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We propose new types of models of the appearance of small- and
large-scale structures in media with memory, including a hyper-
bolic modification of the Navier–Stokes equations and a class of
dynamical low-dimensional models with memory effects. On the
basis of computer modeling, the formation of the small-scale struc-
tures and collapses and the appearance of new chaotic solutions
are demonstrated. Possibilities of the application of some proposed
models to the description of the burst-type processes and collapses
on the Sun are discussed.

1. Introduction

The basic equations for heat transfer and hydrodynam-
ics are usually parabolic heat equations and the Navier–
Stokes hydrodynamic equations. But these equations
lose their applicability in extended media, when the
characteristic scales of the variation of parameters are
less than the correlation time and the correlation length
(relaxation or memory and nonlocality effects). Many
examples of nonapplicability were found in turbulence.
Therefore, more correct equations should be used in such
cases. As for the description of transport processes, we
mentioned some well-established results in the theoreti-
cal physics.

The first famous idea is the existence of a hierarchy of
description levels. If there are N � 1 particles, we have
many levels for description: N deterministic dynami-
cal Newton laws for the movement of particles; Liouville
equation for the N -particle distribution function, Boltz-
mann equation for the one-particle distribution function,
hydrodynamic equations for macroparameters (Navier–
Stokes equations), and thermodynamic equations. The
choice of a level of description depends on the degree of
a deviation from the equilibrium.

The second important idea is the existence of many
interrelating relaxation processes and many time and
space scales with different relaxation times and lengths.
The memory and nonlocality effects are common for all
levels. Each level of description has its own specific type
of chaos, autowave solutions, collapses, and so on. It

should be stressed that each level of description has its
own model equations with typical behavior of a solution.
The problem of defining the typical chaotic behavior for
a given level is especially interesting.

The turbulence is a bright example of such complex
phenomena. It is well known that turbulence is encoun-
tered very often in broad classes of natural processes.
It is widely recognized that turbulence is a strongly
nonequilibrium phenomenon. Investigators dealing with
it in the specific branches of science, as a rule, formulate
the essence of turbulence on the intuitive level. This
results in the lack of a generally accepted and unified
definition of turbulence. In specific cases, one can en-
counter different types of turbulence. This difference
is fixed, for example, in the plasma theory (strong and
weak turbulence).

Till now, the definition of turbulence, which would be
strict and evident in all cases, is absent. To imagine a
set of possibilities in this question, we will recall a few
descriptions of turbulence mainly related to hydrody-
namics.

“Turbulent motion of fluid at large enough values of
the Reynolds number is characterized by the extraordi-
narily irregular, random change of the speed in time at
every point of a stream (the developed turbulence). The
speed always pulsates near the some mean value” [1].

“Turbulent motion is, generally speaking, vortical” [1].
“So, the turbulence is a vortical flow of a viscous fluid

which is stochastic in the sense that it is characterized
by: 1) sensitive dependence on the initial conditions (this
caused by the exponential divergence of the initially close
phase trajectories); 2) all phase trajectories are dense
almost everywhere; thus, any initial nonequilibrium dis-
tributions of probability in the phase space tend to the
limiting equilibrium distribution; 3) mixing in the phase
space (and, as a result, ergodicity, by the rapid fading of
temporal correlation functions and the continuity of fre-
quency spectra); 4) the developed turbulence possesses
additionally multimodes and, as a consequence, mani-
fests the chaos in its spatial structure at any fixed mo-
ment of time” [2].
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“This motion is so complicated and so not studied
enough, that is is difficult to answer the questions: what
is turbulence, and which kinds of basic features of tur-
bulent motion are?” [3].

“Ones of the most considerable features of turbulence
are the co-operation of order and accident... The acci-
dent in turbulence is related to the extreme sensitiveness
to disturbances. At the same time, the chosen statistics
is roughly stable at disturbances” [4].

“What is turbulence? Some light for this difficult pur-
pose is explained by the study of offensive turbulence or
weak turbulence which is an aspect of chaos” [5].

“The following definitions of turbulence can be of-
fered... A turbulent flow should be unpredictable in the
sense that a small uncertainty at the initial time will
grow so that the strict deterministic prediction of its
evolution is not possible; second, a turbulent flow should
satisfy the property of the increasing mixing” [6].

Still, a number of determinations of the theory of
plasma turbulence are presented that, as will be argued
below, has definite interest. As for hydrodynamic tur-
bulence, the most common descriptive determination is:
“Any state of plasma with the strongly developed noises
and vibrations is accepted as the turbulent one” [7].

The selection of collective degrees of freedom in
plasma turbulence and the construction of turbulence
on their basis are of importance.

“Presentation which is usually inlaid in the notion of
turbulence substantially differs from the notion of molec-
ular motion. Speaking, for example, about the mo-
tion of any element of fluid, the motion of some macro-
scopic volume is implied, containing the large number of
molecules... In other words, the hydrodynamic motion
of fluid corresponds to the definite collective degrees of
freedom... It is possible to define the concept of “tur-
bulence”: the turbulent motion of macroscopic bodies is
such a motion, in which the collective degrees of freedom
are intensively excited and carried an accidental charac-
ter” [8].

As a rule, it is assumed that turbulences in plasma
and in fluid are different. In [9], the comparison of turbu-
lence in plasma with turbulence in incompressible fluid is
given. It turns out that the instability of fluid causes the
excitation of whirlwinds, and there are difficulties with
the flows of energy. It is considered that the indicated
difficulties have a basic character and are connected with
the strong turbulence in incompressible fluid. This is
expressed by the following: whirlwinds generally do not
have their own frequencies, and the time of transmission
of energy from one whirlwind to a neighboring one is
about one turn of the whirlwind.

Unlike the motion in incompressible fluids, there are a
lot of collective oscillating motions in plasma which have
their own definite frequencies. The time of transmission
of energy of these vibrations to the neighboring scales (or
neighboring wave numbers) can essentially exceed the
characteristic period of vibrations ω−1

k . Because of this
“elasticity” of collective motions, a small parameter ω =
τω−1

k � 1 can appear. It is considered that the presence
of this small parameter allows one to use the regular
methods of decomposition of the energy of turbulence
and to build the theory of weak turbulence [9]. The role
of dispersion for plasma turbulence is underlined here.

So, in [10], it is indicated that the dispersion is absent
in incompressible fluids. Therefore, in this situation, we
see the turbulence of whirlwinds and the transmission
of energy between them. Plasma possesses many exci-
tations with dispersion, co-operation, and weak turbu-
lence [10]. In addition, there is the strong turbulence of
solitons in plasma. Let us note that the results of inves-
tigations presented in the cited work presumably show
that a sharp barrier between the types of turbulence in
plasma and fluid is not present, and the situation turns
out to be more difficult and interesting. Plenty of deter-
minations indicates that the common determination of
turbulence is absent, and there can be one specific type
of turbulence in every specific process. This distinction
is fixed, for example, in the theory of plasma (strong and
weak turbulence).

But even if a rigorous definition exists, we must use
some mathematical idealization in the theoretical study
of this complicated phenomenon. For distributed ob-
jects, we usually take the nonlinear partial differen-
tial equations (PDEs) or integro-differential equations.
Then mathematical models of the stochasticity con-
nected with the unstability in systems are investigated.

The mathematical object on the hydrodynamic level is
the system of PDEs for the velocity, pressure, and tem-
perature. Such a system includes equations of motion,
as well as the constitutive equations, which give the ex-
pressions for the dependence of deformations on stresses
[11]. The instant connections between displacements and
stresses lead to, in the case of the incompressible fluid,
the Navier–Stokes equations. The memory effects take
on the form of integral constitutive equations. The sim-
plest exponential kernels lead to the constitutive equa-
tions introduced formerly for viscoelastic media. In such
cases, we obtain the simplest modification of the Navier–
Stokes equations, namely, the so-called equations for the
Maxwell media ([12–14]).

Such modified system [12–14] is still a very complex
mathematical object. In order to understand its proper-

ISSN 2071-0194. Ukr. J. Phys. 2012. Vol. 57, No. 4 409



A.S. MAKARENKO

ties, one can investigate the simpler model equations.
It is well known that such a model equation for the
Navier–Stokes system is the nonlinear Burgers equation
one-dimensional in the spatial variable [9]. This equa-
tion was introduced empirically, and it was later derived
within the asymptotic approach. It has been recently
proposed [10] to include a second-order derivative with
respect to time in the Burgers equation. The main goal
of such a modification was the incorporation of mem-
ory effects. Then we have the model equation, the so-
called hyperbolic modification of the Burgers equation
one-dimensional in the spatial variable [15, 16].

Its numerical and analytical studies reveal many cu-
rious properties. One of the most interesting properties
is the existence of blow-up (collapse) solutions. How-
ever, not long ago, the two- and three-dimensional model
equations for viscoelastic systems did not exist. Follow-
ing the lines of deriving the Burgers equation, we put
forward multidimensional model equations. The analy-
sis of the full system [12–14] and the physical properties
of systems with memory (fast heat processes, plasma,
turbulence, statistical mechanics, viscoelasticity) allows
us to pick out some necessary properties that should be
accounted for by model equations. Such properties are
viscosity, mass transfer by convection, and a finite speed
of disturbances propagation. In addition, the properties
of such model equations should resemble, in some spe-
cific cases, the behavior of original equations [12–14] and,
what is more important, the behavior of real objects (for
example, the stability properties). Our analysis leads to
some new model equations with such properties. The
simplest two- and three-dimensional equations have the
form

µ
∂2u
∂t2

+
∂u
∂t

+ uk
∂u
∂xk

= c4u.

The nonlocality may be incorporated in the model equa-
tions as well.

2. The Choice of Model Equations

Since a deep theoretical description of mathematical
models for hydrodynamic processes can be carried out
by means of the methods of theoretical physics, we de-
scribe very briefly some main concepts from statistical
physics relevant to the choice of model equations.

Begining from the works of N. Bogolyubov, M. Born,
H. Green, J. Kirkwood, and J. Yvon (BBGKY), the
canonical approach in the theoretical physics is as fol-
lows. Let us consider the medium constituted from N
independent particles. Then, in classical physics, we

can describe the particle movement precisely by a sys-
tem of ordinary differential equations (the Newton equa-
tions). But the statistical physics considers the ensem-
ble of the system by introducing distribution function
fN (x1, x2, ..., xN ; t) for the probability distribution of
particles at time t. The function fN is evaluated from
the Liouville equation

∂fN

∂t
+ {fN , H} = 0, (1)

where H is the Hamiltonian of the system, and {·} are
the Poisson brackets.

However, the function fN is too informative for the
description of hydrodynamic phenomena. Usually, all
necessary parameters are macroparameters (for exam-
ple, the temperature, pressure, and velocity: T , P, and
V ). The main leading principle in such a case is the re-
duction of the collection of description parameters. The
reduction procedure deals with some hierarchical levels.
First, by integrating over some variables in the phase
space, we can go to the one-particle distribution func-
tion f1 with the BBGKY chain of equations for s-particle
distribution functions. Note that, for f1, we can obtain
the well-known Boltzmann equation. These stages with
distribution functions are named kinetic.

The further averaging with the one-particle distribu-
tion function leads to macroparameters T , U, and P .
Usual procedures lead to well-known equations of the
hydrodynamic type: the parabolic heat equation, the
Navier–Stokes equations, and so on. But a more cor-
rect description leads to more complicated equations
with memory effects. The reason for the origin of mem-
ory effects under reduction processes is very well de-
scribed in theoretical physics, since the works of H. Mori,
R. Zwanzig, R. Picirelli, D. Zubarev, and many others,
see [17–20]. In this approach, we obtain the hydrody-
namic equations for macroparameters with some consti-
tution equations relating to macrovariables. In general,
such constitutive equations have the form of integro-
differential equations [15].

Let us make some comments concerning the reduced
description. The reduction of a description takes place
not only at the level of the BBGKY chain. Thus, even
having the equations of hydrodynamics and solving them
by approximate methods, we get the chain of reduced de-
scriptions corresponding to different accuracies of meth-
ods. This is easy to see in the Galerkin method for the
Navier–Stokes equations [21]. It is known that the con-
struction of solutions in the form of a series in trigono-
metric functions leads to the system of three ordinary
differential equations (the Lorentz system) with chaotic
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behavior. If we take a larger number of modes M > 3
into account, then other types of chaotic or even periodic
behavior are observed at M > M ′′.

It is clear that the different Galerkin systems derived
with different numbers M correspond to the different
levels of reduced description (with M leading parame-
ters). This can help to understand the sense of such
chaotic behavior and to answer the question: can the
low-dimensional dynamical systems transfer the chaotic
behavior of the initial system of PDEs.

Here, we can reason in the same way as in the case of
the Liouville equations. If we had the complete phase
portrait of the infinite-dimensional Galerkin system of
ordinary differential equations (ODEs), we would pass
the properties of a system of PDEs completely and would
know the trajectories exactly.

In order to substantiate the low-dimensional dynami-
cal system and the limiting transition as M →∞, there
is a way appearing from the classical theory of differ-
ence schemes when the convergence and the accuracy
are proven as M →∞.

However, presumably for any numerical scheme (at
fixed M), a system with such a complicated phase por-
trait can be found that a numerical scheme will not be
able to correctly pass the behavior of a solution. How-
ever, we do not need such detailed information about the
solutions in many cases, since it is important to know
only some general patterns. Here, the situation is the
same as in the description of N particles in a determin-
istic way or by means of the distribution function.

Therefore, the applicability of finite-dimensional dy-
namical systems as M →∞ should be considered in the
sense of characteristics of chaos by the bringing of prob-
abilistic conceptions (for example, the limit of invariant
measures). In addition, it is well known that the appli-
cation of probabilistic methods to the theory of cellular
automata makes the proof easier [22].

Probabilistic considerations also allow to put forward
a question about the correct transmission of chaotic
behavior by means of different finite-dimensional pro-
jections. Some similar thing is done for the infinite-
dimensional Bogolyubov’s chains in the so-called lattice
systems [23].

We should especially note the reasons for the appear-
ance of memory and the nature of memory in the given
context. From Maxwell’s considerations of the model
example, the memory appears because of the account-
ing of a delay. In the thermodynamics of media with
memory, the memory is simply postulated in integro-
differential relations for the flow of heat and the tensor
of stresses with the defined kernels of integral relations.

But the exact type of relations and the specific expres-
sions for kernels can be derived in statistical physics by
means of a reduced description, when information about
the “unimportant” degrees of freedom is taken into ac-
count implicitly through kernels. The essence of this
phenomenon was found out in the so-called projection
method of Mori–Zwanzig’s type [24], and in the method
of nonequilibrium statistical operator by D. Zubarev
[25, 26].

In this approach, the distribution function f is divided
into two parts: f = f1 +f2. For example, as a rule, f1 is
chosen as the locally Maxwellian distribution depending
only on the relatively slowly changing hydrodynamic pa-
rameters T , p, and u. Part f2 carries information about
quickly changing micromotions. Then, the application of
f1 leads to hydrodynamic equations, which should con-
tain contributions of the “rapid” part f2.

In order to do this, the projection operator P is in-
troduced so that f1 = Pf , f2 = (1 − P )f . Then, one
can use the solution of the Liouville equation in the form
f(t) = exp (−itL) f(0), where L is the Liouville operator
connected with the Hamiltonian system. After some ma-
nipulations [24, 26, 27], the expression for f2 is obtained
as

f2 = e−i(t−t0)(1−P )f2(t0)−

−i
t−t0∫
0

dt′e−it′(1−P )L(1− P )Lf1(t− t′). (2)

The equation for f1 is as follows:

∂f1(t)
∂t

= −iPLf1(t)− iPLe−i(t−t0)(1−P )f2(t0)−

−
t−t0∫
0

dt′e−it′(1−P )L(1− P )Lf1(t− t′). (3)

It easy to see that (2) and (3) have a temporal nonlocal
character. This is caused by the division of the distribu-
tion function into two pieces. The difficulties with the
choice of the projection operator are well known. They
were overcome within the method of nonequilibrium sta-
tistical Zubarev’s operator. According to this method,
the distribution function depends on a certain collec-
tion of parameters of the reduced description a1, ..., ak,
f = f(a1, ..., ak), where {aj} are certain averages of the
distribution function f [26]. Note that, in this case, we
can obtain, in principle, the same relations for f taking
the memory effect into account.
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Concerning the hydrodynamic level of description, the
distribution functions lead to the equations of hydrody-
namics in the form of balance laws for the momentum
and the energy,

∂ρ

∂t
+
∂ρV

∂x
= 0,

∂V

∂t
+ Vk

∂Vk

∂x
+ grad p = div σ + F,

∂E

∂t
+
∂IE
∂x

= 0,

where ρ is the density, V is the velocity, p is the pressure,
σ is the stress, F is the thermal force, E is the energy,
IE is the energy flow.

To close these equations, the integral relations for the
heat flow and the tensor of stresses are used. A short
clear presentation of these issues is given in the appendix
to the book written by Day [28].

Let us write these relations in the one-dimensional
case:

σ(x, t) =

t∫
−∞

dt′
∫
dx′K1

∂u

∂x
(x′, t′), q(x, t) =

=

t∫
−∞

dt′
∫
dx′K2

∂T

∂x
(x′, t′). (4)

In these relations, the kernels K1 and K2 derived by
means of a routine procedure are connected with the cor-
relators of variables. The correlators can be calculated
with the help of the distribution function. For example,
for K1, we have

K1 = (q(x), q1(x′,−t)) . (5)

Here, in (5), there is the ensemble average.
Thus, summing up the known results in statistical

physics, it appears that the application of a reduced de-
scription at a hydrodynamic level leads to the conserva-
tion laws, which are closed by some integral relations.
These integral equations can have a very complicated
form including a nonlinear dependence on hydrodynamic
variables. The specific type of kernels depends on a set
of degrees of freedom involved in the process (this indi-
cates the necessity of their incorporation at the reduced
description).

In turn, these “necessary” degrees of freedom appear
in a deviation from the equilibrium state. In equi-
librium, thermodynamics is enough to characterize the
temperature of a body as whole. It is easy to see that,

without consideration of prehistory effects, the ordinary
relations for the heat conductivity in the form of the
Fourier law q = −λ∂T/∂x and the relations for stresses
σ = −ν∂u/∂x are derived. These relations lead to the
parabolic equation of heat conduction and to the Navier–
Stokes equations, respectively. The exponential kernels
like exp(−t/τ) lead to the hyperbolic equation of heat
conduction and to the equations of relaxation hydrody-
namics.

The exponential kernels correspond to a more exact
consideration of a deviation from the equilibrium state.
For an adequate, but rough description of the processes
running far from equilibrium, the hydrodynamic equa-
tions may be enough at the beginning (it is possible with
nonlinear constitutive relations). But after that, a hy-
drodynamic level can be not valid, and we need the whole
one-particle distribution function f1 (or even multiparti-
cle distribution functions) as a parameter of the reduced
description (see [29]).

Now, let us apply the aforesaid to the problem of tur-
bulence. Assume that each level of reduced description
has the corresponding characteristic chaotic behavior,
which can be called the turbulence corresponding to the
given level of reduced description. This was done in
[30] in an implicit form and in [32] in an explicit form.
A similar concept is contained in [31]. This assertion
seems to allow us to reconcile the seemingly irreconcil-
able points of view on the so-called hydrodynamic tur-
bulence. Of course, it is a complex phenomenon which
can demand the complete description with the help of
the function fN (for example, for the developed isotropic
turbulence). However, the levels of reduced description
may be enough for weaker turbulence and, especially, for
the study of the initial stages of its development. Note
that, at different levels of description, the features of a
general picture may be different. That is why, despite
the disadvantages of the Navier–Stokes equations, these
equations can contain, nevertheless, information about
the turbulent behavior. For example, in [4], the term
“Navier–Stokes turbulence” appeared even. It is possi-
ble that the Navier–Stokes equations can pass the initial
stages with the loss of the stability of laminar flows.

We observe other types of turbulent behavior, by us-
ing the levels of reduced description with the help of the
complete Liouville equation. Thus, the place of many
works concerning the incorporation of different fluctua-
tions is cleared up. Small-scale fluctuations can be in-
corporated at the level of the Boltzmann equation in
the integral term ([31, 33] and others). Incorporation
of large-scale fluctuations, which correspond to the col-
lective motions like a fluid flow, is much more difficult.
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In this case, the Reynolds procedure of the separation
into the average flow and pulsation components does not
help, because it is based on the system of Navier–Stokes
equations. Therefore, since the 1960s, plenty of work was
devoted to the considerations of large-scale fluctuations.
These works contain those rejecting the hypothesis of
molecular chaos [34], the role of the asymmetry of dis-
tribution functions with respect to the transpositions of
particles [35], etc.

So, in [36], the role of large-scale fluctuations had been
accounted in the consideration of the equations for two-
particle distribution functions. The role of fluctuations
was considered in [31] as well. It is worth noting book
[37], which is not devoted especially to the problem of
turbulence, but contains a lot of results having a direct
relation to it.

Thus, in principle, it is known how to construct the
equations corresponding to the levels of reduced descrip-
tion in a general abstract form. As a rule, theoretical
physics deals with the qualitative investigation of these
equations. However, the specific information extracted
from them is difficult for the interpretation because of
their complication. At the same time, in hydrodynamics,
it would be desirable to have the description of macroef-
fects. In this case, the study of model equations can help.
Within this approach, the Navier–Stokes equations and
the equations for Maxwell’s media can be regarded as
model equations. As mentioned above, the usefulness of
model equations for the consideration of turbulence is
confirmed by both experimental data on the turbulent
flows and their derivation from the Boltzmann equation.
Note that they can be obtained with the use of the model
exponential kernels given by relations (4).

It is possible also to assume that the same relations
with exponential kernels will be a model in some sense
for equations with an extended set of variables in com-
parison with the hydrodynamic one, describing the aver-
age flows. The characteristic times of relaxation deter-
mined by large-scale fluctuations can be large enough in
comparison with the free motion time of molecules, as
experiments demonstrate. Moreover, it is possible to as-
sume that the equations of hydrodynamics with memory
are, in some sense, the case of “general position” at the
modeling of turbulence, while the Navier–Stokes system
is a degenerate case where the time of relaxation tends
to zero.

So, it is possible to make conclusion that, at the mod-
eling of turbulence, the equations with memory are more
preferable. Therefore, in order to make some features
of turbulence on the hydrodynamic stage more exact,

we should use the presented equations or their conse-
quences.

It turns out that the consideration of equations with
memory or their model equations leads to some unex-
pected results and raise problems, some of which are
given in the following sections.

We also note that some reduction procedures can be
applied further to hydrodynamic equations. For exam-
ple, the search for a small number of leading parameters
in the theory of dissipative structures or synergetics and
in the phase-transition theory can be also considered as
a reduction in description (see the works by I. Prigogine,
H. Haken, W. Ebeling). We also mention the new inves-
tigations of reducing the partial differential equations
to low-dimensional ordinary differential equations and
their attractors [38, 39]. The next stage of reduction
consists of the transition to the pure thermodynamic
description. It should be stressed that, in general, the
precise abstract equations for different hierarchical lev-
els of description are known from theoretical physics.
Usually, theoretical physicists explore these very com-
plex abstract equations (frequently qualitatively). But,
on a hydrodynamic level, it is especially interesting to
search for visible macroeffects. In such a case, the con-
sideration of model equations is especially useful. Thus,
the Navier–Stokes equations, their hyperbolic counter-
part, and low-dimensional systems of ordinary differen-
tial equations are the model equations.

There is a great interest in the investigation of typical
model equations for different hierarchical levels and their
typical solutions. Note that, usually, such typical solu-
tions are the basic elementary objects for a description
of complex real phenomena.

3. Collapses, Elementary Objects, and
Instabilities

As was mentioned in the previous sections, various for-
mations play an important role in turbulence. To some
degree, the type of structures under consideration deter-
mines possible functional spaces. Therefore, the results
presented here largely join the results of the previous
section.

Among elementary objects, we should first distinguish
the singularities of solutions. In other words, these are
collapses, modes with intensification, and blow-up solu-
tions. These solutions tend to infinity for a finite time at
certain points. Despite the exoticism, such solutions are
often used in the investigations of physical processes. It
turns out that they have a long history connected with
problems of turbulence. For example, the vortical tubes
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in a fluid at the pull increase the rotation. The dissipa-
tion of energy in turbulence takes place not in the whole
fluid, but it is concentrated in the certain localized re-
gions, which is known as the intermittency. Vortices can
grow under conditions of rotation of turbulent fluids.

Naturally, the phenomena of such types are repre-
sented in the mathematical models of turbulence. One
class of effects is connected with the vortical motions of
ideal incompressible fluid which is a good model for the
study of the developed turbulence, when the Reynolds
number Re → 0, and the influence of viscosity is ig-
nored. Except for pure experimental works, there is a
large number of investigations on the numerical model-
ing. According to the results of modeling, it has been
revealed that, under the conditions of precise computa-
tions with the help of special numerical schemes, there is
a tendency to the increase of vorticity with regard for the
character of approximating methods (see [40]). Finally,
the exact analytic solutions with a vorticity collapse are
found.

Singularities of the initial Navier–Stokes system are a
much more difficult problem. Let us recall the block
of ideas related to the theory of turbulence such as
the supposition that a solution or its functionals is re-
ferred only to a finite moment of time and then tends
to infinity. After the moment of collapse, the solution
“becomes” finite again; then the process is repeated.
Note that nonuniqueness can be observed. Therefore,
we should keep in mind the classical investigations con-
cerning the theorems of existence and uniqueness of so-
lutions of the Navier–Stokes equations. We note that
J. Leray proved the existence of a global weak solution
in the class of quadratically summable functions in the
three-dimensional case under the condition that the ini-
tial data have bounded energy.

However, the existence of such solutions does not guar-
antee the absence of a singularity of the solution (i.e.,
the increase of a solution to infinity). It was also un-
known, whether such solutions can develop from smooth
initial data. The essential results in this direction are the
derivation of a strong upper bound for the Hausdorff di-
mension. It turns out that the measure of the support
of singularities is equal to zero.

Recently, this problem has been developed in papers
related to the multi-valued solutions. As a consequence,
the concept of “concentration in the solution” appeared.
This means that a sequence poorly converging in L2

functions can have a limiting function with the infinite
values of solutions on the “emaciated” set. As an exam-
ple, the sequence of functions in Rn [41] is presented.
The work of F. Merle is indicated in [41], where the

behavior of a solution after the infinity moment is con-
sidered.

Let us pay attention to work [42] which deals with
singular solutions. There, for the Burgers equations and
the boundary-value problem, the classes of stationary
solutions having singularities were studied.

Perhaps, the first solution of the Navier–Stokes system
with a collapse was considered in [43]. In connection
with a collapse, let us point out that the studies were
carried out for model equations of the hyperbolic type
of the second order.

The collapse in a hydrodynamic system with inter-
nal degrees of freedom was considered numerically by
V.A. Khrisheniuk. These results are based on strict
mathematical assertions. In spite of many open ques-
tions, the solutions with a singularity of the vortical type
were repeatedly used in different physical investigations.
So, in [44], the dynamical system consisting of a small
number of vortices is considered, and the conditions for
the appearance of chaotic motions are stated. The sub-
sequent investigations were developed toward a higher
number of vortices, their grids, and the distribution of
vortices in media, when the statistics of objects-vortices
was built. We also indicate the chaos built with regard
for the co-operation of vortices and spiral waves.

In connection with the hydro- and gas-dynamics, we
mention another type of singularities related to the so-
called gradient catastrophes, when the solutions remain
bounded, but the spatial derivatives grow without any
restriction. Thus, there can be shock waves in the so-
lution. Such a situation is especially characteristic of
the compressible media. Moreover, such shock waves or
solutions formed from their combinations serve the ele-
mentary solutions in some models of turbulence, when
a model is built on the statistics of such excitations (for
example, turbulence in the Burgers model).

V.E. Zakharov and co-workers dealt with collapses
considering them both numerically and analytically [45,
46]. The brief, but very capacious review is presented
in [47], where the possible applications of collapses to
hydrodynamic turbulence are announced. The role of
collapses is especially interesting for plasma as places
of dissipation (flow of energy), as well as their role in
Langmuir turbulence, when high-frequency vibrations
are concluded in a small-size cavity. These phenomena
were predicted in a theory and confirmed by computa-
tions. Moreover, they found experimental confirmation
quite recently [48]. It is important that this process can
go in the retrograde direction on the spectrum of waves,
i.e. the energy is passed into a short-wave region. This
differs from many models, in which the energy is passed
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over a spectrum into a long-wave region, where the con-
densation of long-wave excitations can become even sim-
ilar to the Bose-condensation in quantum theory. In [47],
the types of collapses, the amount of the energy involved,
and the threshold effects were considered. There, the ba-
sic model equation (as well as in many other works) is a
nonlinear Schrödinger equation. Because of the impor-
tance of the hypotheses mentioned in [47], we will quote
two extracts:

“The multiple development of wave collapses, where
the dissipation of turbulent energy occurs, is characteris-
tic of many types of turbulence in a continuous medium.
It is not set presently, whether the classical turbulence
of ideal incompressible fluid belongs to the given type,
although there are very serious grounds for this hypoth-
esis ...” “However, plasma physics is the basic “user” of
theory of wave collapses.”

As our investigations have shown, the more general
models of hydrodynamics considering the effects of mem-
ory give, indeed, serious arguments in favor of such a
hypothesis. Note that the role of singularities in turbu-
lence was described in [30]. Dispersion in the system is
also important. In connection with collapses, the soliton-
involved turbulence was also considered, when the mod-
ulation instability is a reason for the appearance of soli-
tons as elementary objects making turbulence.

Work [49], in which the collapses are considered in a
conceptual plan from a new point of view, recently ap-
peared (this paper intersects partially with the cited arti-
cles). It also deals with solutions with the development
of collapses on the basis of the nonlinear Schrödinger
equation used adequately describe the abnormally large
transfer in turbulent flows. The model is built in such a
way that the solutions with collapses do not always grow,
and, at large amplitudes, some limiting factors result in
a reduction of the amplitudes. This process repeats it-
self by the spontaneous appearance and is named the
homoclinic excursion. It looks like that a model passes,
indeed, some lines to turbulence. However, the authors
of [49] discussed the question about the applicability of
the Schrödinger equation to the real hydrodynamic tur-
bulence. Let us note that the equations involving the
memory allow one to consider similar effects.

The numerous investigations described in the practi-
cally similar books on turbulence and chaos indicate that
the structures usually arise as a result of the display of
different nonstabilities in the systems. The type of an
instability determines the character, size, and dynam-
ics of structures. Therefore, concluding this section, we
will briefly discuss different types of instability, because
some definite advancements appeared lately in this di-

rection. In addition, as is generally known from works
on dynamic chaos, it is considered that a local instability
provides this phenomenon.

There is an enormous number of investigations on hy-
drodynamic instabilities. Here, we refer only to a small
number of topics. The first topic concerns the problems
of incorrectness in physical problems. It is known that
the physical problems should be posed so that they are
correct by Hadamard. At the same time, many classes of
ill-posed problems exist. In hydrodynamics, such prob-
lems arise as well. We recall, for example, the problems
of the explosive instability with the Burgers equations
with the negative coefficient of viscosity, and the prob-
lems of the boundaries of flows (the Kelvin–Helmgoltz
instability). A noncorrectness arises in the problems of
motion in viscoelastic media under the change of their
type from hyperbolic to elliptic. The Cauchy problems
for elliptic equations arise in investigations of elliptic
equations for defects. Recently, some ill-posed problems
were considered by V.P. Maslov [50]. He gave the defi-
nitions of degree of noncorrectness [51].

In hydrodynamics, V.P. Maslov considered the asymp-
totic behavior of viscosity ν → 0 with fast-oscillating
initial data, which leads to the asymptotic uniqueness
and the loss of causality in deterministic problems [50].
With collapses, some unsteady problems were consid-
ered, when a solution grows due to resonances.

Here, we briefly describe the phenomenon of waves
with negative energy in media with memory. Such waves
were first considered in the problems of electronics in the
1950s. The essence of the phenomenon consists in defi-
nite wave disturbances of the distributed active medium
such that the growth of their amplitudes is accompanied
by a decrease of the energy of the media–wave system
[52]. Formally, it is expressed in the negative distribu-
tion of energy for these waves. Essentially, such effects
are possible only in thermodynamically nonequilibrium
media. It is also known that the frequent co-operation
of waves with negative energy results in collapses, and
the properties of such systems are determined by the
dispersion relations of linearized problems.

In conclusion, we will indicate another aspect related
to the instability, turbulence, and chaos. As was already
mentioned, for the chaos (in the mathematical sense) in
finite-dimensional systems, a instability (the Oseledets
theorem) is needed. However, this situation is not simple
for the infinite-dimensional systems.

In addition, there is a separate complex problem
related to the supervision of chaos in the infinite-
dimensional systems and their interpretation. In fact,
it is similar with the problem of image regeneration,
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which, as is generally known, is improper. There are
many examples of effects of this type, and these prob-
lems deserve a deeper study. We mention the intricate
mathematical problems of stability in systems with sin-
gular coefficients (as those described by the Schrödinger
equation with singular potential).

4. Low-Dimensional Models for
Two-Dimensional Generalized
Hydrodynamics

Among approaches to the investigation of hydrody-
namic equations, the Galerkin method should be dis-
tinguished. Using this method, it is easy to calculate
a low-dimensional dynamical system. So, we will deal
with dynamical systems obtained from the nonlocal hy-
drodynamic models presented above.

Since the generalized models can be regarded as singu-
lar perturbations of simpler models, it is useful to carry
out the comparison of the solutions for dynamical sys-
tems squeezed out from various models of hydrodynam-
ics.

In particular, such test-systems are the well-known
Lorentz system and the low-dimensional system for plane
flows investigated in [53].

4.1. Finite-dimensional systems for
two-dimensional flows with the periodicity
condition

One of the models considering the nonlocality effects in
two spatial dimensions is the Oldroyd fluid (the gener-
alization of the Maxwell medium ([12–14]):

∂V̄

∂t
+ Vk

∂V̄

∂xk
+ τ

(
∂2V̄

∂t2
+
∂Vk

∂t

∂V̄

∂xk
+ Vk

∂2V̄

∂t∂xk

)
k

−

−νΔV̄ − µ∂ΔV̄
∂t

= −
(

1 + τ
∂

∂t

)
grad P + F̄ (x, t) ,

div V̄ = 0, (6)

where V̄ = {V1, V2} are velocity components, ν is the
viscosity coefficient, P is the pressure, F̄ =

{
F̄1, F̄2

}
are external forces, τ is the relaxation time, µ is the
nonlocality coefficient, and (·)k means the summation
over repeated indices.

We consider model (6) on a plane region T 2 = [0, 2π]×
[0, 2π] with periodic boundary conditions. The geometry
of a flow and the boundary conditions were imposed just

like in [53]. In such a case, we consider the flows with
the velocity component vz = 0. We assume that the
flow is space-periodic in the (x, y)-plane with period 2π.
This implies that the flow and the flow derivatives are
periodic with period 2π. Moreover, we also assume the
mean flow averages over the region T 2 (see [53] and [38]):∫
T 2

V̂ dx = 0.

In our case, the solution is considered as a series in har-
monics exp(ik̂x̂), where x̂ are coordinates, and k̂ are
wave vectors with integer components,

v̂ (x, t) =
∞∑

k=1

γk(t) exp (ikx), (7)

where k is the wave vector.
Inserting (7) into (6) and performing long calcula-

tions, we obtained the system of equations for coefficients
γk(t):

τ
∂2γk

∂t2
+
∂γk

∂t
=

= −i
∑

k1+k2+k

γk1γk2(k1 + k2)
[
1− k1(k1 + k2)

|k|2

]
−

−ν|k2|γk + f1(k)
k2
2

|k|2
−

−iτ

[ ∑
k1+k2+k

(
γk1

∂γk2

∂t
γk2

∂γk1

∂t

)
(k1+k2)(1−k1−k2)

]
+

+τ
∂f1
∂t

(
1− i k1

k2

)
− iτ k1

k2

∂f2
∂t

, (8)

where f1 and f2 correspond to the Fourier expansion
of the function F . This infinite-dimensional system is
equivalent to the original system of PDEs. However, its
investigation is a very difficult problem.

Therefore, it is of common practice to “cut-off” such
a system and to merely consider a finite number of its
components. Truncated systems usually give some infor-
mation about the behavior of original equations. Thus,
we must take k in (7) from some bounded set L. Let us
take L = {k1 = (1, 1) , k2 = (3, 0) , k3 = (2,−1) , k4 =
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(1, 2) , k5 = (0, 1)} plus the vectors opposite in sign. Af-
ter the reduction, the following low-dimensional system
was obtained (ν = 1.0) [53]:

γ̇1 = 2γ1 + 4γ2γ3 + 4γ4γ5, γ̇2 = −9γ2 + 3γ1γ3,

γ̇3 = −5γ3 − 7γ1γ2 + r,

γ̇4 = −5γ4 − γ1γ5, γ̇5 = −γ5 − 3γ1γ4. (9)

The memory effects lead to the ten-dimensional coun-
terpart of (9):

dx1

dt
=
−x1 − 2x6 + 4x7x8 + 4x9x10

τ
+

+4 (x2x8 + x7x3) + 4 (x4x10 + x9x5)− 2µx1,

dx2

dt
=
−x2 − 9x7 + 3x6x8

τ
+ 3 (x1x8 + x6x3)− 9µx2,

dx3

dt
=
−x3 − 5x8 − 7x6x7

τ
−

−7 (x1x7 + x6x2)− 5µx3 +
R

τ
,

dx4

dt
=
−x4 − 5x9 − x6x10

τ
− (x1x10 + x6x5)− 5µx1,

dx5

dt
=
−x5 − x10 − 3x6x9

τ
− 3 (x1x9 + x6x4)− µx5,

dx6

dt
= x1,

dx7

dt
= x2,

dx8

dt
= x3,

dx9

dt
= x4,

dx10

dt
= x5. (10)

Now, we are going to describe some properties of system
(10). It is easily seen that the stationary points for the
original variables (x6, ..., x10) coincide with the station-
ary points for 5-dimensional systems from [53] (because
xi ≡ 0, i = 1, ..., 5 must be fulfilled in steady states for
(10)). This is because the complement terms in (6) with
coefficients τ , µ have time derivatives. Thus, the dif-
ference in stationary points between the usual and gen-
eralized cases consists in stability properties. The full

investigation of ODE systems for generalized hydrody-
namics is a forthcoming problem (especially in cases of
high-dimensional systems), so now we present only some
numerical results.

We carried out the numerical calculations of the dy-
namical system (10), which demonstrate a complicated
new irregular behavior of the solution. This type of a
phase portrait (called the butterfly) corresponds to the
Lorentz-type chaos. The behavior becomes much more
complicated, as the memory is considered. It is charac-
terized by a large value of maximal Lyapunov exponent
(which is larger than 1) and a broad power spectrum.
The projections of trajectories have a cross-like shape.
Let us note that such forms were found earlier in the
seven-dimensional system for the Navier–Stokes equa-
tions [54]. In analogy with [54], we may suppose that
such a pattern is created when the eigenvalue of the
Poincaré map for the periodic orbits crosses the unit cir-
cle at the point +1, and when the nonsteady hyperbolic-
type orbits are created.

According to the numerical integration, if R is in-
creased, the amplitude of the limit cycle grows until the
stability is lost, because the double bifurcation of the
period occurs. The subsequent development of the pe-
riodic regime was studied with the help of the Poincaré
bifurcation diagram. We can distinguish several period-
doubling bifurcations attached to the chaotic region in
the diagram. It is possible to make conclusion from the
form of the chaotic region that two different types of
chaotic attractors interact in the phase space of the dy-
namical system (10).

Thus, it follows from the obtained results that the
memory effects can cause a more complicated behav-
ior of solutions of the hydrodynamic model, while the
nonlocality can play the stabilizing role (at least in the
considered cases).

5. Model for a Three-Dimensional Case

Low-dimensional dynamical systems were constructed
for three-dimensional flows. Among results for such a
system, it is necessary to point out two new features.
First, the flow with external force demonstrates the
intermittency-II-type behavior under certain conditions.
Second, autooscillations were observed even without ex-
ternal forces.

Continuing the investigations of model (6), let us take
the boundary conditions for the three-dimensional sys-
tem (6) in the form

V̄
∣∣
∂Ω

= 0, (11)
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where Ω ∈ R3 is a region bounded by the surface ∂Ω,
which is the rigid boundary of the fluid volume. Relation
(11) known as the “stick” boundary condition means that
the velocity V vanishes on the rigid boundary (nonslip
boundary conditions). Physically, this means that fluid
does not move near the boundary, V∂Ω = 0.

According to the Galerkin method, the solutions of
model (6) are looked for as the expansions

V (x, t) =
∑

k

zk (t) Φk (x), (12)

where {Φk (x)} form the full system of orthogonal eigen-
functions for the linear eigenvalue problem with eigen-
values µk and eigenfunctions Φk:

νΔΦk = −µkΦk + grad pk, div Φk = 0,

Φk|∂Ω = 0,
∫
Ω

Φk (x) dx = 1. (13)

After some lengthy computations, we get the system for
amplitudes zk, k ∈ N

τ
d2z`

dt2
+
dz`

dt
+
∑

k

∑
m

ckm`zkzm + µ`z`+

+τ
∑

k

∑
m

{
zm

dzk

dt
+ zk

dzm

dt
+ ν

dz`

dt

}
ckm` = f `, (14)

where µ`, Φ` are given by (13),

f ` =
∫
Ω

F̄Φ`dx, ckm` =
∫
Ω

(Φ,∇) ΦmΦkdx, ` ∈ N. (15)

The values of f ` and ckm` coincide with the analogous
values from [55]. It is seen that, for τ = µ = 0, sys-
tem (14) coincides with that obtained in [39, 55] for the
Navier–Stokes equations. To investigate the influence of
memory and nonlocality on truncated Galerkin approx-
imations, we take the system of ODEs from [55]:

dx1

dt
= −η1x1 +Ax2x3 + F1,

dx2

dt
= −η2x2 +Bx1x3 + F2,

dx3

dt
= −η3x3 + Cx1x2 + F3. (16)

Here, A , B , C , and Fi are constants, and the additional
relation A + B + C = 0 is satisfied. The last condition
is derived in [55] by from considering the kinetic energy
of a nonviscous fluid with nullifying mass forces (ν = 0
, F̄ = 0). Let us fix the parameters

A = 1, B = −2, C = 1,

F1 = −−5 +
√

76
2

, F2 = −20−
√

76, F3 =
34 + 5

√
76

4
,

ηi = ν, i = 1, 2, 3, (17)

for illustration. Then the low-dimensional system in this
case is

dx1

dt
=
−x1 − x5x6 − νx4 + F1

τ
− (x3x5 + x6x2)−

−νsgn |µ| x1,

dx2

dt
=
−x2 + 2x4x6 − νx5 + F2

τ
+ 2 (x1x6 + x3x4) +

+νsgn |µ| x2,

dx3

dt
=
−x3 − x4x5 − νx6 + F3

τ
− (x2x3 + x1x5)−

−νsgn |µ| x3,

dx4

dt
= x1,

dx5

dt
= x2,

dx6

dt
= x3. (18)

It was shown in [55] that, in the case of the Navier–
Stokes system, there is a Hopf bifurcation, when ν = 0.
The value νcr = 2 separates the steady state and the re-
gion with periodic orbits. There is only a stable equilib-
rium for F̄ = 0. Now, let us present the results of numer-
ical integration of system (18) performed with the help
of the Runge–Kutta method. We observe the growth of
amplitudes, decaying oscillations, and the almost con-
stant solution on a time interval of about five time units.
However, near a time of 9.0, there is a strong burst of the
solution. After a time of 12.0, the burst decays. Then,
after a time of 14.0, the burst takes place again. This is
similar with the type-II intermittency.

Another interesting result is an oscillating regime
without mass forces. These oscillations take place for
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nonzero initial values. This case can be interpreted as
the evolution of a flow without external influence. The
presented behavior illustrates one of the possible ways of
the explanation of turbulence in flows without restoring
to negative viscosity. Our computations also confirm the
stabilizing role of nonlocality.

Let us summarize the numerical and analytical results
of the investigations of systems (16), (18), (9), and (10).

For the six-dimensional system (18), we found the ap-
pearance of periodic solutions. Such solutions were also
found without external forces (F = 0) under nonzero
initial conditions. We also found, in some cases, the phe-
nomena similar to “intermittency” (bursts in solutions).
The ten-dimensional system (10) was investigated for
some parameters. We changed the values of relaxation
time and the initial conditions. In the case with no mem-
ory (τ = 0), the projections of the phase portrait on
two-dimensional planes have the “butterfly” type of an
attractor similar to the diagrams for the Lorentz chaotic
attractor. In the case with τ 6= 0, there is a complex be-
havior of a new type. Visually, the trajectory fills densely
a bounded volume (named “container”). Trajectory pro-
jections on the planes have a broken form in many points.
Locally, the projection of the phase portrait looks like a
ball of thread or “patience”. Visually, the behavior is sim-
ilar to two-dimensional mappings with homoclinic tan-
gency and quasiattractors, which was described in [56].
Similar pictures were found in systems with the so-called
“fat-fractals” with larger fractal dimension than that of
a Cantor-type set. In many cases, the results of numer-
ical calculations look like the projections of motion on
the torus. The first Lyapunov characteristic exponent
stayed positive for a long time (but with diminishing
value). The numerical investigation of (10) with differ-
ent values of R displayed the still excitation of a com-
plex behavior. The standard one-dimensional bifurca-
tion diagram is entirely different from the usual period-
doubling scenario of the transition to chaos. We also
made some numerical investigations of the bifurcation
for a 10-dimensional system. We found that, without
external forces (R = 0), there was a unique stationary
point with zero coordinates. The Jacobian of the right
part of (10) had a pair of pure imaginary eigenvalues.
Some further bifurcation was obtained by increasing the
number of stationary points to ten with increasing the
value of R. At this process, the pairs of complex con-
jugate eigenvalues cross the imaginary axis from left to
right. Further investigations of the systems above look
very promising in the case τ � 1. This is the singular
perturbation of the usual systems of ODEs with chaos.
The evaluation of bounds for the attractor dimension

in the case τ → 0 is of interest (especially in the limit
N or/and R tending to infinity). Note that (14) con-
sists of ODEs of the second order in time. Hence, such
a system reminds the collection of oscillators. Each zk

corresponds to a wave number of the harmonic k. So,
we may anticipate the properties like the transmission of
energy along the spectrum of harmonics, the existence
of harmonics clusters, resonances, and so on. Also, some
ideas of memory effects in turbulence may be reconsid-
ered. There are many space and time scales in fluid
flows. This yields the existence of many types of chaotic
behavior in fluids. The account of memory leads pre-
sumably to a new type of chaos similar to the chaos in
media constructed from oscillators. Let us also note that
the above complex behavior may serve as a prototype of
a new possible type of chaos in media with finite speed
of propagation and with gauge symmetry.

6. Applications of Model Equations to Physical
Processes

The proposed models are quite new and are useful ob-
jects for further mathematical investigations. But just
now, some interpretation of the solutions may be pro-
posed for real physical processes. Some applications to
heat and mass transfer processes had been proposed and
tested experimentally earlier: the hyperbolic heat con-
duction equation, ignition theory by heat explosion, and
heat and mass transfer in turbulent and heterogeneous
media (see [14]). New peculiarities of solutions found
for new model equations allow the consideration of some
aspects of very important recent physical and technical
problems, where strongly nonequilibrium properties are
essential. A wide range of applications is represented by
the processes in astrophysics. The first subclass of prob-
lems is the description of the phenomena in the sparse
plasma, including also MHD. The second relevant field
of applications is the processes in the near-Earth space,
where a great number of different structures have been
found experimentally. The third field of investigations
is the processes in the Sun, especially the formation of
hot and cool spots, arcs, bursts, cellular lattices on the
surface, etc. Many theories have been proposed earlier,
but the problems are still open. The most interesting
consequence of the proposed model equations for such
problems is the presumable fragmentation of a flow with
diminishing the scale and increasing the vorticity of the
amplitudes of solutions for fast flows. Other important
problem is the building of thermonuclear power plants.
One of the main problems is the control over such pro-
cesses and apparatus and the suppression of a wide spec-
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trum of possible instabilities. Usually, the classical MHD
equations are used. But the proposed considerations
lead to the conclusion that new more accurate equations
for such processes far from equilibrium are needed. Fi-
nally, the proposed model equations with memory and
nonlocality effects can be used for extending the classical
synergetic problems to the processes much far from equi-
librium in the usual synergetics. We note, for example,
that the synergetics includes the classical Kuramoto–
Sivashinsky equation for considering many kinds of in-
stabilities. So, for the processes far from equilibrium,
the new equations to investigate the instabilities can be
proposed. Such equations will be a generalization of the
Kuramoto–Sivashinsky equation with regard for mem-
ory and nonlocality effects. For example, one of such
equations (with one spatial variable) for the formation
of structures has the form:

τ
∂2 u

∂t2
+
∂ u

∂t
+ u

∂ u

∂x
+ ν

∂2 u

∂x2
+ α

∂3 u

∂x3
+ β

∂4 u

∂x4
= 0,

where α, β, µ, τ, and ν are parameters. Note that the or-
dinary differential equation with a solution of the “trav-
eling wave” form coincides with that in the classical case
(τ = 0), but the stability conditions for such a solution
are different from those in the classical case.

7. Conclusions

Thus, in the present work, we propose to extend the
studies of memory effects in some distributed systems
allowing the classical description by partial differential
and ordinary differential equations. This leads to new
mathematical problems concerning the study of these
new objects and their solutions. The first studies allowed
us to find new properties and to propose a lot of new
research problems.
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МОДЕЛЬНI РIВНЯННЯ I УТВОРЕННЯ СТРУКТУР
У СЕРЕДОВИЩАХ З ПАМ’ЯТТЮ

О.С. Макаренко

Р е з ю м е

Наведено дослiдження появи структур малого i великого мас-
штабiв у середовищах з пам’яттю. Запропоновано приклади
нових типiв моделей. Розглянуто гiперболiчну модифiкацiю
рiвнянь Навье–Стокса та клас динамiчних маловимiрних мо-
делей, якi враховують ефекти пам’ятi. Описано результати
комп’ютерного моделювання, якi iлюструють утворення стру-
ктур малого масштабу i появу колапсiв. Розглянуто появу но-
вих хаотичних рiшень в деяких моделях. Обговорено можли-
востi застосування деяких запропонованих моделей до опису
спалахiв i виникнення колапсiв на Сонцi.
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