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In the framework of the quasiclassical approach, the soliton states
localized near a plane defect layer with nonlinear properties at
different signs of nonlinearity and different characters of the inter-
action between elementary excitations in the system and the defect
layer have been studied. The quantum-mechanical interpretation
of corresponding nonlinear localized modes is proposed in terms
of bound states of a large number of elementary excitations. The
existence domains for such states are determined. The properties
of those states and their dependence on the character of the in-
teraction of elementary excitations with one another and with the
defect are studied.

1. Introduction

The research carried out in this work is immediately
connected with a rather new actual direction in mod-
ern theoretical physics, the theory of nonlinear waves
and solitons in solid-state physics. The recent stud-
ies in this domain were directed toward studying the
solitons in actual physical systems with regard for their
discreteness, structure imperfection, internal microstruc-
ture, and other features. From the viewpoint of techno-
logical applications, the largest attention is focused on
multilayered structures of various types. For instance,
these are multilayered magnetic systems, the applica-
tion of which can be of interest owing to their magne-
tooptical properties and the phenomenon of giant mag-
netoresistance in them, as well as multilayered crys-
tals with multiatomic unit cells, high-temperature su-
perconducting compounds, and others. In nonlinear op-

tics, layered and modulated media are used in fiber sys-
tems, optical delay lines, and so forth (see, e.g., works
[1, 2]).

In nonlinear optics, nonlinear media (e.g., a magnet,
an elastic crystal, or an optically transparent insula-
tor) are considered, as a rule. Such a medium con-
tains narrow layers, which differ from the medium itself
by their properties. In the case of waves with a sta-
tionary profile, the problem is equivalent to a study of
nonlinear excitations in a one-dimensional system with
point defects (nonlinear local vibrations). For a sin-
gle isolated defect, this problem has been studied thor-
oughly in works [3, 4] for various signs of the nonlinear-
ity of a medium and for various interactions between
elementary excitations and the defect. In particular,
the system with a defect characterized by linear prop-
erties was analyzed. Systems with nonlinear defects
in a linear environment were studied, e.g., in works
[5, 6].

In this work, in the framework of a nonlinear
Schrödinger equation with an arbitrary sign of the non-
linearity of a medium, we have considered the ex-
citations, which are localized near a plane nonlinear
defect layer, in two cases: mutual attraction or re-
pulsion between elementary excitations and the defect
layer. For gaining a better understanding of the physi-
cal nature of considered nonlinear localized states, their
quasiclassical quantization is carried out, and a rela-
tion between the total energy of the system and the
number of bound elementary excitations in it is de-
duced.
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2. Soliton States Localized Near the Defect
Layer

While studying the soliton excitations, the effective size
of which, depending on the soliton frequency, can vary
in a wide interval, let us consider a local defect as a per-
turbation of parameters of the nonlinear medium. Let
this perturbation be concentrated in a region with a size
much smaller than the soliton width. In the presence
of such a defect with nonlinear properties, the nonlinear
Schrödinger equation for the field variable u(z, t) looks
like

i
∂u

∂t
+
∂2u

∂z2
+ 2σ |u|2 u = −λδ(z) |u|2 u, (1)

where σ = ±1 characterizes the interaction between el-
ementary excitations (σ = +1 corresponds to their mu-
tual attraction and σ = −1 to repulsion), and λ is the
characteristic magnitude of the defect (its “capacity”).
Elementary excitations are effectively attracted to the
defect, if λ > 0, and repulsed from it, if λ < 0.

In a defect-free environment (λ = 0) and in the lin-
ear limit (σ = 0), the dispersion law for linear waves
u (z, t) ∼ exp {i (kz − ωt)} has the form ω = k2, and the
spectrum of linear perturbations is extended over the
semiaxis ω ≥ 0.

Note that, in the case of a defect in a linear medium,
there also exist vibrations localized at the defect. For a
linear defect with “capacity” λ, i.e. when the right-hand
side of Eq. (1) equals −λδ(z)u, such localized states are
possible only in the case of attracting defect (λ > 0)
[4]. Their frequency equals ωl = λ2/4 and lies below the
lower edge of the continuous spectrum. At λ < 0, such
localized vibrations are absent.

For a nonlinear defect considered in this work and a
linear medium, the corresponding equation for u(z, t) –
an analog of Eq. (1) – has the following solution for a
stationary localized state:

u = u0 exp {−ε |z| − iωt} . (2)

Here, ε =
√
−ω and u0 =

√
2
λ

√
ε. Hence, we obtain

the same relation between the localized state frequency
ω and the field amplitude at the defect site as that be-
tween the frequency of an anharmonic oscillator and the
amplitude of its oscillations,

ω = −λ
2

4
u4

0. (3)

Introducing the total number of elementary excita-
tions in the system,

N =

+∞∫
−∞

|u|2 dz, (4)

and the total system energy,

W =

+∞∫
−∞

{∣∣∣∣∂u∂z
∣∣∣∣2 − λ

2
δ(z) |u |4

}
dz, (5)

one can see that, in the framework of the model con-
cerned, those parameters of the system do not depend
on the frequency,

N =
2
λ
, W = 0. (6)

However, this property is not universal. Making al-
lowance for the medium nonlinearity in a vicinity of the
defect, when the left-hand side of Eq. (1) includes the
term 2σ |u|2 u, and taking only linear properties of the
defect into account, we obtain the following dependences
[4]:

N = 2σ
(
ε− λ

2

)
, W = −σ

3

(
2ε3 − λ3

4

)
. (7)

Equation (1) of motion is the Euler equation for a
Lagrangian with the following density:

L =
i

2

(
u∗
∂u

∂t
− u∂u

∗

∂t

)
−
∣∣∣∣∂u∂z

∣∣∣∣2+σ |u|4+λ

2
δ(z) |u|4 . (8)

Let us seek the stationary solutions of the nonlinear
Schrödinger equation (1) in the form

u (z, t) = u (z) exp(−iωt), (9)

where u(z) → 0 as z → ±∞. Then Eq. (1) for the
function u(z) reads

∂2u

∂z2
+ ωu+ 2σu3 = −λδ(z)u3. (10)

The solution of Eq. (10) is reduced to the solution of
the homogeneous equation

∂2u

∂z2
+ ωu+ 2σu3 = 0 (11)

in the regions z > 0 and z < 0 with the following bound-
ary conditions at the point z = 0:

u |+ 0 = u |− 0 , (12)
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Fig. 1. Field distributions in a nonlinear localized state in the
cases σ = +1 and λ > 0 (a), σ = +1 and λ < 0 (b), and σ = −1

and λ > 0 (c)

∂u

∂z

∣∣∣∣
+ 0

− ∂u

∂z

∣∣∣∣
− 0

= −λ u3
∣∣
0
. (13)

In the case σ = +1, the solution that satisfies the bound-
ary conditions looks like

u (z) =
ε

ch [ε ( | z| − z0)]
, (14)

where the parameter ε ≡
√
−ω characterizes the ampli-

tude and the localization region of the solution, as well
as the excitation frequency, and the parameters ε and z0
are connected by a relation that follows from the second
boundary condition (13),

sh (2εz0) = −λε. (15)

Formula (15) shows that sgn z0 = −sgnλ, the interval
of allowable frequencies is unbounded from below at any
λ-sign, and the highest possible frequency of the solution
equals zero, coinciding with the lower edge of the linear
wave spectrum.

In the case σ = −1, the solution that satisfies the
boundary conditions looks like

u (z) =
ε

sh [ε ( | z| − z0)]
. (16)

The quantity z0 can now acquire only negative values,
because the localized state in the case σ = −1 is realized
only provided that the defect is attractive (λ > 0). The
relation between the parameters ε and z0 is determined
by the same relation (15), as in the case where σ = +1.
From relation (15), it follows that, at positive λ, it must
be z0 < 0. Similarly to the previous case (σ = +1),
the interval of allowable frequencies is unbounded from
below, and the maximum value (zero) corresponds to the
edge of the linear wave spectrum.

Hence, the nonlinear localized states exist, if the fol-
lowing relations between the parameters σ and λ hold:
(a) σ = +1 and λ > 0, (b) σ = +1 and λ < 0, and
(c) σ = −1 and λ > 0. The same localized states in
the system were found in work [4]. Let us examine the
structure of the solutions in those three cases (Fig. 1) in
more details.

(a) σ = +1 and λ > 0. The vibration amplitude max-
imum is located at the impurity site (because z0 < 0),
and the solution has the form exhibited in Fig. 1,a. In
this case, the elementary excitations attract one another
and are attracted to the defect. Near the edge of the lin-
ear wave spectrum, where ω → 0 (ε → 0), relation (15)
implies that z0 ≈ −λ/2, and the amplitude of localized
state depends on the frequency as follows:

u(z = 0)| ω→ 0 ≈
√
−ω. (17)

At ω = 0, the nonlinear localized mode transforms into
ordinary vibrations of linear theory.

(b) σ = +1 and λ < 0. The elementary excitations
attract one another. However, they are repulsed from
the defect, and the vibration amplitude maximum does
not coincide with the defect location. The localized state
is a bound state of two solitons, which are symmetrically
arranged on both sides of the defect, with their centers
being located at the points ±z0 (Fig. 1,b). In the limit of
the lowest possible frequency of the solution, ω → 0, the
distance between coupled solitons tends to a constant
value 2z0 ≈ −λ = |λ|, whereas the amplitude of defect
vibrations approaches zero according to formula (17).
The amplitude of solitons also tends to zero,

A|ω= 0 = u(z = ±z0) |ω= 0 = ε|ω= 0 = 0, (18)

so that this limit is a low-amplitude one.
(c) σ = −1 and λ > 0. The excitations repulse one

another, but they are attracted to the defect. The pro-
file of a localized excitation looks approximately as that
in case (a), i.e. the vibration amplitude maximum is lo-
cated at the point of defect localization (Fig. 1,c). The
frequency interval, where the local mode exists, is also
the same, −∞ < ω < 0. In the linear limit ω → 0,
the parameter z0 ≈ −λ/2, as it was in case (a), but the
amplitude of impurity vibrations tends now to a finite
value (cf. Eq. (17))

u(z = 0)| ω→ 0 ≈
2
λ
. (19)

The solution for the localized state (16) transforms into
a function with power-law asymptotes at the infinity, i.e.
into an algebraic soliton of the form

u (z) =
1

| z|+ λ/2
. (20)

Earlier in work [4], it was indicated that, as a rule, the
possibility for power-law solitons to exist at the edge
of a continuous linear wave spectrum is associated with
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the account for competing nonlinearities in the evolution
equations or with the presence of many-particle interac-
tions of various types [7]. For instance, an algebraic soli-
ton can emerge at the edge of a continuous linear wave
spectrum, when the pair repulsion between quasiparti-
cles and their three-particle attraction are considered,
i.e. when terms of the type u |u|4 are taken into account
in Eq. (1) with σ = −1. It was shown earlier that such
solitons are unstable [8].

In the considered case with a defect, the situation is
similar in many respects. Namely, there are the inter-
actions of two types: the particle-to-particle pair inter-
action described by the term 2σ |u|2 u and one-particle
interaction between elementary excitations and the in-
homogeneity, whose effective intensity depends, however,
on the field intensity λeff = λ |u|2 (in work [4], the one-
particle interaction intensity was determined by the con-
stant λ). Power-law solitons exist in our case in the pres-
ence of a pair repulsion between quasiparticles (σ = −1)
or their attraction to the defect (λ > 0).

As follows from the consideration of three possible lo-
calized states, all localized states in our system, in con-
trast to the system analyzed in work [4], exist in the
same frequency interval −∞ < ω < 0. For the better
understanding of the physical nature of these localized
states, let us execute their quasiclassical quantization.
Equation (1) describes the dynamics of a conservative
system and, consequently, it has an evident integral of
motion, namely the total energy of the system

W =

+∞∫
−∞

dz

{∣∣∣∣∂u∂z
∣∣∣∣2 − σ |u |4 − λ

2
δ(z) |u |4

}
, (21)

In addition, it also has the additional integral of motion
(4), i.e. the total number of elementary excitations—field
quanta—localized in the system [3]. Up to now, we char-
acterized the localized solution by its frequency ω (or the
parameter ε). To clarify the quantum-mechanical nature
of the soliton state, it is convenient to pass from the con-
sideration of the frequency as its dynamic characteristic
to the number of excitations, N , which are bound in this
localized state.

Let us first consider the case σ = +1 and express the
integrals of motion N and W in terms of the frequency ω
(or the related parameter ε). Substituting solution (14)
in expression (4) and taking the dependence z0(ε) into
account (see Eq. (15)), we obtain the following relation
for the total number of excitations:

N = 2ε (1 + th(εz0)) = 2ε+
2
λ

(
1−

√
1 + (λε)2

)
. (22)

From this formula, it is easy to reveal that, if the parame-
ter λ is positive (i.e. the defect has attractive character),
the total number of excitations in the system is bounded
from above,

0 ≤ N < 2/λ, λ > 0, (23)

with N → 2/λ as ε → +∞ and N → 0 as ε → 0.
Note that the critical value N∗ = 2/λ corresponds to the
total number of excitations in the system with nonlinear
defect in a linear medium (see Eq. (6)).

If λ < 0, the parameter N can acquire any positive
value,

N ≥ 0, λ < 0. (24)

From relation (22), it is easy to obtain the inverse rela-
tion ε = ε(N),

ε =
N

4
4− λN
2− λN

(25)

and, accordingly, the dependence ω = ω(N),

ω = −
(
N

4

)2(4− λN
2− λN

)2

= −
(
N

4

)2(
1 +

2
2− λN

)2

.

(26)

In a similar way, by substituting the explicit form of
solution (14) in expression (21) and taking relation (15)
into account, we can obtain the explicit expression for
the total energy W of the system as a function of the
parameter ε, W = W (ε). Then, excluding the parameter
ε from the expression W = W (ε) and the dependence
N = N(ε) (see Eq. (22)) with the use of formula (25),
it is easy to obtain a relation between the total energy
of a localized state and the total number of elementary
excitations bound in this state,

W (N) =
N3

6
− λN4

32
− N3

32
(4− λN)2

2− λN
. (27)

We note once more that the total number of excitations,
N , cannot exceed the maximum value N∗ = 2/λ (see
Eq. (23)).

We now consider the case σ = −1. Let us substitute
solution (16) into formula (4) for N. In view of the de-
pendence z0(ε), relation (15) yields the following depen-
dence N = N(ε) different from expression (22) obtained
for the case σ = +1:

N=−2ε (1+cth(εz0))=−2ε+
2
λ

(
1+
√

1+(λε)2
)
. (28)
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Fig. 2. Dependences ω = ω(N) for nonlinear localized states of
three possible types: σ = +1 and λ = +1 (1 ), σ = +1 and λ = −1

(2 ), and σ = −1 and λ = +1 (3 )

It is easy to determine from this formula that the total
number of excitations in the system, N , falls within the
interval (the parameter λ is positive in the case σ = −1)

2/λ < N ≤ 4/λ (29)

with N → 2/λ as ε→ +∞ and N → 4/λ as ε→ 0.
From expression (28), it is easy to determine the in-

verse relation ε = ε(N) (cf. Eq. (25)),

ε = −N
4

4− λN
2− λN

. (30)

In this case (σ = −1), the dependence ω = ω(N) has the
same analytic form (26) as that in the case σ = +1. This
is also true for the dependence W = W (N) of the total
energy of a localized state on the number of elementary
excitations bound in this state, i.e. formula (27) is valid
in both cases σ = +1 and σ = −1.

At σ = +1, the positivity of the integral of motion
N in Eq. (22) and relations (23) and (24) yield the con-
clusion that any positive ε-values are possible at any
λ-values. The boundary condition (15) does not impose
any additional restrictions on a domain, where the so-
lution exists. This domain is determined by the simple
relation

ε ≥ 0. (31)

At σ = −1 (when the solution exists only if λ > 0),
the positivity of N -value in Eq. (28), relation (29), and
boundary condition (15) imply that the domain, where
the solution exists, is also determined by relation (31).

The value ε = 0 (ω = 0) corresponds to the lower edge
of a linear wave spectrum.

Fig. 3. Dependences W = W (N) for nonlinear localized states of
three possible types: σ = +1 and λ = +1 (1 ), σ = +1 and λ = −1

(2 ), and σ = −1 and λ = +1 (3 )

In Fig. 2, the dependences ω = ω(N) are depicted for
all three possible localized states and the values λ = ±1
(N∗ = 2). The allowed regions for the parameter N –
Eqs. (23), (24), and (29) – are taken into account.

Figure 3 illustrates the dependences W = W (N) ob-
tained for all possible localized states (λ = ±1 and
N∗ = 2).

By differentiating dependence (27) with respect to N
and by using relations (22) and (28) for the dependence
N(ε), it is easy to verify that the relation

∂W

∂N
= ω, (32)

which is usual for one-frequency solitons and is valid for
the conservative nonlinear systems with the integral of
motion N , is also obeyed. Therefore, the frequency of
nonlinear local vibrations plays the role of a chemical
potential for relevant bound elementary excitations.

3. Conclusions

In this work, all possible stationary states localized at a
nonlinear defect (in a vicinity of the plane defect layer)
with various properties have been studied with the use of
a nonlinear Schrödinger equation with an arbitrary sign
of the nonlinear term. The result obtained can be inter-
preted in terms of elementary excitations that interact
with one another and with the defect.

It is found that the emergence of states localized at
the defect layer with nonlinear properties surrounded by
a nonlinear medium is possible at any anharmonicity
sign (at any σ-sign) in the case where the elementary
excitations are attracted to the defect layer (λ > 0). If
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the excitations attract one another (σ = +1), the local-
ization of a nonlinear excitation near the defect layer is
possible, even if the elementary excitations are repulsed
from the defect (λ < 0). In the case where σ = −1
(repulsion of excitations from one another), the nonlin-
ear localized excitations are possible only if λ > 0. The
quasiclassical quantization of the determined localized
modes is carried out, and the dependence of the total
energy of the system on the total number of elementary
excitations (quasiparticles) is derived.

The results obtained can be useful for studying the lo-
calized states in a system with two nonlinear defects and,
as a further extension, in a periodic system of nonlinear
defects (plane defect layers) in a nonlinear medium.
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ЛОКАЛIЗОВАНI СТАНИ У НЕЛIНIЙНОМУ СЕРЕДОВИЩI
З ПЛОСКИМ ДЕФЕКТНИМ ШАРОМ, ЯКИЙ МАЄ
НЕЛIНIЙНI ВЛАСТИВОСТI

I.В. Герасимчук, П.К. Горбач, П.П. Довгополий

Р е з ю м е

У межах квазiкласичного пiдходу вивчено солiтоннi стани, якi
локалiзованi бiля плоского дефектного шару, що має нелiнiй-
нi властивостi, при рiзних знаках нелiнiйностi середовища та
рiзному характерi взаємодiї елементарних збуджень системи з
дефектним шаром. Надано квантову iнтерпретацiю цих нелi-
нiйних локалiзованих мод на мовi зв’язаних станiв з великою
кiлькiстю елементарних збуджень. Визначено областi iснуван-
ня та дослiджено властивостi таких станiв залежно вiд хара-
ктеру взаємодiї елементарних збуджень мiж собою та з дефе-
ктом.
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