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Three low lying energy levels of a 3D two-electron quantum dot
(QD) with parabolic confinement are obtained by the variational
method. The proposed interpolation formulas for the variation
parameters allow one to recover the energy levels in a wide range
of the Coulomb interaction constant. The quantum states of the
QD are divided into the para- and ortho-states like in the theory
of helium atom. The quantum transitions from the ortho-state to
the para- state are possible only with account of the spin-orbit in-
teraction. At low temperatures, an ensemble of two-electron QDs
contains dots in the ground para-state and in the first excited
ortho-state, which is metastable. These QDs have the entangled
spin wave functions that are related to the Einstein–Podolsky–
Rosen (EPR) states desirable for the quantum information proto-
col.

1. Introduction

The models of quantum wells and quantum dots (QDs)
with one electron are widely used in the nanophysics
[1, 2]. The modern technology provides a possibility
to create QDs with two and more electrons, where the
Coulomb interaction between them must be taken into
account [3]. Due to the nanoscale localization of elec-
trons, the Coulomb interaction can exceed the average
kinetic energy of electrons, which considerably compli-
cates the analytic solution of the Schrödinger equation.

In this paper, we consider three low-lying states of the
two-electron spherically symmetric QDs with parabolic
confinement. The Coulomb interaction in the typical 10-
nm semiconductor QD cannot be treated as small, and
the problem is solved with the help of the variational
method. The two-electron trial functions are chosen on
the bases of one-electron wave functions of the QD with
parabolic confinement. We calculated the energies of
three first states and carried out the classification of the
corresponding spectral terms.

At low temperatures T (much smaller than the dis-
tance between the ground and first excited states), the
ensemble of QDs consists of dots in the para- and ortho-
states. The singlet spin wave functions correspond to the

para-states. The triplet spin wave functions correspond
to the ortho-states. The lowest ortho-state is metastable.
The singlet spin wave function of the ground state and
one of the triplet spin wave functions associated with the
lowest ortho-state are related to EPR states desirable for
quantum information protocols [4–7].

The paper is organized as follows. In Section 2, we
introduce the variational wave functions and explain
the peculiarities of calculation of the variation param-
eters. Sections 3 and 4 are devoted to the calculation
of the variation parameters and the energy levels of the
QD. Section 5 discusses the para- and ortho-states of
the two-electron quantum dot. The conclusion summa-
rizes the results obtained and discusses the hypothetic
many-electron quantum dots manufactured from mate-
rials with gigantic dielectric constants.

2. Statement of the Problem

Two interacting electrons in a 3D spherically symmetric
quantum dot with the parabolic confinement potential
are described by the dimensionless Hamiltonian

Ĥ = −1
2
∇2

1 −
1
2
∇2

2 +
1
2
(r21 + r22) +

λ

|r1 − r2|
. (1)

Here, the dimensionless coordinates of the first and sec-
ond electrons r1 and r2 are measured in units

√
~/(m∗ω)

(m∗ is the effective electron mass, and ω is the frequency
of the confinement potential), λ = 1

ε

√
(Ry/~ω)m∗/m is

the constant characterizing the Coulomb interaction be-
tween electrons, and ε is the dielectric constant of the
quantum dot. Keeping in mind that the Rydberg con-
stant Ry = me4/~2 = 27.2 eV and setting ω ≈ 10 THz,
we obtain λ ' 20/ε. If we assume that ε ' 10
and m∗/m = 0.1, then λ ' 2. This means that the
Schrödinger equation corresponding to Hamiltonian (1)
for a semiconductor QD cannot be solved with the help
of perturbation theory. It requires variational or nu-
merical methods. In this paper, we use the variational
method, which allows us to obtain analytic formulas.
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The classification of the states of the two-electron QD
is convenient to perform with the help of the quantum
numbers for noninteracting electrons. Due to the sym-
metry of the problem, we use the spherical coordinate
system. The one-electron wave functions are known [8].
The energy of the two-electron QD with noninteracting
electrons can be written as

EN1N2 = N1 +N2 = 2(n1 + n2) + l1 + l2 + 3, (2)

where Ni = 2ni + li with ni = 0, 1, 2..., are the ra-
dial quantum numbers, li = 0, 1, 2..., are the orbital
quantum numbers, and mi = 0,±1,±2... ± li are mag-
netic quantum numbers (i = 1, 2). The energy lev-
els (2) are described by the symmetrized combina-
tions of products of the one-electron wave functions
ψn1l1m1(r1, θ1, φ1)ψn2l2m2(r2, θ2, φ2). The one-electron
wave functions are presented in the standard form
Rnl(r)Ylm(θ, φ).

The ground state of the QD corresponds to a set of
quantum numbers {n1 = n2 = 0, l1 = l2 = 0,m1 =
m2 = 0}. We choose the normalized ground-state trial
wave function of the two-electron QD in the form

ψ0(r1, r2) =
(α
π

)3/2

exp{−α
2

(r21 + r22)}, (3)

where α is a variational parameter.
The following two sets of quantum numbers corre-

spond to the first excited state: {n1 = n2 = 0, l1 =
1,m1 = 0,±1, l2 = 0,m2 = 0} and {n1 = n2 = 0, l1 =
0,m1 = 0, l2 = 1,m2 = 0,±1}. Below, for the sake of
simplicity, we consider only states with m = 0.

The wave function of the first excited state is given by
the symmetrized combination{
ψs,a1 (r1, r2)= 1√

2
{ψ010(r1)ψ000(r2)± ψ010(r2)ψ000(r1)},

ψ010(r1)ψ000(r2) = N0 exp{− 1
2 (βr21 + αr22)}r1 cos θ1.

(4)

Here, s and a stand for the symmetric and antisym-
metric combinations, respectively, N0 =

√
2α3/4β5/4

π3/2 is
the normalization constant, and β is one more varia-
tional parameter. It appears because the electrons are
in different states.

The following five sets of quantum numbers corre-
spond to the second excited state of the QD: {n1 =
n2 = 0, l1 = l2 = 1}; {n1 = 1, n2 = 0, l1 = l2 = 0}; {n1 =
0, n2 = 1, l1 = l2 = 0}; {n1 = 0, n2 = 0, l1 = 2, l2 =
0}; {n1 = 0, n2 = 0, l1 = 0, l2 = 2}. The trial wave func-
tion corresponding to the first set is

ψ
(1)
2 (r1, r2) =

2β5/2

π3/2
e−

β
2 (r21+r22)r1 cos θ1r2 cos θ2 (5)

with the same variational parameter β as in (4). Four
more trial wave functions corresponding to the second,
third, fourth, and fifth sets of the quantum numbers areψ

(2)s,a
2 (r1, r2)= 1√

2
{ψ100(r1)ψ000(r2)±ψ100(r2)ψ000(r1)},

ψ100(r1)ψ000(r2) = N1

(
3

α+γ − r
2
1

)
e−

1
2 (γr21+αr22),

(6)

and{
ψ

(3)s,a
2 (r1, r2)= 1√

2
{ψ020(r1)ψ000(r2)±ψ020(r2)ψ000(r1)},

ψ020(r1)ψ000(r2) = N2e
− 1

2 (ηr21+αr22)r21(3 cos2 θ1 − 1),

(7)

N1 =
[

4α3/2γ7/2(α+γ)2

3π3(5α2−2αγ+5γ2)

]1/2
and N2 =

[
α3/2η7/2

3π3

]1/2
are

the normalization constants.
The variational parameters α and β will be obtained

after the calculation of the ground and second excited
state energies with the help of the wave functions (3) and
(5), respectively. The variational parameters γ and η will
be obtained after calculating the average of Hamiltonian
(1) with the help of the wave functions

ψ
(1)
3 (r1, r2) = N

(1)
3

2∏
i=1

( 3
α+ γ

− r2i
)
e−

γ
2 r

2
i , (8)

ψ
(2)
3 (r1, r2) = N

(2)
3

2∏
i=1

e−
η
2 r

2
i (3 cos2 θi − 1), (9)

where N (1)
3 = 4γ7/2(α+γ)2

3π3/2(5α2−2αγ+5γ2)
and N

(2)
3 = η7/2

3π3/2 are
the normalization constants.

One can easily check that all these functions are mutu-
ally orthogonal. It is necessary to note that ψ(1)

3 (r1, r2)
contains two variational parameters α and γ. The av-
erage energy calculated on this function, E(1)

3 (α, γ), de-
pends on these parameters as well. We take α from
the calculations of the ground-state energy and minimize
E

(1)
3 (α, γ) only with respect to γ.
For noninteracting electrons (λ = 0, γ = η = 1), the

wave functions (8) and (9) are related to the fourth ex-
cited state of the QD. With account of the Coulomb
interaction (λ 6= 0), they describe different energies. In
this paper, we use the trial functions with one varia-
tional parameter. Such an approach definitely gives good
results for the ground state of the QD. For the higher
states, the quantitative reliability of this approach de-
creases. One can also argue that the style of the trial
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functions can be changed with increase of the interaction
parameter λ. The limiting λ, after which the style of the
wave function is changed considerably can be specified
only by the numerical solution of the Schrödinger equa-
tion. It would be relevant to refer to paper [9], where the
ground-state energy of a 2D electron QD have been ob-
tained with the help of one-, two-, and three-parameter
variation functions and compared with the exact numer-
ical solution. It happened to be that, for λ < 2, all these
energies practically coincide. We use the same Gaussian
type of trial wave functions that allows us to hope that
our results are reliable for the ground state and satisfac-
tory for the first low-lying levels for λ ' 2.

In the next sections, we obtain the variational param-
eters α, β, γ, and η from the minimization of the corre-
sponding energies.

3. Ground State of Two-electron QD

The ground state of a two-electron QD is described by
the symmetric wave function (3). Calculating the av-
erage of Hamiltonian (1) with this wave function, we
obtain

E0(λ) =
3
2

(
α+

1
α

)
+K0. (10)

The first term represents the kinetic and potential en-
ergies of the noninteracting electrons in the parabolic
potential well. The second term is the Coulomb interac-
tion of electrons in the ground state,

K0 =
∫
ψ∗0(r1, r2)

λ

r12
ψ0(r1, r2)dv1dv2. (11)

To calulate K0, we use the formula

1
r12

=
1
r1

∞∑
l=0

(r2
r1

)l
Pl(cos θ), r1 > r2,

1
r12

=
1
r2

∞∑
l=0

(r1
r2

)l
Pl(cos θ), r1 < r2, (12)

where Pl(cos θ) is the Legendre polynomial, and θ is the
angle between r1 and r2. According to the addition the-
orem for spherical harmonics [10, 11], we have

Pl(cos θ) = Pl(cos θ1)Pl(cos θ2) + 2
l∑

m=1

(l −m)!
(l +m)!

×

×Pml (cos θ1)Pml (cos θ2) cosm(φ1 − φ2), (13)

where θ1, φ1 and θ2, φ2 are the polar angles of the vectors
r1 and r2, respectively. When the above formulas are
substituted into (11) and integrated with respect to φ1,
φ2, θ1, and θ2, we obtain that the second term of (13)
vanishes, and the contribution to the integral comes out
of P0(cos θ1) = P0(cos θ2) = 1. Using the wave function
(3), we obtain

K0 = λ
(α
π

)3

(4π)2
∞∫
0

[ r1∫
0

1
r1
e−α(r21+r22)r22dr2+

+

∞∫
r1

1
r2
e−α(r21+r22)r22dr2

]
r21dr1. (14)

Performing the integration in (14), we get

K0 = λ

√
2α
π
. (15)

The variational parameter α, which provides the min-
imum of energy (10), is obtained from the condition
dE0(α)
dα = 0. With account of (10) and (15), this gives

the equation

α2 +
λ

3

√
2
π
α3/2 − 1 = 0. (16)

In the case λ = 0, Eq. (16) has the solution α = 1. For
λ� 1, (16) can be solved with the help of the expansion
in the small parameter α = 1 + λα1 + λ2α2 + .... The
result is

α = 1− λ

3
√

2π
+

λ2

18π
, λ� 1. (17)

Substituting (17) in (10) with account of (15), we obtain
the ground-state energy with the same accuracy

E0(λ) = 3 + λ

√
2
π
− λ2

12π
, λ� 1. (18)

If λ is not small, Eq. (17) can be solved numerically. In
Table 1, we present the calculated ground-state energy
E0 and the variational parameter α for different λ.

With the help of Eq. (10) and numerical values of α
calculated for various λ, we can propose the following
interpolation formulas for the variational parameter:

α(λ) =
1

1 + λ
3
√

2π

. (19)

One can check that the ground-state energy E0(λ) (10)
of the two-electron QD with α given by (19) is in excel-
lent agreement with the data of Table 1.
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T a b l e 1. Ground-state energy E0 and the variational parameter α for different λ

λ 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
α 1.000000 0.937685 0.882828 0.834268 0.791048 0.752380 0.717610 0.686200 0.657690

E0(λ) 3.000000 3.392520 3.773010 4.142550 4.502080 4.852450 5.194400 5.528560 5.855200

T a b l e 2. Excited-state energy E(1)
2 and the variational parameter α for different λ when two electrons are in the

state n = 0, l = 1,m = 0

λ 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
β 1.000000 0.968452 0.938854 0.911050 0.884895 0.860259 0.837023 0.815079 0.794329

E
(1)
2 (λ) 5.000000 5.323190 5.641330 5.954640 6.263350 6.567660 6.867780 7.163870 7.456110

4. First and Second Excited States

The first excited state wave functions (4) contain the
already calculated variational parameter α and the still
unknown variational parameter β. As was mentioned
above, we find it with the help of the wave function (5).
The calculation of the average Hamiltonian (1) with the
help of the wave function (5) gives the following result:

E
(1)
2 (λ) =

5
2

(
β +

1
β

)
+K

(1)
2 . (20)

The first term in this equation is the kinetic and poten-
tial energies of two noninteracting electrons in the second
excited state. The Coulomb interaction of two-electrons
K

(1)
2 is given by the integral

K
(1)
2 =

∫
ψ

(1)∗
2 (r1, r2)

λ

r12
ψ

(1)
2 (r1, r2)dv1dv2. (21)

To calculate this integral, we use (5), (12), (13) and the
relation cos2 θ1,2 = 1

3 [P0 + 2P2(cos θ1,2)]. The integra-
tion with respect to dφ1dφ2 kills the sum over m in (13),
and the integration with respect to dθ1dθ2 gives a contri-
bution from the Legendre polynomials with l = 0, l = 2
only. The final result of the integration in (21) is

K
(1)
2 =

49λ
√
β

30
√

2π
. (22)

The variational parameter β is found from the condition
dE

(1)
2 (λ)
dβ = 0 with the help of (20) and (22). We obtain

the following equation for β:

β2 +
49λ

150
√

2π
β3/2 − 1 = 0. (23)

At λ = 0, Eq. (23) has the solution β = 1. For λ� 1, it
can be solved by the expansion in the small parameter.
The result is

β = 1− 49λ
300
√

2π
+
( 49

300

)2 λ2

2π
, λ� 1. (24)

With the same accuracy, the energy of the second excited
state, which corresponds to the symmetric wave function
(5), is

E
(1)
2 (λ) = 5 +

49λ
30
√

2π
− (49)2λ2

(300)28π
, λ� 1. (25)

In Table 2, we present the calculated excited state energy
E

(1)
2 and the variational parameter β for various values

of λ.
For not small λ, we can propose the following interpo-

lation formula:

β(λ) =
1

1 + 49λ
300
√

2π

. (26)

One can check that the second excited state energy
E

(1)
2 (λ) (20), (22) of the two-electron QD with β given

by (26) is in excellent agreement with the data of Table
2.

Now we consider the first excited state of our QD,
which corresponds to the state where one electron is in
the ground state with n = 0, l = 0,m = 0 and the second
one is in the first excited state with n = 0, l = 1,m = 0
represented by the symmetrized wave function (4). The
variation parameters α and β are given by relations (19)
and (26), respectively. The calculation of the average
Hamiltonian (1) with the help of the wave functions (4),
polynomial expansions (12), and (13) gives the following
result:

E
(s,a)
1 (λ) =

3
4

(
α+

1
α

)
+

5
4

(
β +

1
β

)
+K1 ±A1. (27)

K1 =
∫
|ψ010(r1)|2

λ

r12
|ψ000(r2)|2dv1dv2. (28)

A1 =
∫
ψ010(r1)ψ000(r1)

λ

r12
ψ010(r2)×
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×ψ000(r2)dv1dv2. (29)

After the integration, we get the energy of the Coulomb
interaction between electrons

K1 =
2λ

3
√
π

[√αβ(2α+ 3β)
(α+ β)3/2

]
(30)

and the exchange energy

A1 =
λ

3
√
π

(
8α3/2β5/2

(α+ β)7/2

)
. (31)

In Table 3, we present the calculated energies E(s)
1 (λ)

and E
(a)
1 (λ), the Coulomb interaction energy K1, and

the exchange energy A1, respectively, for various λ using
the calculated values of the variational parameters α and
β.

The second excited state of the two-electron QD can
also be organized by putting either one electron in the
ground state with the energy 3/2 (n1 = 0, l1 = 0,m1 =
0) and another one in the excited state with the energy
7/2 (n2 = 1, l2 = 0,m2 = 0) represented by a wave
function (6) or putting one electron in the ground state
with the energy 3/2 (n1 = 0, l1 = 0,m1 = 0) and another
one in the excited state with the energy 7/2 (n2 = 0, l2 =
2,m2 = 0) described with the wave function (7). For the
noninteracting electrons, its energy is 5. The variational
parameters γ and η can be determined from the wave
functions (8) and (9), respectively.

The unknown variational parameter γ will be used
below along with the already known parameter α for
constructing the second excited state variational wave
function of the two-electron QD. The calculation of the
average Hamiltonian (1) with the help of the wave func-
tion (8) gives

E
(1)
3 (γ) =

1
2(5α2 − 2αγ + 5γ2)

[
γδ +

σ

γ

]
+K

(1)
3 , (32)

where δ = 11α2 + 10αγ + 35γ2 and σ = 35α2 + 10αγ +
11γ2. The first term in this equation is the kinetic and
potential energies of two noninteracting electrons in the
fourth excited state. The Coulomb interaction of two
electrons K(1)

3 is given by the integral

K
(1)
3 =

∫
ψ

(1)∗
3 (r1, r2)

λ

r12
ψ

(1)
3 (r1, r2)dv1dv2, (33)

where ψ(1)
3 (r1, r2) is given by (8). To calculate this inte-

gral, we use (12), (13), and (33). The final result is

K
(1)
3 =

=λ
√
γ(755α4−868α3γ+2178α2γ2−1540αγ3+1571γ4)

24
√

2π(5α2−2αγ+5γ2)2
.

(34)

The variational parameter γ is found from the condi-
tion dE

(1)
3 (α,γ)
dγ = 0 with the help of (32) and (34). In

Table 4, we present the calculated E
(1)
3 (α, γ) and the

variational parameters α and γ for various λ.
For arbitrary λ, we can propose the following interpo-

lation formulas for γ(λ) and E(1)
3 (λ):

γ(λ) = 1− 0.0531λ− 0.00053λ2 + 0.0003λ3, (35)

E
(1)
3 (λ) = 7 + 0.54183λ− 0.003λ2 + 0.0003λ3. (36)

Similarly, the variational parameter η can also be used
along with the already known parameter α for construct-
ing the second excited state variational wave function
of the two-electron QD. The calculation of the average
Hamiltonian (1) with the help of the wave function (9)
gives the following result:

E
(2)
3 (η) =

7
2

(
η +

1
η

)
+K

(2)
3 . (37)

The first term in this equation is the kinetic and poten-
tial energies of two noninteracting electrons in the con-
sidered excited state. The Coulomb interaction of two
electrons K(2)

3 is given by the integral

K
(2)
3 =

∫
ψ

(2)∗
3 (r1, r2)

λ

r12
ψ

(2)
3 (r1, r2)dv1dv2, (38)

where ψ(2)
3 (r1, r2) is given by Eq. (9). With the help of

(12), (13), and (38), we obtain

K
(2)
3 = λ

229
√
η

56
√

2π
. (39)

T a b l e 3. The first excited state energies E(s)
1 (λ),

E
(a)
1 (λ), the Coulomb interaction energy K1, and the ex-

change energy A1 for various λ using the values of the
variational parameters α and β

λ K1 A1 E
(s)
1 (λ) E

(a)
1 (λ)

0.5 0.325556 0.065933 4.395890 4.264020
1.0 0.638172 0.130632 4.785450 4.524180
1.5 0.938980 0.193972 5.168500 4.780560
2.0 1.229020 0.255888 5.545020 5.033240
2.5 1.509210 0.316361 5.915070 5.282350
3.0 1.780390 0.375399 6.278800 5.528000
3.5 2.043290 0.433034 6.636390 5.770320
4.0 2.298560 0.489309 6.988060 6.009440
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T a b l e 4. Excited state energy E(1)
3 (α, γ) and the variational parameters α and γ for various values of λ when

two-electrons are in the state n = 1, l = 0, and m = 0

λ 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
α 1.000000 0.937685 0.882828 0.834268 0.791048 0.752380 0.0.717610 0.0.68620 0.657690
γ 1.000000 0.973576 0.946810 0.920161 0.893979 0.868512 0.843921 0.820301 0.797699

E
(1)
3 (λ) 7.000000 7.27072 7.53936 7.80682 8.07361 8.33996 8.60598 8.87159 9.13675

T a b l e 5. Excited state energy E(2)
3 (λ) and the variational parameter η for various λ when two-electrons are in

the state n = 0, l = 2,m = 0

λ 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
η 1.000000 0.944965 0.895775 0.851622 0.811823 0.775802 0.743072 0.713220 0.685895

E
(2)
3 (λ) 7.000000 7.804150 8.586480 9.348730 10.09250 10.81910 11.52980 12.22570 12.90780

The variational parameter η is found, by using (37) and

(39) from the condition dE
(2)
3 (η)
dη = 0. This gives the

following equation for η:

η2 + λ
229

392
√

2π
η3/2 − 1 = 0. (40)

In Table 5, we present the calculated excited state energy
E

(2)
3 (λ) and the variational parameter η for various λ.
For arbitrary λ, we can propose the following interpo-

lation formula for the values in Table 5:

η =
1

1 + λ 229
784
√

2π

. (41)

We now consider the second excited state of the QD,
which corresponds to the state where one electron is in
the ground state with n1 = 0, l1 = 0,m1 = 0, and the
second one is in the excited state with n2 = 1, l2 =
0,m2 = 0 described with the symmetrized wave func-
tion (6). The calculation of the average Hamiltonian (1)
with the help of the wave functions (6) and the Legendre
polynomial expansions (12) and (13) gives

E
(2)s,a
2 (λ) =

1
4

{
3α+

3
α

+
1

5α2 + 2αγ + 5γ2
×

T a b l e 6. Excited state energies E(2)s
2 (λ), E(2)a

2 (λ),
the Coulomb interaction energy K(2)

2 , and the exchange
energy A

(2)
2 for various λ using the calculated values of

the variational parameters α and γ

λ K
(2)
2 A

(2)
2 E

(2)s
2 (λ) E

(2)a
2 (λ)

0.5 0.312949 0.050543 5.386690 5.285600
1.0 0.6192590 0.101808 5.768720 5.565110
1.5 0.918043 0.153069 6.145180 5.839040
2.0 1.208880 0.203850 6.559940 6.152240
2.5 1.491690 0.253847 6.932310 6.424610
3.0 1.766580 0.302884 7.297660 6.691890
3.5 2.033840 0.350866 7.656270 6.95454
4.0 2.293790 0.397759 8.008480 7.212960

×
[
γ(11α2 + 10αγ + 35γ2) +

11γ2 + 10αγ + 35α2

γ

]}
+

+K2
2 ±A2

2, (42)

K
(2)
2 =

∫
|ψ100(r1)|2

λ

r12
|ψ000(r2)|2dv1dv2, , (43)

A
(2)
2 =

∫
ψ100(r1)ψ000(r1)

λ

r12
ψ100(r2)×

×ψ000(r2)dv1dv2. (44)

After the integration, we get the energy of the Coulomb
interaction between electrons

K
(2)
2 = λ

2
√
αγ(8α2 − 4αγ + 15γ2)

3
√
π
√
α+ γ(5α2 − 2αγ + 5γ2)

(45)

and the exchange energy

A
(2)
2 = λ

8α3/2γ
7
2

√
π(α+ γ)5/2(5α2 − 2αγ + 5γ2)

. (46)

In Table 6, we present the calculated energies E(2)s
2 (λ),

E
(2)a
2 (λ), the Coulomb interaction energy K(2)

2 , and the
exchange energy A(2)

2 , respectively, for various values of
λ, using the values of the variational parameters α and
γ.

Finally, we consider the second excited state of the
QD, which correspond to the state where one electron
is in the ground state with n1 = 0, l1 = 0,m1 = 0 and
the second one is in the excited state with n2 = 0, l2 =
2,m2 = 0. The wave functions of this state is given
by (7). The variation parameters α and η are given by
relations (19) and (41), respectively. The calculation of
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the average Hamiltonian (1) with the help of the wave
functions (7) and expansions (12) and (13) gives

E
(3)s,a
2 (λ) =

3
4

(
α+

1
α

)
+

7
4

(
η +

1
η

)
+K3

2 ±A3
2, (47)

K
(3)
2 =

∫
|ψ020(r1)|2

λ

r12
|ψ000(r2)|2dv1dv2, (48)

A
(3)
2 =

∫
ψ020(r1)ψ000(r1)

λ

r12
ψ020(r2)×

×ψ000(r2)dv1dv2. (49)

After the integration, we get the energy of the Coulomb
interaction between electrons

K
(3)
2 = λ

2α3/2√η(15(α+ η)2 − 7α(α+ η)− 3αη)
15
√
πα(α+ η)5/2

(50)

and the exchange energy

A
(3)
2 = λ

2α3/2η7/2

5
√
π(α+ η)9/2

. (51)

In Table 7, we present the calculated energies E(3)s
2 (λ)

for the para-state with the total spin equal to zero and
E

(3)a
2 (λ) for the ortho-state with the total spin equal

to 1, the Coulomb interaction energy K(3)
2 , and the ex-

change energy A(3)
2 , respectively, for various λ, using the

calculated values of the variational parameters α and η.

5. Para- and Ortho-States of Two-electron QD

The total wave functions of the two-electron QD in-
cluding spin variables must be antisymmetric under the
permutation of electrons. In Section 2, we introduced
the variation coordinate wave functions of the QD. The
ground-state wave function (3) is symmetric under the
interchange of the electron coordinates and requires the
antisymmetric spin function

S
(a)
ent =

1√
2
(|↑1↓2〉− |↓1↑2〉). (52)

It is the entangled singlet state, and (a) indicates “an-
tisymmetric”. Therefore, the total ground-state wave
function is Ψ0(1, 2) = ψ0(r1, r2)S

(a)
ent (1, and 2 denote

the space and spin variables of the first and second elec-
trons, respectively). In agreement with the theory of

helium atom, we call it the para-state of a two-electron
QD [12].

All symmetric combinations of the coordinate wave
functions (4), (6), (7), including function (5), require
the antisymmetric spin functions (52). Those are the
singlet states with spin zero relating to the para-states
of the QD.

The antisymmetric combinations of the coordinate
wave functions (4), (6), ans (7) require the symmetric
spin wave functions that organize the following triplet:

S1 =|↑1〉 |↑2〉, S2 =|↓1〉 |↓2〉, (53)

S
(s)
ent =

1√
2
(|↑1↓2〉+ |↓1↑2〉). (54)

The spin functions S1 and S2 correspond to the spin
projections ±1, respectively. The spin function (54) is
the symmetric entangled state corresponding to the spin
projection 0. The states (4), (6), and (7) are related to
the ortho-states.

The system of energy levels of the two-electron QD
splits into two classes – singlet (para-) and triplet
(ortho-), accordingly to the symmetry of the spin func-
tions like that in a helium atom. The transitions between
the para- and ortho-states are possible only with account
of the spin-orbit interaction. The probability of such
transitions is very small. This allows us to claim that
there are two “modifications” of two-electron QDs: para-
and ortho-dots. In agreement with the spectroscopic
nomenclature, we can introduce the following spectral
terms. Para states: the ground state 1S0(ψ0 (3)),
first excited state 1P1(ψ

(s)
1 (4)), second excited states:

1D2(ψ1
2(5); 1S0(ψ

(2)s
2 (6)); 1D2(ψ

(2)s
2 (7)). Ortho-states:

the lowest state 3P2(ψ
(a)
1 (4)) (metastable), second ex-

cited states: 3S1(ψ
(2)a
2 (6)); 3D3(ψ

(2)a
2 (7)). These spec-

tral terms do not coincide with the ones of a helium

T a b l e 7. Excited state energies E(3)s
2 (λ), E(3)a

2 (λ),
the Coulomb interaction energy K(3)

2 , and the exchange
energy A(3)

2 for various λ, using the calculated values of
the variational parameters α and η

λ K
(3)
2 A

(3)
2 E

(3)s
2 (λ) E

(3)a
2 (λ)

0.5 0.277420 0.004876 5.291330 5.281580
1.0 0.540505 0.009542 5.582930 5.563850
1.5 0.790099 0.014017 5.874050 5.846010
2.0 1.028090 0.018318 6.164100 6.127470
2.5 1.255710 0.022461 6.452670 6.407750
3.0 1.474540 0.026457 6.738170 6.686500
3.5 1.684360 0.030211 7.024110 6.963470
4.0 1.887170 0.034063 7.306580 7.238450
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Fig. 1. Energy levels of para- and ortho-states of QD with λ = 1

(para- and ortho-states are denoted by green and red lines, respec-
tively)

atom, because, in our case, the radial and orbital quan-
tum numbers n and l are independent. The energy lev-
els of the two-electron QD are schematically depicted in
Fig. 1.

The most interesting characteristic of the energy levels
of the two-electron QD is that they are very close to
linear functions of the parameter λ, as is seen from Fig. 2.
The familiar behavior was found for the ground-state
energy of a 2D two-electron QD in [10].

The calculated energies E0, E
(s)
1 , E(a)

1 , E(2)s
2 , and

E
(2)a
2 ) as functions of λ are shown in Fig. 2.
Let us focus on the lowest energy levels of the QD.

For λ ≤ 1, the distance between the ground and first
excited states ~ω with the typical ω = 1013 is of the
order of T = 100 K. At T � ~ω, the transition from
the ortho-state 3P2 to the ground para-state 1S0 has a
very small probability and the ortho-state can be treated
as a metastable one. The ensemble of the two-electron
QDs at T � 100 K contains “para-dots” and “ortho-
dots”. They possess the entangled spin functions S(a,s)

ent =
1√
2
(|↑1↓2〉∓ |↓1↑2〉) for a long enough time.
From Fig. 2, one can see that the energy levels of

the ground- and the lowest ortho-states getting closer
with increment in λ. According to Section 2, λ < 2 for
the typical QDs, which allows us to hope for that the
presented variational calculations are reliable.

As was stated above, the ensemble of two electron QDs
contains, according to our theory, para- and ortho-dots.
We considered the parabolic potential with the infinite
confinement. The more realistic situation corresponds to
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Fig. 2. Energy of para- and ortho-states of a QD versus λ

a finite height U0 of the potential barrier. If ~ω � U0,
then the low-lying energy levels of the two-electron QDs
calculated above will be slightly affected due to a finite
barrier height. It is clear that, at very low tempera-
tures, the ionization potential of the para-dot is given
by Ipara = U0−E0(λ). At the same time, the ionization
potential of the ortho-dot is given by Iortho = U0−Ea1 (λ).
The values of E0(λ) and Ea1 (λ) are given in Table 1 and
Table 3 (see also Fig. 2). The ionization potential of
the para-dot is larger than that of the ortho-dot. Their
difference is ΔI = Ea1 (λ)−E0(λ). For example, using a
typical value λ = 2, we get ΔI = 5.3 THz.

These considerations remain true for any shape of the
confining potential of QDs. The measurements of the
ionization potential of the QDs can confirm the existence
of two-electron QDs with para- and ortho-states.

6. Conclusion

We have calculated three first energy levels of the two-
electron QD with the parabolic confinement by using
the variational functions. The analysis of our numeri-
cal calculations allowed us to propose the interpolation
formulas for the variational parameters that recover the
energy levels for the typical parameters of the QDs.

There are two classes of electron states in the two-
electron QDs: para-states with the total spin equal to
zero and ortho-states with the total spin equal to 1. The
lowest energy level of the ortho-state is metastable. We
claim that the experimental realization of the quantum
transition of the two-electron QDs will give para- and
ortho-QDs. The lowest energy state of the QD has the
symmetric coordinate wave function and the antisym-
metric singlet spin wave function 1S0 and is related to
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the para-state. All para-states have the total spin equal
to zero and should not manifest a multiple structure.
These QDs must be related to the para-QDs. The ortho-
QDs have energy levels that form close triplets with the
total spin equal to 1. The lowest energy state of the
ortho-dot 3P2 is metastable. The only transition from
this state is 3P2 −→ 1S0 with a change of the spin direc-
tion of one electron. At low temperatures T � ~ω, such
a transition has a low probability and we deal with two
types of the entangled spin states with S = 0 and S = 1.

The para- and ortho-QDs have different ionization po-
tentials. The measurement of these potentials can con-
firm the existence of two-electron QDs.

It would be interesting to mention about the hypo-
thetic QDs manufactured from the materials with gigan-
tic dielectric constant ε ∼ 103 [13]. The Coulomb inter-
action in this case is practically negligible. The energy
levels and the wave functions of a such many-electron
system are well known, which considerably simplifies the
description of the physical properties of such QDs.

One of the authors (Menberu M.) expresses his grati-
tude to the Department of Physics of the Addis Ababa
University for a material support. The authors thank
the referee for very useful comments.
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ДВОЕЛЕКТРОННI КВАНТОВI ТОЧКИ
З ПАРАБОЛIЧНИМ КОНФАЙНМЕНТОМ
(НИЗЬКО РОЗТАШОВАНI ПАРА- ТА ОРТО-СТАНИ)

Менберу Менгеша, В.М. Мальнєв

Р е з ю м е

Варiацiйним методом розраховано три перших енергетичних
рiвня двоелектронної квантової точки (КТ) з параболiчним
потенцiалом. Запропонованi iнтерполяцiйнi формули для ва-
рiацiйних параметрiв дозволяють розраховувати енергетичнi
рiвнi в широкому дiапазонi константи кулонової взаємодiї мiж
електронами. Стани КТ можна подiлити на пара- та орто-стани
подiбно до атомiв гелiю. Квантовi переходи мiж пара- та орто-
станами можливi лише з урахуванням спiн-орбiтальної взаємо-
дiї. При низьких температурах ансамбль КТ складається з то-
чок в основному пара-станi та першому збудженому орто-станi,
який є метастабiльним. Цi КТ мають заплутанi спiновi хвильо-
вi функцiї, що вiдносяться до ЕПР (Ейнштейн–Подольський–
Розен) станiв та становлять iнтерес для квантового iнформа-
цiйного протоколу.
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