local potentials, the equations of this method [20] for
the phase shifts may contain a function with poles under

the integral at the argument of the exponential function
with a priori unknown positions of the poles, while the
solution itself being free from singularities.

To avoid this problem, we proposed [8, 9] a system
of two linear equations for determining the phase shifts
without the above-mentioned singularities. Consider the
general case of the two particle scattering by a poten-
tial of a general form V̂ (r, r′) with additional Coulomb
repulsion between particles. The solution ul (r) of the
Schrödinger equation (for an arbitrary partial wave),

u′′l (r) +

(
k2 − l (l + 1)

r2
−

2µ
~2Z1Z2e

2

r

)
ul (r)−

−
∞∫
0

Vl (r, r1)ul (r1) dr1 = 0, (3)

where

Vl (r, r1) = 2πrr1

π∫
0

V (r, r1)Pl (cos θ) sin θ dθ, (4)

can be presented in the form

ul (r) = c1 (r)Fl (kr, η) + c2 (r)Gl (kr, η) . (5)

Here, Fl (kr, η) and Gl (kr, η) are the regular and irreg-
ular Coulomb functions, respectively, η ≡ µZ1Z2e

2

~2k is the
Coulomb parameter, µ is the reduced mass of two scat-
tering particles with charges equal to Z1e and Z2e. The
system of two linear equations for c1 (r) and c2 (r) can
be shown to have the form

c′1 (r) =
Gl (kr, η)

k

∞∫
0

Vl (r, r1)ul (r1) dr1,

c′2 (r) = −Fl (kr, η)
k

∞∫
0

Vl (r, r1)ul (r1) dr1, (6)

where ul (r1) is expressed through c1 (r1) and c2 (r1) ac-
cording to (5), and the boundary conditions are c1 (0) 6=
0 (in particular, c1 (0) = 1) and c2 (0) = 0. Then the
phase shift γl (k) (which is a part of the total phase shift
δl = γl + βl, where βl is the well-known purely Coulomb
phase shift), can be determined from the relation

tan (γl (k)) = lim
r→∞

c2 (r)
c1 (r)

. (7)
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If the Coulomb interaction is absent (η = 0), then the
Coulomb functions in (5), (6) are known [19] to become
the Riccati–Bessel functions, Fl (kr, 0) = jl (kr), and
Gl (kr, 0) = −nl (kr). Since βl = 0 in this case, relation
(6) gives the total phase shift δl (k). The low-energy pa-
rameters of phase shifts can also be determined directly
from the corresponding limiting equations. We refer the
reader to works [8, 9], where the equations for determin-
ing the scattering length are given in an explicit form
in both cases of the presence [9] or absence [8] of the
Coulomb interaction.

The αα-potentials (necessary for treating the 10Be and
10C nuclei) can also be constructed in the form (2). The
known Ali–Bodmer potentials [21] can also be used. We
use the both possibilities, and we obtain very close re-
sults for these cases.

It should be emphasized that, in order to fix the pa-
rameters of potentials to study the structure of a given
nucleus, we consider not only the corresponding experi-
mental phase shifts to be described, but also the experi-
mental energy and the charge r.m.s radius of the nucleus
under consideration to be explained. Only in this case,
the obtained model of a nucleus may give quantitative
results [8, 9] for the structure functions of this nucleus.
Since phenomenological potentials of simple forms can-
not give equally nice results for all the nuclei simulta-
neously, we adjust the parameters of potentials for each
nucleus separately. The parameters of ourNα-potentials
used for studying 6He and 6Li nuclei can be found in [8].
In Table 1, we give the results of our calculations for
10Be nucleus with two following sets of the interaction
potentials (intensities – in MeV, radii – in Fm):

V̂nα : V (r) = −46.004 exp(−(r/2.29)2); g = 140.0/r30,

u(r) = π−3/4 exp(−(r/r0)2), r0 = 2.79,

V̂αα : V (r) = −47.6 exp(−(r/2.6)2+

+253.0 exp(−(r/1.4)2); g = 60.0/r30,

u(r) = π−3/4 exp(−(r/r0)2), r0 = 1.75, (8)

and the second set

V̂nα : V (r) = −46.005 exp(−(r/2.295)2); g = 140.0/r30,

u(r) = π−3/4 exp(−(r/r0)2), r0 = 2.75,
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Fig. 1. S-phase shift for the αα-potentials used in our calculations:
curve 1 corresponds to our version of potential (V̂αα from (8)), and
curve 2 – to the Ali–Bodmer [21] one (see V̂αα in (9)). The circles
and squares depict the experimental points

V̂αα : V (r) = −130.0 exp(−(0.475r)2+

+500.0 exp(−(0.7r)2) . (9)

The parameters of the potentials V̂nα and V̂αα are fixed
to describe the ground state of 10Be. The both sets im-
ply the usage of Vnn in the singlet state proposed in [8],
otherwise the parameters of potentials should be read-
justed a little. The second set of potentials includes one
of the versions of Ali–Bodmer potentials [21] for αα-
interaction in the S-state. Since the contribution of the
αα-interaction in nonzero partial states into the ground
state of 10Be is negligible, we ignore the l-dependence of
the Ali–Bodmer potential in our calculations. It should
be noted that the both sets of potentials give almost the
same values for all the main parameters of 10Be nucleus
(see Table 1) and its structure functions (they almost
coincide in the figures). Note also that the both versions
of αα-potentials do not bind a system of two α-particles
and give a reasonable description of the S-phase shift of
the αα scattering at low energies (see Fig. 1).

The solution of the three- and four-body problems is
carried out [8–10, 14, 15] in the framework of the vari-
ational method in the Gaussian representation [11, 12].
We omit the details of this well-known method. We only
note that a high accuracy of calculations was achieved,
by using about 200 to 300 functions of the optimized
Gaussian basis. One more important remark concerns
with the fact that, within the variational calculations
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T a b l e 1. Calculated energy (MeV) and root-mean-square radii (Fm) for 10Be nucleus

Set of potentials V̂nα, V̂αα E(10Be) Rch(10Be) rnn rnα rαα Rn Rα

V̂nα, V̂αα: (8) −8.387 2.357 3.074 2.850 3.230 2.091 1.654

V̂nα, V̂αα: (9) −8.387 2.357 3.080 2.859 3.229 2.100 1.654

Experiment −8.3867 2.357(21)
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Fig. 2. Probability density distribution P (r, ρ) (10) for a halo
neutron in 6He nucleus

with Gaussian bases, while the calculated energy of the
system converges to the exact value monotonically from
above, the rest values (like r.m.s. radii) converge to their
limiting values without such a regularity, and their pre-
cision may be a little bit less than that of the energy.

3. General Structure of Three- and
Four-Cluster Nuclei with Two Extra
Nucleons

The main properties of the structure functions of 6He
and 6Li nuclei are explained within a three-particle
model by the presence of two configurations in their wave
functions (the “triangle” and “cigar” configurations [1–
3, 8, 9]). The variational method with Gaussian bases
[11, 12] enables us to obtain the wave functions of 6He
and 6Li nuclei with high accuracy [8, 9] in an explicit
form of a superposition of Gaussian functions suitable
for the further usage and analysis. Let Φ (r,ρ) denote
the wave function of 6Li nucleus in a three-particle model
(r is the relative coordinate between the halo nucleons,
and ρ is the coordinate of an α-particle with respect to
the center of mass of the halo nucleons). In Fig. 2, the
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Fig. 3. Calculated probability density P̃ (r, ρ) (11) for 10C nucleus

probability density

P (r, ρ) = r2ρ2
〈
|Φ (r,ρ)|2

〉
Ω

(10)

(with an averaging over the angles) is shown for 6He nu-
cleus. A similar picture can be drawn for 6Li nucleus.
The general properties of the structure of these proba-
bility densities is discussed in detail in [8, 9].

In the case of four-particle nuclei 10Be and 10C, we
have one more Jacobi coordinate variable in the four-
particle wave function Φ (r,ρ, rαα), where rαα is the rel-
ative distance between α-clusters, and ρ is the distance
between the center of mass of two α-clusters and the cen-
ter of mass of the pair of extra nucleons. The distance
between the extra nucleons is again denoted by r. To
depict the probability density for the extra nucleons, we
have to reduce the number of variables. In Fig. 3, the
quantity

P̃ (r, ρ) = r2ρ2

〈∫
|Φ (r,ρ, rαα)|2 drαα

〉
Ω

(11)

with an additional integration over the relative coordi-
nate between the two α-particles is shown for 10C nu-
cleus. Like in Fig. 2, again two peaks are clearly seen
in the probability density for two extra nucleons. But
now they come from a “tetrahedron” configuration (in-
stead of a “triangle” one) in 6He and 6Li nuclei, where

638 ISSN 2071-0194. Ukr. J. Phys. 2011. Vol. 56, No. 7
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two extra nucleons form a two-particle cluster moving
around the center of mass of the nucleus together with
the αα-cluster, and a “cross” configuration (instead of
a “cigar” one) in a three-particle nucleus), where extra
nucleons are at the opposite sides from the α − α axis.
Very similarly to Fig. 3, a picture can be drawn for 10Be
nucleus (see [10]). It should be noted that probability
distributions calculated for α-particles in 10Be and 10С
nuclei (with the integration of the squared wave function
over the relative coordinate of two extra nucleons) also
distinctly show two peaks.

The specific configurations present in the wave func-
tions reveal themselves in all the structure functions of
the nuclei.

4. One-Particle Density Distributions, Form
Factors, and Pair Correlation Functions

The probability density for the i-th particle in a system
of particles with the wave function |Φ〉 is known to be

ni (r) = 〈Φ| δ (r− (ri −Rc.m.)) |Φ〉 , (12)

where Rc.m. denotes the center of mass of the system.
Here and further, the density distributions are normal-
ized as

∫
ni (r) dr = 1.

The r.m.s. radius Ri of this distribution,

Ri =
〈
r2i
〉1/2

=
(∫

r2ni(r)dr
)1/2

, (13)

determines the slope of the corresponding form factor
(the Fourier transformation Fi

(
q2
)

of ni (r)) at small
transferred momenta,

Fi
(
q2
)

= 1− 1
6
〈
r2i
〉
q2 + ... =

∞∑
k=0

(−1)k

(2k + 1)!
〈
r2ki
〉
q2k.

(14)

Consider the density distributions for “point-like” par-
ticles, of which the examined nuclei are composed in the
three-particle model.

First, let us consider the distribution of α-particles.
In Fig. 4, we compare r2nα (r) (the probability density
with regard for ∼ r2) calculated for 6Li nucleus con-
taining one α-particle with that for 10Be nucleus hav-
ing two α-particles. Note that the density distribu-
tion nα (r) for 6He nucleus is similar, to a great ex-
tent, to that for 6Li (see [8, 9]), and nα (r) calculated
for 10C is similar to that for 10Be. That is why we
show only two curves in Fig. 4, one for the case of a

0,0 0,5 1,0 1,5 2,0 2,5 3,0
0,00

0,02

0,04

0,06

0,08

0,10

2

1

 

 

r 
2  n

α(r
),

  f
m

-1

r, fm

 
 
 
 
  

Fig. 4. Calculated α-particle density distributions (multiplied by
r2) for 6Li (curve 1) and for 10C (curve 2) nuclei

three-cluster nucleus (with one α-particle), and the sec-
ond – for the case of a four-cluster one (with two α-
particles). Two peaks of the α-particle distribution for
6Li nucleus are explained by the presence of two differ-
ent configurations mentioned above in the total wave
function: the peak near the origin is present due to
the “cigar” configuration, where the α-particle moves
near the center of mass of the nucleus, while the sec-
ond peak comes from the “triangle” configuration, where
the α-particle and the deuteron cluster move around the
common center of mass at a definite distance from it.
As to 10Be nucleus, its both configurations contain the
8Be cluster, where two α-particles are at a definite dis-
tance each from other, and the center of mass of the
8Be cluster is not far from the center of mass of 10Be
nucleus. That is why the curve 2 in Fig. 4 has one
peak.

The probability densities of extra nucleons in the
three- and four cluster nuclei under consideration are
depicted in Fig. 5 (the distribution of the halo pro-
ton in 6Li is very close to the distribution of the neu-
tron shown in Fig. 5, but has a little bit greater ra-
dius [9]). Since the extra nucleons in 10Be and 10C
nuclei are present mainly in the “cross” configuration,
where ρ is comparatively small (see Fig. 3), while in
6He and 6Li nuclei, vice versa, in the “triangle” con-
figuration, where ρ is larger (see Fig. 2), the halo
nucleons in 6He and 6Li nuclei are seen (Fig. 5) to
move at greater average distances than the extra nu-
cleons in 10Be and 10C nuclei. The contrary situa-
tion with the α-particle density distributions in these
nuclei (see Fig. 4) leads to the presence of a pro-
nounced halo in the three-cluster nuclei 6He and 6Li
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Fig. 5. Calculated halo neutron density distributions (multiplied
by r2) for 6He (curve 1) and for 6Li (curve 2) nuclei. The calcu-
lated density distributions for the extra proton of 10C (curve 3)
and for the extra neutron of 10Be (curve 4)

moving around the α-particle, while the extra nucleons
in the four-cluster nuclei 10Be and 10C are moving al-
most inside their nuclei due to the presence of a clus-
ter of 8Be comparable in size. We note also that the
asymptotics of the density distributions of halo nucle-
ons were studied for 6He and 6Li nuclei in [14, 15] in
detail. Although the structure of 6He nucleus is, from
the qualitative point of view, similar to that of 6Li at
distances within a few Fm, the asymptotic behaviors
of the density distributions of these nuclei are essen-
tially different [14, 15]. This is explained by the fact
that 6He has a three-particle breakup threshold (6He
→ n + n + α), while 6Li has the two-particle one (6Li
→ d + α), and this nucleus is rather weakly bound.
Therefore, the wave function of 6He (within a three-
particle model) has a three-particle Merkuriev asymp-
totics [22, 23], whereas the wave function of 6Li has the
two-paticle one (formed by the short-range potentials
and the Coulomb repulsion). Explicit formulae [14, 15]
obtained for the asymptotics of the density distributions
of 6He and 6Li nuclei are confirmed by numerical cal-
culations within the variational method with the Gaus-
sian bases up to the distances, where the density distri-
butions become 10−9 as compared with the maximum
value.

To calculate the charge density distribution nch (r) of
a nucleus, we have to consider the charge distribution of
the α-particle itself, as well as the charge distribution of
the extra proton (for simplicity, we neglect the charge
distribution of the extra neutron). If the nucleus con-
tains Nα of α-particles and Np of protons, then, in the
Helm approximation [24], the charge distribution of the
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Fig. 6. Charge density distribution for 4He [25] (curve 1) and cal-
culated distributions for 6He (curve 2) and 10Be (curve 3) nuclei.
All the distributions are normalized to 1

nucleus (normalized to 1) reads

nch (r) =
2Nα

2Nα +Np

∫
nα (|r− r1|)nch,4He (r1) dr1+

+
Np

2Nα +Np

∫
np (|r− r1|)nch,p (r1) dr1, (15)

where the one-particle density distributions nα (r) and
np (r) are calculated according to (12), nch,4He (r) is
the charge distribution of the α-particle [25] itself, and
nch,p (r) is that of the proton [26].

In Fig. 6, the charge density distributions (normalized
to 1) are shown for 4He (i.e. “free” α-particle, curve
1, from [25]), for 6He (where an α-particle is moving
around the center of mass of the nucleus together with
two halo neutrons, curve 2), and 10Be (where two α-
particles are combined in a 8Be cluster surrounded by
two extra neutrons, curve 3).

Consider the charge form factors which are the Fourier
transforms of the charge density distributions. Starting
from (15), one has

Fch (q) =
2Nα

2Nα +Np
Fα (q)Fch,4He (q) +

+
Np

2Nα +Np
Fp (q) fp (q) , (16)

where Fα (q) =
∫
e−i(qr)nα (r) dr is the form factor of

a “point-like” α-particle in the nucleus under considera-
tion, Fch,4He (q) is the charge form factor of an α-particle
(i.e. of 4He nucleus), Fp (q) =

∫
e−i(qr)np (r) dr is the
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Fig. 7. Experimental charge form factor for 4He [25] (curve 1) and
calculated charge form factors for 6He (curve 2) and 10Be (curve
3) nuclei

form factor of a “point-like” extra proton of this nucleus,
and fp (q) is the charge form factor of the proton itself.
We neglect the contribution of the charge form factor of
a neutron. In Fig. 7, we compare the charge form factors
of the nuclei 4He, 6He, and 10Be, where the charge distri-
butions are explained mainly by the presence of charged
α-particles. The presence of the “dip” in the charge form
factors of 6He and 10Be nuclei at q2 ∼ 10 Fm−2 is directly
related to the characteristic feature of the experimental
form factor of 4He having such a “dip”, because only the
first term in (16) contributes to the charge form factors
of these nuclei, and thus they are proportional to the
4He form factor. The first “dip” in the form factor of
10Be at q2 ∼ 5 Fm−2 is an evidence of the presence of
the 8Be cluster in 10Be nucleus, which results in specific
properties of nα (r) (see Figs. 4 and 9) and in its Fourier
transform Fα(q) in the case of 10Be.

The charge form factor of 10C nucleus differs from that
of 10Be one, because the second term in (16) is nonzero
due to the presence of extra protons. As a result, the
charge form factor of 10C has no “dips” within the re-
gion of q2 shown in Fig. 7 since Fch (q) (16) for this
nucleus approaches zero neither at q2 ∼ 10 Fm−2, where
Fch,4He (q) = 0, nor at q2 ∼ 5 Fm−2, where Fα (q) = 0.
For the charge form factor of 10C nucleus, the first “dip”
appears after q2 ∼ 18 Fm−2.

Consider the problem of determining the r.m.s. radius
from an experimental form factor at low transferred mo-
menta. Consider, for example, the charge form factor of
6Li nucleus. As clearly seen from Fig. 8, it is almost im-
possible to determine the coefficients of expansion (14)
by directly using this series, because the first two terms
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Fig. 8. Calculated charge form factor for 6Li (solid line). Squares
are the experimental values. Curve 1 (in the figure and in the
insert) shows the two-term approximation (14) for the form factor,
and curve 2 shows the three-term one. The dashed line (close to
experimental points) depicts our representation (17) for the form
factor
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Fig. 9. Two-α-particle correlation function for 10Be nucleus (solid
curve). The dashed line depicts 1
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of (14) (curve 1) or even three terms (curve 2) can serve
to be an approximation for a form factor only at ex-
tremely small q2. This produces obvious difficulties for
the determination of the r.m.s. radius with high accu-
racy from the slope of the experimental form factor.

We proposed [14, 15] to expand the inverse form fac-
tor with explicitly excluded factors responsible for the
“dips”. In particular,

Fch,6Li (q) ∼=
1− q2

q2min

1 + S2q2 + S4q4 + S6q6 + S8q8 + ...
, (17)
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where

S2 ≡
〈
r2
〉
ch

6
− 1
q2min

, S4 ≡
〈
r2
〉
ch

6
S2 −

〈
r4
〉
ch

120
,

S6 ≡
〈
r6
〉
ch

7!
+ 2S2S4 − S3

2 +
(
S4 − S2

2

) 1
q2min

,

S8 ≡ S4
2 + S2

4 + 2S2S6 − 3S2
2S4+

+
(
S3

2 + S6 − 2S2S4

) 1
q2min

−
〈
r8
〉
ch

9!
. (18)

In expansion (17), we use the experimental values q2min ≈
8.3 Fm−2 and

〈
r2
〉1/2
ch
≡ Rch = 2.56 Fm [27]. The rest

parameters,
〈
r4
〉1/4
ch

= 3.19 Fm, S6 = 0.07 Fm6, and
S8 = 0.006 Fm8 were fitted to reproduce the experi-
mental data (compare the dashed line in Fig. 8 with
the experiment). It is interesting that all the param-
eters S2k appeared to be positive and decreasing with
increase in their number. Note that only three free pa-
rameters in representation (17) enable one to fit a form
factor at small and intermediate transferred momenta
including the “dip” region. Thus, representation (17) is
much more adequate and suitable than the commonly
used expansion (14) in order to analyze the slope of a
form factor and to determine the r.m.s. radius from the
experimental data (and to find even such parameters as〈
r4
〉1/4
ch

).
Consider the pair correlation functions of particles

constituting the nuclei. The pair correlation function
gij (r) is determined as

gij (r) = 〈Φ| δ (r− (ri − rj)) |Φ〉 , (19)

and it is a probability density to find the pair of particles
i and j of the system under consideration at a distance
r. For local pair potentials, the average potential energy
is directly expressed in terms of the integrals over the
potentials multiplied by the corresponding correlation
functions. The r.m.s. relative distances between a pair of
particles i and j is expressed through the pair correlation
function as

rij ≡
〈
(ri − rj)

2
〉1/2

=
(∫

r2gij (r) dr
)1/2

. (20)

We give also the identities which express the r.m.s. radii
Ri through the r.m.s. relative distances rij . For a three-
particle system, one has

R2
i = ajkr

2
ij + akjr

2
ik − bir2jk,

(i, j, k) = (1, 2, 3), i 6= j 6= k,

ajk ≡
mj (mj +mk)

(m1 +m2 +m3)
2 , bi ≡

mjmk

(m1 +m2 +m3)
2 , (21)

and, for a four-particle system,

R2
i = γjr

2
ij + γkr

2
ik + γnr

2
in − βjkr2jk − βjnr2jn − βknr2kn,

(i, j, k, n) = (1, 2, 3, 4), i 6= j 6= k 6= n,

γj ≡
mj (mj +mk +mn)

(m1 +m2 +m3 +m4)
2 ,

βjk ≡
mjmk

(m1 +m2 +m3 +m4)
2 . (22)

In (21) and (22), mi denotes the mass of particle i. Iden-
tities (21) and (22) can be used for finding the r.m.s.
radii Ri after the rij are calculated or to verify the re-
sults of independent calculations of Ri and rij .

For three-cluster nuclei 6He and 6Li, a detailed anal-
ysis of the pair correlation functions is carried out in
[8, 9, 14, 15]. Here, we consider gij (r) for 10Be and
10C nuclei within our four-particle model. In Fig. 9,
the two-α-particle correlation function gαα (r) is shown
for 10Be nucleus. The pair correlation function has a
pronounced maximum at a distance of ∼ 3 Fm, and it
is almost zero at short distances. This means that the
comparatively heavy α-particles are positioned mainly
near the minimum of the αα-potential well, and they do
not penetrate into each other due to the Pauli princi-
ple which is simulated by a strong repulsion in the αα-
interaction potential. If it were simply the two-particle
bound system (without additional extra neutrons), then
the one-particle density distribution nα (r) renormalized
as 1

8nα
(
r
2

)
should exactly coincide with the pair corre-

lation function gαα (r) (this fact obviously follows from
definitions (12) and (19)). But comparatively light two
extra neutrons present in 10Be break this coincidence,
and only the qualitative agreement is observed (see the
dashed line in Fig. 9). Note that the correlation func-
tion gαα (r) for 10C nucleus is very close to that of 10Be.
This means that the 8Be cluster in the both nuclei has
practically the same structure.

Consider the correlation function gnn (r) calculated for
6He and 10Be nuclei. The nn-interaction potential used
for both nuclei is the same [8]. That is why the pro-
files of gnn (r) for the both nuclei (see Fig. 10, curves 1

642 ISSN 2071-0194. Ukr. J. Phys. 2011. Vol. 56, No. 7



STRUCTURE CHARACTERISTICS OF LIGHT CLUSTER NUCLEI

and 3) are very similar at short distances. They differ
in the absolute magnitude mainly due to their different
r.m.s. relative distances (rnn ∼= 3.08 Fm for 10Be and
rnn ∼= 4.39 Fm for 6He), which results, under the nor-
malization condition

∫
g (r) dr = 1, in the corresponding

values of gnn (r) near the origin. In the same figure, we
depict also the correlation function gpp (r) between the
protons in the 10C nucleus (curve 2). For simplicity, we
used the same nuclear potential for the pp-interaction
in the singlet state as that for the nn-interaction. As
is seen from the figure, the Coulomb repulsion between
the protons makes almost no influence on the profile of
gpp (r) at short distances. Having the r.m.s. relative
distance rpp ∼= 3.41 Fm, the function gpp (r) occupies a
position between the rest two curves.

5. Moments of Inertia for 10Be and 10C Nuclei

For spherical nuclei, the inertia tensor becomes a diago-
nal one, and we deal with the moment of inertia

Iz = m

∫ (
x2 + y2

)
n (r) dr =

=
2
3
m

∫
r2n (r) dr =

2
3
mR2

m, (23)

where Rm is the r.m.s. matter radius of the nucleus.
Since the r.m.s. radii for the ground states are calcu-
lated, we immediately have the calculated moments of
inertia for nuclei 10Be and 10C in the ground state (see
Table 2 for the set of potentials (9)).

The shifts of energies of a rotational band of a spher-
ical nucleus are known to be

ΔEJ =
~2J (J + 1)

2Iz
. (24)

We compare the estimations of ΔEJ obtained with the
use of (24) and the experimental values [28]. It is clear
from Table 2 that the first excited state of nucleus 10Be
or 10C (with Jπ = 2+) can be supposed to be a rotational
state of this nucleus almost without deformation of its
ground state (since Iz is calculated for the ground state).
The agreement of the estimated energy shift ΔE = 11.4

T a b l e 2. Calculated moments of inertia and ΔEJ
(for Jπ = 2+)

Nucleus Iz/~2, MeV−1 ΔEJ , MeV ΔEJ, exper, MeV
10Be 0.876 3.426 3.368
10C 0.934 3.212 3.354
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Fig. 10. Calculated pair correlation function gnn (r) for 6He (curve
1) and 10Be (curve 3) nuclei. Curve 2 depicts the correlation
function gpp (r) for 10C nucleus

MeV for the Jπ = 4+ state of 10Be with the experimen-
tal value ΔEexper = 11.76 MeV is also observed. This
enables us to suppose that the Jπ = 4+ state of 10C
with the estimated energy shift ΔE = 10.7 MeV may
exist. The experiment [28] shows the existence of an en-
ergy level with ΔE ≈ 10 MeV with the unknown angular
momentum for 10C nucleus.

6. Conclusions

To summarize, we note that the light cluster nuclei
6Li, 6He, 10Be, and 10C are treated as those consist-
ing of α-particles and two extra nucleons. Potentials of
Nα- and αα-interaction are proposed, and the ground
states of three- and four-particle nuclei are studied using
the variational calculations with Gaussian bases. The
main structure functions of the above nuclei are found.
The charge density distributions are calculated and ex-
plained. The charge form factor of 6Li nucleus is ex-
plained, and those of 6He, 10Be, and 10C nuclei are pre-
dicted. A new suitable representation of form factors
at small and intermediate transferred momenta is pro-
posed. The rotational band levels of 10Be and 10C nuclei
are estimated.
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СТРУКТУРНI ВЛАСТИВОСТI ЛЕГКИХ КЛАСТЕРНИХ
ЯДЕР З ДВОМА ЕКСТРАНУКЛОНАМИ

Б.Є. Гринюк, I.В. Сименог

Р е з ю м е

Дослiджено кластернi ядра 6Li, 6He, 10Be та 10C як системи,
що складаються з α-частинок i двох екстрануклонiв. Знайдено
структурнi функцiї цих ядер у варiацiйному пiдходi. Наведено
i пояснено зарядовi розподiли густини, формфактори, парнi
кореляцiйнi функцiї.
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