
FIELDS AND ELEMENTARY PARTICLES

ISSN 2071-0194. Ukr. J. Phys. 2011. Vol. 56, No. 11 1151

DESCRIPTION OF HADRON INELASTIC SCATTERING
BY THE LAPLACE METHOD AND NEW MECHANISMS
OF CROSS-SECTION GROWTH

I.V. SHARF, A.V. TYKHONOV, G.O. SOKHRANNYI, K.V. YATKIN,
M.A. DELIYERGIYEV, N.A. PODOLYAN, V.D. RUSOV

Odesa National Polytechnical University
(1, Shevchenko Prosp., Odesa 650044, Ukraine)

PACS 13.85.-t, 13.85.Lg

c©2011

It is shown that there exist some types of Feynman diagrams,
which can be calculated within the Laplace method. This allows
one to reveal new mechanism of growth of the scattering cross-
sections, which are not involved by the Regge theory due to the
neglect of the dependence of the scattering amplitude on the lon-
gitudinal components of the momenta of secondary particles in the
center-of-mass system of initial state particles. Within the mul-
tiperipheral model, the energy dependence of the total scattering
cross-section is obtained. The theoretical results coincide qualita-
tively with experimental data.

1. Introduction

In the analysis of the hadron-hadron scattering at high
energies, the main attention is paid to the elastic scatter-
ing. It is considered that the problem of describing the
elastic scattering is much simpler, compared with the de-
scription of inelastic processes. Therefore, one may try
to calculate firstly the elastic scattering amplitude and
then to determine the contributions of various inelastic
processes from its imaginary part [1, 2].

However, the direct consideration of inelastic pro-
cesses seems more expedient, in our opinion. First, such
processes present a greater information about the prop-
erties of colliding particles. Indeed, the parameters that
remain hidden in characteristics of virtual particles in
the elastic processes can be determined in terms of char-
acteristics of real particles, which are directly observed,
in the inelastic processes. In addition, since the elastic
scattering amplitude contains the information about all
processes realized at the scattering due to the unitarity

condition, the “proper” elastic scattering amplitude can
hardly be a sufficiently simple function of its arguments.

But this reasoning has a meaning only if there exists
a sufficiently efficient method to describe the inelastic
processes. Namely the discussion of such a method is
the purpose of the present work.

Typical process of inelastic scattering at relativistic
energies consists in the collision of two bunches of parti-
cles with four-momenta P1 and P2, respectively and as
result we got n of secondary particles with four-momenta
p1, p2, · · · , pn and initial particles with changed four-
momenta P3 and P4. The general diagram of this process
is given in Fig. 1, and its cross-section is given by the
relation

σn =
(2π)4

4n!I

∫
dP3

2P30 (2π)3
dP4

2P40 (2π)3

n∏
k=1

dpk

2p0k (2π)3
×

× |T (n,p1,p2, . . . ,pn,P1,P2,P3,P4)|2×

×δ

(
P3 + P4 +

n∑
k=1

pk − P1 − P2

)
, (1)

where M1 and M2 are the masses of primary colliding
particles; P1 and P2 are their four-momenta; and I =√

(P1P2)
2 − (M1M2)

2 is the invariant flux.
It is accepted that the particles with four-momenta

P3 and P4 are of the same sorts as those with
four-momenta P1 and P2, and n secondary particles
with four-momenta p1, p2, · · · , pn are identical. By
T (n,p1,p2, . . . ,pn,P1,P2,P3,P4) , we denote the scat-
tering amplitude corresponding to the inelastic process
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Fig. 1. General diagram of inelastic scattering

in Fig. 1, and δ stands for the four-dimensional Dirac
δ-function ensuring the laws of conservation of energy
and three components of the momentum.

The calculation of the multidimensional integral (1)
is a complicated task. However, it can be simplified in
the case where the modulus of the scattering amplitude
has a constrained maximum point on the condition that
imposes on the arguments of the amplitude the presence
of δ-function in the integrand of (1) and under the mass-
shell conditions for all real particles. Then the integral
can be calculated by the well-known Laplace method [3].
Representing the squared modulus of the scattering am-
plitude in (1) in the form |T |2 = exp(ln(|T |2)), we can
expand the exponent in the Taylor series in a neighbor-
hood of constrained maximum point, by restricting our-
selves by quadratic terms. After that we obtain Gaussian
integral, whose calculation is reduced to computation of
matrix determinant of the second derivatives of ln(|T |2).

Here, we consider several types of Feynman diagrams
corresponding to the scattering amplitudes which allow
us to make calculation by the Laplace method. The ap-
plication of this method to the multiperipheral model
allowed one to find new mechanisms of cross-sections
growth [4, 5] and to reconstruct the dependence of the
energy dependence of the total cross-section which coin-
cides qualitatively with experimental data. At the same
time, the use of the Laplace method allows us to go
out of the boundaries of the multiperipheral model and
to analyze some types of nonmultiperipheral diagrams
of inelastic scattering, which will be considered in what
follows.

Intending to develop firstly a model simplest for the
analysis, we will consider the primary and secondary
hadrons, as well as the virtual particles, as quanta of the
effective scalar interacting and self-interacting fields. We
can also consider the diagrams of a more realistic theory,
namely the quantum chromodynamics (QCD). As will
be shown below, these diagrams in the diagonal gauge
contain the same factors as those in the simplest scalar

Fig. 2. Decomposition of the three-dimensional momenta of sec-
ondary particles into longitudinal and transverse components rel-
ative to the collision axis in the center-of-mass system of input
particles with three-dimensional momenta P1 and P2

theory. Therefore, all main results concerning the exis-
tence of the maximum point, its properties, and mecha-
nisms determining the behavior of cross-sections can be
transferred onto the QCD diagrams.

In addition, in order to simplify the problem, we will
consider the collision of primary particles with the same
mass, i.e., M1 = M2 = M . In the numerical calcula-
tions, we took M equal to the proton mass and m equal
to 0.139 GeV, which is approximately equal to the pion
mass. While performing the numerical and analytic cal-
culations, all quantities were made dimensionless in units
of the mass of a secondary particle m. Therefore, we set
m = 1 in all subsequent calculations.

Thus, the goal of this report is to prove the possibility
of applying the Laplace method for some types of Feyn-
man diagrams, and demonstrate the possibilities of the
method for calculating these diagrams.

2. Extraction of Independent Parameters of the
Scattering Amplitude

Since the scattering cross-section is a Lorentz-invariant
quantity, it can be calculated in any inertial frame of
reference. The most convenient for the calculations is
the center-of-mass system of initial particles, where the
momenta of these particles are equal in modulus and are
opposite in directions, as is shown in Fig. 2.

In this reference system, we have the collision axis
(Fig. 2), along which the momentums of initial par-
ticles are directed. It is convenient to decompose all
three-dimensional momenta into the following compo-
nents: parallel to the axis, pk‖, and perpendicular to it,
pk⊥ (i.e., the component in the plane of transverse mo-
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menta in Fig. 2). As usual, we denote the total energy
of primary particles in their center-of-mass system by√
s and choose the coordinate axes so as it is shown in

Fig. 2.
The equations representing the law of conservation of

energy-momentum are those of connection between ar-
guments of the scattering amplitude. Our purpose is to
express some four variables from this system of equations
in terms of the remaining 3n+ 2 independent variables.
To this end, it is convenient to introduce the new vari-
ables

P s
‖ =

P3‖ + P4‖

2
, P a

‖ =
P3‖ − P4‖

2
,

P s
⊥x =

P3⊥x + P4⊥x

2
, P a

⊥x =
P3⊥x − P4⊥x

2
,

P s
⊥y =

P3⊥y + P4⊥y

2
, P a

⊥y =
P3⊥y − P4⊥y

2
. (2)

In addition, it is convenient to introduce the rapidities
yk instead of the components of the momentum, pkz,
which are parallel to the collision axis, with the help of
the relation

pkz = m⊥ (pk⊥) sh (yk) , (3)

where m⊥ (pk⊥) =
√

1 + (pk⊥x)2 + (pk⊥y)2.
Then we choose the following 3n+2 independent vari-

ables: n rapidities of secondary particles y1, y2, . . . , yn,
n components of the transverse momenta of secondary
particles along the axis x (pk⊥x, k = 1, 2, . . . , n), n analo-
gous components along the axis y (pk⊥y, k = 1, 2, . . . , n),
and P a

⊥x and P a
⊥y.

The variables P s
‖ , P s

⊥x, and P s
⊥y can be easily repre-

sented in terms of the chosen independent variables from
the laws of conservation of components of the momen-
tum. Then the energy conservation law can be consid-
ered as an equation for P a

‖ . It has two solutions:

P a
‖ =

f1PP‖ ± EP

2

√
(f1)

2 + f2 (f2 − f3)
f2

,

f1 = PxP
a
⊥x + PyP

a
⊥y, f2 =

(EP )2

4
−
(
PP‖

)2
,

f3 = M2 + (Px)2 + (Py)2 + (P a
⊥x)2 +

(
P a
⊥y

)2
, (4)

where we introduced the following designations:

EP =
√
s−

n∑
k=1

m⊥ (pk⊥) ch (yk),

Px = −1
2

n∑
k=1

pk⊥x, Py = −1
2

n∑
k=1

pk⊥y,

PP‖ = −1
2

n∑
k=1

m⊥ (pk⊥) sh (yk). (5)

It is clear from the symmetry of the problem that if
the modulus of the scattering amplitude has a maxi-
mum, it should be attained in the center-of-mass system
at zero transverse momenta of all particles. Indeed, if
the maximum would be attained at a nonzero value of
the transverse momentum vector of any particle, then
this vector would separate some direction in the plane
of transverse momenta. But all directions in this plane
(Fig. 2) are physically equivalent.

It is seen from expressions (4) that, at zero transverse
momenta, the sign of the quantity P a

‖ coincides with
the chosen sign of the root in (4). We note that, on
the diagram in Fig. 1, the particle with momentum P3

is formed from the input particle with P1 with a pos-
itive value of the longitudinal momentum, whereas the
particle with momentum P4 is formed from the input
particle with P2 with a negative value of the longitudi-
nal momentum. Therefore, we may conclude that the
most probable is the configuration of momenta, where
P3‖ > 0 and P4‖ < 0. It follows from (2) that P a

‖ > 0 for
the most probable configuration of momenta. For this
reason, we choose the sign “plus” in (4) hereafter.

Thus, the law of conservations of energy-momentum
results in the following relations between the variables:

P3‖ = P a
‖ + P s

‖ ,

P s
⊥x = −1

2

n∑
k=1

pk⊥x, P s
⊥y = −1

2

n∑
k=1

pk⊥y, (6)

where P s
‖ = − (1/2)

n∑
k=1

m⊥ (pk⊥) sh (yk), which follows

from the law of conservation of the longitudinal compo-
nent of the momentum.
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Fig. 3. Typical diagram of the multiperipheral model (numbers on
the left and on the right are the numbers of vertices of the diagram
and virtual lines, respectively)

3. Laplace Method for Diagrams of the
Multiperipheral Model

The multiperipheral model [6] has been considered in
high-energy physics for a very long time. But the appli-
cation of the Laplace method to the calculation of scat-
tering cross-sections in this model allows one to reveal
its new specific features, which can turn out useful for
the description of experimental data. A typical diagram
of this model is shown in Fig. 3.

Such diagrams appear in a model, where the primary
and secondary particles are considered as quanta of two
interacting real scalar fields: Φ (x) with mass M (its
quanta are considered as a model of primary particles)
and ϕ (x) with mass m. The Lagrangian of the model
takes the form

L̃ =
1
2
(
gabΦ,aΦ,b −M2Φ2

)
+

+
1
2
(
gabϕ,aϕ,b −m2ϕ2

)
+ gΦ2ϕ+ λϕ3, (7)

where gab are components of the Minkowski tensor, and
g and λ are the coupling constants.

The partial cross-section (1) can be represented in the
form [5]

σn

(√
s
)

=
(2π)2 g4

16m2

(
λ2

2 (2π)3

)n

σ′n
(√
s
)
, (8)

where the function σ′n (
√
s) free from insignificant con-

stants determines the dependence of the cross-section on
the energy

√
s.

he scattering amplitude corresponding to the diagram
Fig. 3, up to an unessential constant factor for the max-
imization problem (which distinguishing the quantity A
of the considered above quantity T ), has the form

A =
n+1∏
l=1

(
1− (kl)

2 − iε
)−1

, (9)

where k1 = P1 − P3, k2 = P1 − P3 − p1, . . . , kn+1 =
P1−P3−

∑n
j=1 pj . Here, (kl)

2 means the scalar squares
of relevant four-vectors in the Minkowski space, and the
quantity ε responsible for the proper bypass of poles
must be turned to zero after the execution of all cal-
culations. In addition, we assume that the appropriate
components of the four-vector P3 are expressed in terms
of independent variables by relations (6). We recall that
all quantities are made dimensionless with the mass of a
secondary particle m.

It is possible to prove that all quantities (kl)
2 (they

are called virtualities in what follows) are negative in the
physical region of the process under consideration (the
detailed proof is given in [4]). Therefore, amplitude (7)
contains no poles in the region, over which we intend to
integrate (1). This allows us to turn ε values to zero
prior to the start of subsequent calculations. Then, as is
seen from (9), the scattering amplitude takes only real
positive values. Therefore, instead of the further study
of function (9) for the maximum of its squared modulus,
we can study the very function for the maximum.

It follows from (3), (4), and (9) that since P1⊥ = 0 in
the center-of mass system, all transverse components of
momenta appear in the scattering amplitude only in the
form of quadratic and bilinear combinations. This im-
plies that, at zero values of all transverse components of
momenta, we have at least a stationary point of the scat-
tering amplitude. But if we take the symmetry-based
reasoning presented in the previous section into account,
then the subsequent search for the maximum can be car-
ried on not for amplitude (9) itself, but for its restriction,
which can be obtained, by setting all transverse compo-
nents of momenta to be zero in (3)–(6) and (9). This
restriction, which remains a function of only the number
of secondary particles and their rapidities, is denoted as
A‖ (n, y1, y2, . . . , yn).

Let us consider that the diagrams of the multiperiph-
eral model have the horizontal axis of symmetry (Fig.
4).

It was shown in [4] that the quantity
A‖ (n, y1, y2, . . . , yn) remains invariant under the
simultaneous replacements of y1 by (−yn), y2 by
(−yn−1) , etc., i.e., under the change of the rapidity of
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each particle by the rapidity of the particle symmetric
relative to the symmetry axis with the opposite sign.
This follows from the symmetry of the process under
the mirror reflection relative to the plane of transverse
momenta (see Fig. 2). This symmetry implies that, at
the maximum point, the rapidities of particles, which
are joined to the diagram symmetrically relative to the
symmetry axis (see Fig. 4), must take mutually opposite
values; if the number of particles is odd, the rapidity of
the particle, which belongs to the symmetry axis (Fig.
4,b), must be equal to zero [4]. Thus, by setting the
rapidities in the lower part of the diagram in Fig. 4
to be equal to the corresponding rapidities of particles
of the upper part taken with the sign “minus” and the
rapidity of the particle that belongs to the symmetry
axis to be zero, we obtain the further restriction of the
scattering amplitude, which is a function of only the
rapidities of particles placed above the symmetry axis
(Fig. 4). We denote it by A0.

In the case where the number of particles is even, we
have [4]

A0 =

n/2∏
j=1

(
1− (Ej)

2 +
(
P‖j
)2)−2

×

×
(
1 +

(
P‖n/2+1

)2)−1

. (10)

Here, the energy transferred along the line with the
number j (Fig. 3) is

Ej =
n/2∑
k=j

ch (yk), (11)

if j = 1, 2 . . . , n/2, and En/2 = 0, and the longitudinal
component of the momentum

P‖j = P1‖ − P3‖ −
j−1∑
k=1

sh (yk), (12)

for j = 2, 3 . . . , n/2 + 1, and P‖1 = P1‖ − P3‖, where we
introduced the designations

P1‖ =
√

(s/4)−M2 (13)

and

P3‖ =

√(√
s

2
− E1

)2

−M2. (14)

Fig. 4. Horizontal axis of symmetry of the multiperipheral diagram
for the even (a) and odd (b) numbers of secondary particles

This follows from (4) with regard for all properties of the
symmetry (we note that these properties yield P s

‖ = 0
and, therefore, P3‖ = P a

‖ ). It is worth noting the differ-
ence in the contents of P1‖ and P‖1. The former stands
for the component of the momentum of primary parti-
cle 1, which is parallel to the collision axis (Fig. 2). The
latter denotes the parallel component of the momentum,
which is transferred along virtual line 1 in Fig. 3.

In the case where the number of particles is odd, we
have

A0 =
(n+1)/2∏

j=1

(
1− (Ej)

2 +
(
P‖j
)2)−2

, (15)

where

Ej = (1/2) +
(n−1)/2∑

k=j

ch (yk) (16)

for j = 1, 2 . . . , n − 1; E(n+1)/2 = 1/2; P‖j for
j = 1, 2 . . . (n+ 1)/2 are determined by the same rela-
tions (12), as in the case with odd number of particles.
In this case, P1‖ and P3‖ are determined by the same
relations (13) and (14), as in the case with even number
of particles, but E1 is determined by relation (16). Since
all calculations are analogous for both cases of even and
odd numbers of secondary particles, we will consider the
case of even n in detail and present only the results for
the case of odd n.

Since function (10) is a product of positive fractions,
it is convenient to seek a maximum of its logarithm. We
denote it by L

(
n, y1, y2, . . . , yn/2

)
. Then the system of

equations for the determination of the stationary point
of the function L can be given in the following form (we
introduce the notation Zj = 1− (Ej)

2 +
(
P‖j
)2):

∂L

∂y1
=

∂L

∂E1
sh (y1)+4ch (y1)

n/2∑
j=2

P‖1 (E1)−
j−1∑
k=1

sh (yk)

Zj
+
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+2ch (y1)
P‖1 (E1)−

n/2∑
k=1

sh (yk)

Z(n/2)+1
= 0, (17)

∂L

∂yl
=

∂L

∂E1
sh (yl) + 4sh (yl)

l∑
j=2

n/2∑
k=j

ch (yk)

Zj
+

+4ch (yl)
n/2∑

j=l+1

P‖1 (E1)−
j−1∑
k=1

sh (yk)

Zj
+

+2ch (yl)
P‖1 (E1)−

n/2∑
k=1

ch(yk)

Z(n/2) + 1
= 0,

l = 2, 3, . . . (n/2)− 1, (18)

∂L

∂yn/2
=
∂L

∂E
sh
(
yn/2

)
+ 4sh

(
yn/2

) n/2∑
j=2

n/2∑
k=j

ch (yk)

Zj
+

+2ch
(
yn/2

) P‖1 (E1)−
n/2∑
k=1

sh (yk)

Z(n/2)+1
= 0. (19)

In order to simplify the system of equations (17)–
(19), we use the following reasoning. With regard for
the negativity of virtualities (kj)

2 and relation (9), it
is seen that all Feynman denominators Zj are greater
than 1. In addition, all these denominators enter sys-
tem (17)–(19) in the form 1/Zj . But the function
f (x) = 1/x at x > 1 has a small value of the deriva-
tive, i.e., the function varies slowly. This allows us
to solve the system of equations (17)–(19) in the ap-
proximation, where all quantities 1/Zj in this system of
equations are set to be equal to one another. In addi-
tion, at the threshold value

√
s = 2M + n, we have∣∣∣(kj)

2
∣∣∣ = n (j − 1) + (j − 1)2 +Mn. If n are not small,

this quantity takes large values, Therefore, for not very
high energies, we have the relation Zj � 1, which ad-
ditionally favors the use of the approximation of equal
1/Zj . The numerical calculation indicates that this ap-
proximation can be used also at high energies, because

the virtualities become small and all Zj are close to 1.
As a result, 1/Zj are again approximately equal to one
another.

It was shown in [4] that, in the approximation of equal
1/Zj , the system of transcendental equations (17)–(19)
can be solved analytically, and the solution will be given
below. Let us denote the values of rapidities in the solu-
tion by y(0)

1 , y
(0)
2 , . . . , y

(0)
n/2. Then all these rapidities can

be expressed in terms of y(0)
n/2 by the relation

y
(0)
k =

(
2
(n

2
− k
)

+ 1
)
y
(0)
n/2, k = 1, 2, . . . , n. (20)

Using the analogous reasoning in the case of odd num-
ber of particles, we obtain [4]

y
(0)
k =

(
n− 1

2
− k + 1

)
y
(0)
(n−1)/2, k = 1, 2, . . . , n. (21)

The quantities y(0)
n/2 in (20) and y

(0)
(n−1)/2 in (21) can be

expressed through the solution Δy of the transcendental
equation
√
s

2
− sh ((n/2) Δy)

2sh ((1/2) Δy)
= Mch

(
n+ 1

2
Δy
)
. (22)

In this case, y(0)
n/2 = Δy/2, and y(0)

(n−1)/2 = Δy.
We pay attention to the fact that relations (20) and

(21) involve the symmetry of the values of rapidities at
the maximum point. Therefore, these formulas deter-
mine the values of rapidities not only for the vertices
positioned above the symmetry axis, but for all vertices
of the diagram in Fig. 3.

Near the threshold of creation of n particles, the solu-
tion of Eq. (22) takes the form

Δy =
2

n+ 1
acosh

(√
s− n
2M

)
. (23)

It is seen from (23) that the quantity Δy has the
threshold branching point at

√
s = 2M +n. If we calcu-

late the contribution of the inelastic process under con-
sideration to the imaginary part of the elastic scattering
amplitude by the Laplace method, then this threshold
branching point will enter the elastic scattering ampli-
tude thorough Δy, as is required by the unitarity. We
note that if the contribution of multiperipheral diagrams
to the imaginary part of the elastic scattering amplitude
is calculated within the ordinary methods, i.e., without
the use of the Laplace method [7, 8], then we obtain
the dependence characteristic of the Regge theory, which
does not contain similar branching points.
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Fig. 5. Approximate solution of (25) (dashed line) and the result
of numerical solution of Eq. (22) (continuous line) at n = 10

Prior to the determination of the quantity Δy at en-
ergies not close to the threshold one, we make several
remarks. The quantity (sh ((n/2) Δy))/sh ((1/2) Δy) in
(22) has the sense of the total energy carried away by sec-
ondary particles. The quantity 2Mch (((n+ 1)/2) Δy)
is the energy carried away by particles P3 and P4. It is
seen from these formulas that at high energies (and re-
spectively Δy) the main fraction of the energy is carried
away indeed by particles P3 and P4. This means that
the rapidity ((n+ 1)/2) Δy of the particle with P3 must
be slightly different from the rapidity (we denote it by
Y ∗) of the primary particle with P1. Instead of Δy, let
us introduce a new variable

δy = Y ∗ − (n+ 1) (Δy/2) , (24)

Its smallness allows us to solve the transcendental equa-
tion (22). We obtain the following approximate result:

δy ≈

(
M

((√
s

M

)2/(n+1)

− 1

))−1

. (25)

Approximation (25) is satisfactory, which is seen from
Fig. 5, where it is compared with the quite “exact” result
of numerical solution of Eq. (22).

All the presented results concerning the existence of
the maximum of the scattering amplitude and its prop-
erties were numerically verified in [4]. In addition, it
was shown in [5] on the basis of the results of numerical
calculations that the maximum is sufficiently “sharp” in
order that the Laplace method can be applied.

With the help of the presented results, we can demon-
strate the most significant property of the maximum
point of the multiperipheral model. This property con-
sists in that the moduli of the virtualities

∣∣∣(kl)
2
∣∣∣ , which

are calculated at the values of variables corresponding

Fig. 6. Moduli of virtualities calculated at the maximum point for
n = 20 versus

√
s. Only the virtualities of lines positioned above

the symmetry axis of the diagram are shown, since the virtualities
of symmetric lines are the same. Line 1 corresponds to the energy√
s = 5 GeV, 2 –

√
s = 7 GeV, 3 –

√
s = 9 GeV, 4 –

√
s = 10

GeV, 5 –
√
s = 11 GeV, 6 –

√
s = 15 GeV, 7 –

√
s = 30 GeV, 8 –√

s = 60 GeV, 9 –
√
s = 200 GeV, 10 –

√
s = 546 GeV, and 11 –√

s = 900 GeV

to the maximum point, decrease, as the energy
√
s in-

creases. The numerical calculation showed [4] that the
moduli of the virtualities grow from a minimum value
(we denote it by vmin), which is attained at the first and
(n + 1)-th lines of the diagram in Fig. 3, to the maxi-
mum value vmax), which is attained on the line, which is
crossed by the symmetry axis in the case with even num-
ber of particles (Fig. 4,a), or on two lines touching the
axis in Fig. 4,b for an odd number of particles. The cal-
culation of the quantities vmin and vmax with regard for
relations (20) or (21), (24), and (25) gives the following
approximate results:

vmin =

((√
s

M

)2/(n+1)

− 1

)−2

,

vmax =

((√
s

M

)1/(n+1)

−
(√

s

M

)−1/(n+1)
)−2

. (26)

The drop of the moduli of virtualities with increase
in the energy, which is indicated by relations (26), is
confirmed by the results of numerical calculations given
in Fig. 6.
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Fig. 7. Dependence of σΣ

(√
s
)
, on the energy at the fitting con-

stant Λ = 5.475 in the intervals of energies
√
s = 7÷ 25 GeV (a),

and
√
s = 1 ÷ 100 GeV (b). The fitting constant was chosen so

that the dip of the cross-section coincides approximately with that
observed in the experiment on proton-proton scattering

This decrease corresponds to the new mechanism of
growth of scattering cross-sections, which was not con-
sidered in the previous calculations in the multiperiph-
eral model. Indeed, it is seen from (9) that the decrease
of the moduli of virtualities causes the increase of the
scattering amplitude at the maximum point, as

√
s in-

creases. With regard for the above-presented idea of the
Laplace method, we see that the square of the increas-
ing amplitude modulus at the maximum point enters the
formula for the partial scattering cross-section associated
with the creation of a number of secondary particles as
a factor. Then, by summing the partial cross-sections,
we can obtain the total cross-section increasing with the
energy with agreement with the experimental data.

However, by verifying these assertions we face the ne-
cessity of considering the interference contributions [9].
These contributions arise due to that the scattering am-
plitude in the frame of the multiperipheral model is rep-
resented not only by the diagram in Fig. 3, by the sum
of n! diagrams of such a type with all possible versions
of the joining of the lines of secondary particles to the
diagram. Respectively, by calculating the square of the
modulus of this amplitude, we obtain a large number of
“cross” (interference) terms. The integrals of them give
positive contributions to the partial cross-section, which
should be taken into account due to their huge number,

though the contribution of the square of the modulus of
a single diagram in Fig. 3 makes a very small fraction
of the resulting partial cross-section [5]. The numerical
calculations show that, starting from the threshold of
creation of n particles, there exists a quite wide interval
of energies, at which the eigenvalues of the matrix of sec-
ondary derivatives of the logarithm of the scattering am-
plitude with respect to the rapidities can be considered
close to one another. At such energies, the approximate
method to determine the interference contributions to
partial cross-sections was proposed in [9].

If the partial cross-sections are calculated, we can con-
sider the quantity

σΣ

(√
s
)

=
nmax∑
n=1

Λnσ′n
(√
s
)
, (27)

where σ′n (
√
s) is defined in relation (8), and we intro-

duced the notation

Λ =
λ2

2 (2π)3
(28)

for the dimensionless coupling constant, which is consid-
ered as a fitting parameter. In addition, by nmax, we
denoted the maximum number of secondary particles,
whose creation is allowed by the energy conservation law.
The quantity σΣ (

√
s) is an analog of the total scatter-

ing cross-section in the model under consideration. As is
seen from Fig. 7, we can take the fitting constant Λ such
that the dependence of that quantity on the energy

√
s

will be analogous to the one observed in experiment for
the total hadron-hadron scattering cross-section (Fig. 7).
Unfortunately, we attain only the qualitative description
of experimental data. To obtain the quantitative agree-
ment, it is necessary to develop a model more realistic
than the model of interaction of two real scalar fields.

Nevertheless, we may conclude that the mechanism
of the virtualities reduction, which is peculiar to more
realistic models as well, indeed can claim to be the mech-
anism responsible for the increase of the total cross-
section with energy, which is observed in experiments.

The question arises whether this growth agrees with
the Froissart bound [10]. As is seen from relations (26)
and Fig. 6, the mechanism of decrease of the virtualities
with increase in the energy “is switched-off”. Relations
(26) imply that this occurs under the condition
√
s�M exp ((n+ 1) asinh (1/2)) . (29)

In this case, the formula of a partial
cross-section contains the factor [5, 9]
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(
√
s
√

s
4 −M2

(
EP

2

)√(
EP

2

)2 −M2

)−1

(where EP

is determined by relation (4) at zero transverse mo-
menta and rapidities (20) or (21)). At high energies, this
factor behaves itself as s−2. Its denominator contains,
according to (29) at the maximum point of σ′n (

√
s) at

a certain n, the quantity ≈ exp (4 (n+ 1) asinh (1/2)).
Thus, if the fitting constant satisfies approximately the
condition

ln (Λ) < 4asinh (1/2) , (30)

the values of Λnσ′n (
√
s) at the points of their maxima

will decrease, as n increases. At sufficiently high ener-
gies, the terms with large n will give a small contribution
to sum (27), and the terms with small n will decrease
due to the “switching-off” of the mechanism of decrease
of the virtualities. In such a case, the total cross-section
(27) must have the asymptotics, which decreases, as the
energy increases.

To confirm the above reasoning, we mention the re-
sults presented in Fig. 8. On their basis, we may con-
clude that the growth of the total cross-section due to a
decrease of virtualities can be consistent with the Frois-
sart bound

Thus, within the multiperipheral model with the help
of the Laplace method, we have obtained the results,
which differ significantly from those obtained within the
same model by different methods [6–8]. Therefore, it is
natural to analyze the reasons for such a difference. The
main reason consists in that the approximations made
in the calculation of the multidimensional integral (1)
did not consider the dependence of the integrand on the
components of the momenta of secondary particles in
the center-of-mass system, which are longitudinal rela-
tive to the collision axis. But, as we have seen, this
dependence is essential, because it is not reduced to a
constant and has a maximum. In addition, the increase
of the value of this maximum with the energy

√
s is a

result of the dependence of the scattering amplitude on
rapidities, which cannot be revealed, of course, if this
dependence is neglected.

Let us consider some other types of diagrams, where
the Laplace method can be used.

4. Some Types of Diagrams Admitting the
Application of the Laplace Method

Consider a diagram of the type shown in Fig. 9,a and,
in particular, a separate block of this diagram (Fig. 9,b).

Below, we consider some examples of various blocks
(Fig. 9,b), which correspond to the analytic formu-

Fig. 8. Calculated values of (27) in the interval of energies
√
s =

10÷1800 GeV with regard for the interference contributions within
the method in [9] for various values of the fitting constant Λ =

exp
(
3.9asinh

(
1
2

))
(a), Λ = exp

(
4.1asinh

(
1
2

))
(b,c) and the ratio

σΣ

(√
s
)
/(ln (s))2, whose decrease with increase in the energy

√
s

(c) supports the validity of the Froissart bound.

las that possess the following property. The maximum
value of the modulus of the corresponding expression
is attained not at certain values of the four-momenta
pi1 , pi2 , . . . , pib

, but only if all these four-momenta are
equal to one another. At the same time, these four-
momenta enter the expression corresponding to the re-
maining part of the diagram only in the form

∑b
j=1 pij

.
Therefore, the condition of maximum for this expression
will fix only the value of this sum. Thus, the same val-
ues of the four-momenta pi1 , pi2 , . . . , pib

can satisfy the
conditions of maximum for this block and for the rest of
the diagram.
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Fig. 9. Diagram of the inelastic scattering with arbitrary blocks,
where secondary particles are created (a), and its separate block
(b). The dashed block means an arbitrary diagram with the appro-
priate number of external lines. Blocks can be identical or different
from one another, which is marked by different hatchs

Fig. 10. Versions of blocks without loops with 5 particles joining
a block

The simplest examples of blocks, for which the condi-
tion of maximum is the equality of all four-momenta of
secondary particles, which join the block, are the blocks
of diagrams without loops. For example, we can consider
three versions of such diagrams for a loopless block with
5 particles joining it (Fig. 10).

Each internal line of a loopless block corresponds to
a factor of the type 1/

(
1− (

∑
pi)

2 − iε
)
, where the

number of terms in the sum
∑
pi is not less than 2.

Therefore, these factors give no poles in the integra-
tion region, and the parameter ε can be turned to zero
else before the subsequent calculations (in this case,∣∣∣1/(1− (

∑
pi)

2
)∣∣∣ = 1/

(
(
∑
pi)

2 − 1
)
). As is seen, each

such factor attains the maximum value under the con-
dition of minimum for the quantity (

∑
pi)

2
, which has

sense of the square of the summary energy of those par-
ticles, whose four-momenta enter the sum, in the system
of their center of masses. But this energy will be min-
imal, if all momenta of particles in the center-of-mass
system are zero. Thus, the minimal value of the Lorentz-

Fig. 11. Dependence of the logarithm of the modulus of the scat-
tering amplitude on

√
s at the maximum point

∣∣A(0)
∣∣ for various

types of diagrams

invariant (
∑
pi)

2 is attained at identical values of all
four-momenta, which enter the sum.

We note that, in the scalar theory considered here,
each block corresponds to some scalar function of the
four-momenta of secondary particles joining the block.
Due to the proved property, this function can be re-
placed in the search for the maximum of the modulus of
the scattering amplitude that corresponds to the whole
diagram by its restriction, where all four-momenta are
equal to the same value p. But the scalar function of a
single four-vector p can be only a function of p2 = 1,
i.e., it is a constant. Therefore, after the transition to
the mentioned restriction, the further maximization is
performed analogously to the above-considered case of
the multiperipheral diagram in Fig. 3.

We denote that the diagrams with loopless blocks,
like the multiperipheral diagrams in Fig.3, have the con-
strained maximum point, and both types of diagrams
with the same number of secondary particles have the
same order in the coupling constant. These facts allow
us to compare the moduli of the appropriate amplitudes
at the maximum point (Fig. 11). As is seen, there ex-
ists a sufficiently wide interval of energies

√
s near the

threshold of creation of a certain number of secondary
particles, where the contribution of the diagrams with
loopless blocks will be more significant than the con-
tribution of simple multiperipheral diagrams. Since, at
any energy, there exist such multiplicities n of secondary
particles, for which we will be sufficiently close to the
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threshold, we can conclude about the necessity to take
the diagrams with loopless blocks into account.

In the above-considered diagrams, all Feynman de-
nominators are more than 1 in modulus. Therefore, as
is seen from the above-presented results, the values of
the dimensionless scattering amplitude at the maximum
points are small. This induce the desire to consider the
diagrams with loops, in which the terms corresponding
to lines have poles. Such integrable singularities can lead
to larger values of the scattering amplitude. With the
purpose to obtain such diagrams, let us consider the sys-
tem of three interacting scalar fields with the Lagrangian

L̃ =
1
2
(
gabΦ,aΦ,b −M2Φ2

)
+

1
2
(
gabϕ,aϕ,b −m2ϕ2

)
+

+
1
2
gabχ,aχ,b + gΦ2χ+ λχ2ϕ+ λ1χ

3 + λ2χ
4, (31)

where λ1 and λ2 are the corresponding coupling con-
stants made dimensionless with mass m. In other words,
the fields Φ and ϕ, which have the same meaning as
above, interact with each other not directly, but through
a scalar massless field χ considered as a scalar analog of
gluons. In the theory with Lagrangian (31), there appear
diagrams of the type of those shown in Fig. 12.

We note that if one secondary particle is created on
some loop (see Fig. 12), the integral over such a loop
contains the singularity, which can be removed by renor-
malizing the constant λ in Lagrangian (31). Then the fi-
nite part of the integral corresponding to the loop can be
sufficiently easily calculated. Therefore, we will consider
the loops, where the number of created particles is at
least two. We will prove that the modulus of an analytic
expression corresponding to each loop on the diagram in
Fig. 12 attains the maximum value under the condition
of equal four-momenta of all secondary particles joining
the loop.

One loop in Fig. 12 is described by the following an-
alytic expression:

A = (−1)b+1
∫
d4q

(
q2 + iε

)−1×

×
b∏

j=1

(q − j∑
k=1

pk

)2

+ iε

−1

. (32)

Here, the number of particles joining the loop is denoted
by b, and their four-momenta are enumerated, for con-
venience, irrespective of other four-momenta of particles
on the diagram (i.e., p1, p2, · · · , pb).

Fig. 12. Diagram with loops. Wavy lines correspond to the field χ.
The number of loops is denoted by l, and the numbers of secondary
particles joining each loop are b1, b2, . . . , bl, respectively

By applying the Feynman identity [11] to integral (32),
we can write it as

A = i (−1)b−1 (b− 2)!π2×

×
1∫

0

dz1

z1∫
0

dz2 . . .

zb−1∫
0

dzb
1

(d+ iε)b−1
, (33)

where we introduced the notation

d =
b∑

i=1

zi (1− zi) + 2
b−1∑
i=1

b∑
j=i+1

zj (1− zi) (pipj). (34)

The integration region in (33) is such that all quanti-
ties zj (1− zi) are nonnegative. Therefore, the minimum
of the modulus of the denominator d is attained at mini-
mally possible values of all scalar products (pipj) . This is
realized under the condition that all these four-momenta
are equal to one another. Thus, in the further maxi-
mization of the modulus of the expression correspond-
ing to the diagram in Fig. 12, the expression describing
each loop can be replaced by its restriction on the set
of identical four-momenta. The calculation of integral
(32) at arbitrary four-momenta of secondary particles
would be very complicated task. However, under the
mentioned restriction, the problem is simplified so that
the integral can be calculated analytically. Denoting, by
A0, the value of integral (32) for equal four-momenta
p1 = p2 = . . . = pb, we obtain

A0 = π3

(
(−1)

(b− 2)! (b− 2)!b
+ (−1)b−1

I1 (b, j) +

ISSN 2071-0194. Ukr. J. Phys. 2011. Vol. 56, No. 11 1161



I.V. SHARF, A.V. TYKHONOV, G.O. SOKHRANNYI et al.

Fig. 13. Logarithms of the moduli of the values of the scattering
amplitude at the maximum points for the one-loop diagrams in
Fig. 12 (continuous line) and in Fig. 3 (dashed line) for n = 8

+
b−2∑
f=2

(−1)b−f
I2 (b, j, f)

)
,

I1 (b, j) =
1

(b− 1)!b!
+

+
b−1∑
j=2

1
j! (b− j)! (b− j + 1)! (j − 1)!

,

I2 (b, j, f) = f

(
1

(b− f)!b! (f − 1)!
+

+
b−1∑

j=f+1

1
j! (b− j)!

1
(f + b− j)! (j − f)!

)
. (35)

The theory with Lagrangian (31) contains also mul-
tiperipheral diagrams of the type shown in Fig. 3, but
with the replacement of vertical lines by wavy lines of
the field χ. These diagrams and the diagrams in Fig.
12 have different orders in the coupling constant. How-
ever, a diagram of the type shown in Fig. 12 with
one loop contains only a single “superfluous” vertex, as
compared with the diagram in Fig. 3 with the same
number of particles. We will try to compare the loga-
rithms of the moduli of the scattering amplitudes cor-
responding to these diagrams. Taking into account
that, for any “reasonable” value of the coupling con-
stant, its logarithm is of the order of several units, we
give, however, the appropriate comparison for the case
of diagrams, where 8 secondary particles are created, in
Fig. 13.

Fig. 14. Diagram with “four-corner” vertices (a) instead of simple
vertices in Fig. 3 and its four-vertex block (b)

It is seen from the results presented in Fig. 13 that,
at low energies, the domination of the contribution of
the one-loop diagrams is so significant that it cannot
be influenced by any “reasonable” value of the coupling
constant.

Thus, the application of the Laplace method allows
one, on the one hand, to extend the circle of the diagrams
of the inelastic scattering admissible for calculations and,
on the other hand, indicates the necessity to consider, in
addition to multiperipheral diagrams, diagrams of other
types.

Let us consider a simple scalar analog of the formation
of hadrons from quarks in a model with the Lagrangian

L̃ =
1
2
(
gabΦ,aΦ,b −M2Φ2

)
+

1
2
(
gabϕ,aϕ,b −m2ϕ2

)
+

+
1
2
(
gabξ,aξ,b −m2

qξ
2
)

+ gΦ2ϕ+ λξ2ϕ, (36)

where, by mq, we denoted a mass of 0.338 GeV made
dimensionless with the pion mass m. Such a mass is
approximately equal to the mean mass of light quarks.
The model with Lagrangian (36) contains the diagrams
shown in Fig. 14,a (dashed lines correspond to the field
ξ).

The main problem of maximization of the modulus of
the scattering amplitude corresponding to the diagram
in Fig. 14,a consists in the calculation of the integral
for the four-vertex loop in Fig. 14,b. The symmetry of
the diagram implies that if the modulus of the scattering
amplitude has the maximum point, then this maximum
should be attained at equal four-momenta pa = pb = p
of the particles joining each four-vertex loop. Therefore,
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Fig. 15. Values of rapidities at the point of constrained maximum
of the modulus of the scattering amplitude for the diagram in Fig.
12,a with simple and “four-corner” vertices. For convenience, the
points are connected by lines: dashed lines for simple vertices and
continuous lines for “four-corner” vertices

by setting these momenta to be identical, we can fur-
ther maximize the obtained restriction of the scattering
amplitude. This simplifies significantly the calculation of
the integral corresponding to the loop in Fig. 14,b. After
this simplification, the integral over the four-vertex loop
can be transformed into a single integral. The final ex-
pression of this integral is awkward and is omitted here.
But it turns out to be quite suitable for the subsequent
numerical maximization of the moduli of the scattering
amplitudes corresponding to diagrams of the type shown
in Fig. 14,a with a small number of four-vertex loops.

The values of rapidities at the maximum point for a
diagram with 4 “four-corner” vertices are given in Fig.

Fig. 16. Dependence of the dimensionless virtualities at the maxi-
mum point for vertical lines of the diagram in Fig. 14,a with four
“four-corner” vertices on the energy. Line a) corresponds to the
energy

√
s = 5 GeV, b)

√
s = 10 GeV, c)

√
s = 15 GeV

Fig. 17. Increase of the modulus of the function corresponding
to the “four-corner” vertex in Fig. 14,b with the energy. Line
a) corresponds to the energy

√
s = 15 GeV, b)

√
s = 10 GeV,

c)
√
s = 5 GeV. The enumeration of vertices corresponds to Fig.

14,a: the first vertex is that, into which the first vertical line in
the diagram in Fig. 14,a enters, etc.

15. The comparison with the maximization of an anal-
ogous diagram with simple vertices indicates that the
replacement of the constant corresponding to a simple
vertex by the complicated expression corresponding to
the “four-corner” vertex diagram in Fig. 14,b changes
slightly the result of the maximization. In this case, the
difference between these results becomes insignificant, as
the energy increases.

In Fig. 16, we show the results of calculations of the
values of virtualities at the maximum point, which corre-
spond to vertical lines of the diagram (the enumeration
of lines is shown in Fig. 14,a) at various energies. It is
seen from Fig. 16 that the basic mechanism of growth of
cross-sections, which is related to a decrease of the virtu-
alities, is conserved for the diagrams with “four-corner”
vertices.

In addition, we indicate the new mechanism of growth,
which is caused by the increase of the moduli of the
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relevant functions with the energy at the maximum point
corresponding to “four-corner” vertices (Fig. 17).

Thus, the results of this section allow us to conclude
that there exist the quite many types of diagrams, which
can be calculated by the Laplace method. In this case,
the fact that we don’t have to know the values of compli-
cated integrals for all values of external momenta, but
only in a small neighborhood of the maximum point,
simplifies significantly the consideration of these inte-
grals and enables to treat new diagrams earlier inacces-
sible for calculations.
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МЕТОД ЛАПЛАСА ДЛЯ ОПИСУ НЕПРУЖНОГО
РОЗСIЯННЯ АДРОНIВ I НОВI МЕХАНIЗМИ
ЗРОСТАННЯ ПЕРЕРIЗIВ

I.В. Шарф, А.В. Тихонов, Г.О. Сохранний, К.В. Яткiн,
М.А. Делiєргiєв, Н.О. Подолян, В.Д. Русов

Р е з ю м е

Показано, що iснують типи фейнманiвських дiаграм, для роз-
рахунку яких можна застосувати метод Лапласа, що дозволяє
виявити новi механiзми зростання перерiзiв розсiяння, якi не
враховуються реджiонною теорiєю внаслiдок нехтування за-
лежнiстю амплiтуди розсiяння вiд поздовжнiх компонент iм-
пульсiв вторинних частинок у системi центра мас вихiдних ча-
стинок. У межах мультипериферичної моделi отримано зале-
жнiсть повного перерiзу розсiяння вiд енергiї, яка на якiсному
рiвнi збiгається з експериментальною залежнiстю.
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