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The model of magnetic tweezers in a rapidly oscillating alternat-
ing magnetic field, which allows one to estimate the movement of
a ferromagnetic magnetically soft microparticle in a magnetic trap
and to localize it in a liquid, is offered. The estimations of the
strength and the frequency of an oscillating alternating magnetic
field and the size of a spherical microparticle are carried out. The
movement trajectory of a spherical microparticle is calculated as
well.

1. Introduction

The localization of microparticles by means of a mag-
netic trap is one of the perspective methods of re-
searches, which finds applications in different areas of
science [1,2,3]. In comparison with other methods, the
possibility to manipulate by separate microparticles al-
lows one to investigate the physical properties of biolog-
ical cells in natural media, to study the mechanical and
adsorption properties of DNA, etc. [4]. However, for
maintenance of the conditions necessary to alive cells,
such experiments are often carried out in a flowing liq-
uid [5-7]. Therefore, during the design and in the use
of magnetic traps, one needs to consider the additional
force caused by the available hydraulic stream. Thus,
the development of new magnetic traps and the improve-
ment of existing ones with regard for the forces acting
on a microparticle are actual scientific problems.

To localize a ferromagnetic microparticle, which is un-
der the influence of a magnetic field, the condition of ex-
istence of a point, where the potential energy reaches its
local minimum, i.e. the potential hole appears, must be
satisfied. Because it is impossible to reach such a local

minimum for a ferromagnetic microparticle in a constant
magnetic field [8], we use, in the present work, a variable
magnetic field analogously to the proposition of Kapitsa
[9] for the stabilization of a mathematical pendulum in
the upper unstable position. As it will be shown further,
this gives possibility to solve the problem of the localiza-
tion of a spherical ferromagnetic microparticle by means
of a variable oscillating magnetic field by creating an
effective local minimum.

2. Theory

To research the possibility of the practical realization of
a magnetic field with a local minimum of energy, first of
all, we will consider a ferromagnetic microparticle in a
magnetic field, which depends on a spatial coordinate r.
Then the energy U of this microparticle is [10]

U(r) = −MH,

where H is the intensity of the magnetic field, and M is
the microparticle magnetic moment.

In the first approximation, we consider that if the
constant z-component of the magnetic field is stronger
as compared with the x- and y-components, then the
microparticle is magnetized homogeneously along the z
axis, and its size is much less, than the characteristic
scale of a change of the magnetic field. The magnetic
moment of the microparticle M0 is fixed along Oz due
to the magnetic bias. Then, in the non-uniform oscillat-
ing magnetic field, the oscillating force

f(r, t) = − d

dr
(M0Hz (x, y, z, t))
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appears. Here, the z-component of the external mag-
netic field is defined as Hz = hz (x, y, z) cos(ωt).

Taking the above reasoning into account, the equation
of motion will have the well-known form

mr̈ + α(ṙ−V0) = f(r, t), (1)

where m is the microparticle weight, α is the dissipative
multiplier, ṙ is the first derivative of the spatial coordi-
nate with respect to the time, r̈ is the second derivative
with respect to the time of the spatial coordinate, and
V0 is the liquid stream velocity. According to the above-
introduced notations, we have

f(r, t) = −dU
dr

= M0
d

dr
hz (x, y, z) cos(ωt), (2)

where d
drhz (x, y, z) is a coordinate function.

The analysis of the motion of a microparticle can be
simplified similarly to Kapitsa’s problem [9]. We assume
that the microparticle moves along a smooth trajectory
with simultaneous small oscillations (with a frequency ω)
around it. In this case, the function r can be represented
like a sum

r = R + ξ, (3)

where R is the function, which describes the “smooth”
movement of the particle, and ξ is the rapidly oscillating
component, |ξ| << |R|.

Let us substitute (3) in (1). By expanding d
drU(r) and

f (r, t) in small displacements ξ, we obtain, to within the
terms squared in ξ,

mR̈+α
(
Ṙ−V0

)
+mξ̈+αξ̇ = f (R, t)+

∂

∂xi
f (R, t) ξi,

(4)

where xi are the components of the spatial vector r,
i = 1, 2, 3.

By separating the oscillating terms from expression
(4), we obtain

mξ̈ + αξ̇ = f (R, t) . (5)

The solution of this differential equation is searched in
the form

ξ = A cosωt+ B sinωt. (6)

Differentiating Eq. (6) and substituting the result in (5),
we obtain{
−Amω2 + Bαω = M0

d
drhz (x, y, z) ,

−Bmω2 −Aαω = 0.
(7)

By solving (7), we have the coefficients A and B:

A = −
mM0

d
drhz (x, y, z)

m2ω2 + α2
, B =

αM0
d
drhz (x, y, z)

m2ω3 + α2ω
.

By substituting the coefficients A and B in (6), we ob-
tain the expression for the oscillating component:

ξ (t) = −
mM0

d
drhz (x, y, z)

m2ω2 + α2
×

× cosωt+
αM0

d
drhz (x, y, z)

m2ω3 + α2ω
sinωt. (8)

Let |σ| = mM2
0

4(m2ω2+α2) . Then the coefficients A and B
take the form

A =
4 |σ| ddrhz (x, y, z)

M0
, B =

4α |σ| ddrhz (x, y, z)
mM0ω

.

Let us rewrite expression (6) as

ξ = (A0 cosωt+B0 sinωt)
d

dr
hz (x, y, z) , (9)

where A0 = 4|σ|
M0

, B0 = 4|σ|
M0

α
mω .

Then relation (9) yields

ξ =
√
A2

0 +B2
0

(
A0√

A2
0 +B2

0

cosωt+

+
B0√

A2
0 +B2

0

sinωt
)
d

dr
hz (x, y, z) ,

where cosα0 = A0√
A2

0+B
2
0

= mω√
m2ω2+α2 .

After the contraction of the previous expression by
trigonometric transformations, we obtain

ξ =
√
A2

0 +B2
0 cos (ωt− α0)

d

dr
hz (x, y, z) , (10)

where α0 is a phase shift. After the substitution of
the coefficients A0 = 4|σ|

M0
, B0 = 4|σ|

M0

α
mω , and |σ| =

mM2
0

4(m2ω2+α2) , the final equation for ξ takes the form

ξ =
M0

ω
√
m2ω2 + α2

cos (ωt− α0)
d

dr
hz (x, y, z)

or

ξ =
4δ
M0

cos (ωt− α0)
d

dr
hz (x, y, z) , (11)

where δ = M2
0

4ω
√
m2ω2+α2 .

916 ISSN 2071-0194. Ukr. J. Phys. 2012. Vol. 57, No. 9



THE LOCALIZATION OF A SPHERICAL FERROMAGNETIC MICROPARTICLE

Let us substitute (11) in the equation of motion (4).
After averaging, we have

∂

∂xi
f (R, t) ξi = 2δ

d

dr

[
d

dr
hz (x, y, z)

]2
×

×
[
cos2 (ωt) cosα0 − cos (ωt) sin (ωt) sinα0

]
,

whence

∂

∂xi
f (R, t) ξi = δ

d

dR

[
d

dR
hz (x, y, z)

]2
×

× cosα0 = δ0
d

dR

[
d

dR
hz (x, y, z)

]2
,

where δ0 = mM2
0

4(m2ω2+α2) .
Then the equations describing the averaged motion

become

mR̈ + α
(
Ṙ−V

)
= −δ0

d

dR

(
dhz
dR

)2

. (12)

Let us set a coordinate dependence hz (x, y, z) =
a
(
−z2 + x2+y2

3

)
. Then, for the stationary point Z0, we

have

αV0z = 8δ0a2Z0.

Hence,

Z0 =
αV0z

8δ0a2
. (13)

Analogously for the stationary points X0=Y0, we have
αV0x = 8

9δ0a
2X0.

Hence,

X0 = Y0 =
9
8
αV0x

δ0a2
.

The final relations for the stationary points are as fol-
lows:

X0 = Y0 =
9
2
αV0x

(
m2ω2 + α2

)
a2M2

0m
,

Z0 =
1
2
αV0x

(
m2ω2 + α2

)
a2M2

0m
.

Let us consider the oscillating amplitudes for these sta-
tionary points. We take the expression for the small os-
cillating amplitudes around the stationary pointX ≈ X0

from (11) for ξ:

ξx = ξy =
4δ
M0

d

dx
hz (x, y, z) =

3αV0x

√
m2ω2 + α2

mωaM0
,

ξz =
4δ
M0

d

dz
hz (x, y, z) =

3αV0x

√
m2ω2 + α2

mωaM0
.

From (12), we find the frequencies of small oscillations
around the stationary point along the axis 0x. We have

mẍ1 + α (ẋ1 − V0x) = −8
9
a2δ0X0 −

8
9
a2δ0x1,

whence we obtain

ẍ1 +
α

m
ẋ1 +

8
9
a2δ0
m

x1 = 0.

The frequency of the small oscillations

Ωx =

√
8
9
a2δ0
m
−
( α

2m

)2

with α
2 �

8a2δ0
9 . That’s why Ωx ≈ Ωy ≈

√
8
9
a2δ0
m ≈√

2
9
aM0
mω according to lim

α→0
δ0 → M2

0
4ω2m .

Since α
2 � 8a2δ0, we have Ωz ≈

√
8a2δ0
m ≈

√
2aM0
mω .

The condition for the application of Kapitsa’s method
requires that the frequency of slow small oscillations be
much less than the frequency of fast oscillations for ξ,
i.e., Ω� ω. Than√

2
9
aM0

mω
� ω, (14)

which yields ω �
√

aM0
m .

3. Numerical Modeling of a Magnetic Trap

The microparticle motion equation in the magnetic field
(3) underlies the magnetic trap model. Let us do the nu-
merical simulation of a magnetic trap with the oscillating
force (3). The equation of motion of a microparticle in
the magnetic field reads

mr̈ + α(ṙ−V0) = M0
d

dr
hz (x, y, z) cos(ωt). (15)

Let us consider the case with a spherical microparticle.
To simplify the magnetic trap model, we normalize Eq.
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Fig. 1. Trajectory of motion of a microparticle along the axis Oz

in a stream of blood. 1 – the stationary point of the trajectory
calculated by the analytical expression (13), 2 – the trajectory
calculated based on the results of numerical calculations of Eq.
(14). (Coordinates are dimensionless)
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Fig. 2. Trajectory of motion of a microparticle along the axis Oz

in a stream of water. 1 – the stationary point of the trajectory
calculated by the analytical expression (13), 2 – the trajectory
calculated based on the results of numerical calculations of Eq.
(14). (Coordinates are dimensionless)

(13), by making such substitutions: r = βρ (where ρ is
the radius-vector), ωt = τ, and α = 6πηb (η is the liq-
uid dynamic viscosity factor) [11]. The final normalized
equation of motion of the microparticle is

ρ̈ +K(ρ̇− υ0) = D
d

dρ
hz (ρx, ρy, ρz) cos(τ),

where K = α
mω and D = 2

9
M0a
mω2 are controlling dimen-

sionless parameters, which determine the dynamic move-
ment of the microparticle.

We consider that the velocity vector V = ṙ of mi-
croparticle’s translational motion at every time moment
τ directed along the force direction is defined by the ex-
pression on the right-hand side of Eq. (15).

As the bright example, we consider the behavior of a
magnetic trap with regard for the conditions which are
inherent in a blood vessel of a human bloodstream. A
vein will be served as an example. The vein diameter
is about 0.5 cm, the bloodstream velocity is about 20–
50 cm/s [12]. The system parameters: b = 0.05 cm,
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Fig. 3. Trajectory of motion of a microparticle along the axis Oz

in a stream of blood. 1 – the stationary point of the trajectory
calculated by the analytical expression (13), 2 – the trajectory cal-
culated on the basis of the results of numerical calculations of Eq.
(15), when condition (14) is not valid, 3 – the trajectory calculated,
when condition (14) holds, on the basis the results of numerical
calculations of Eq. (15). (Coordinates are dimensionless)

ρFe = 7.87 g/cm3, µFe = 1600 Oe, ω = 100 Hz,
a = 10 g/cm5s2, z0 = 0, Vz0 = 2 cm/s, β = 2. The
dynamic blood viscosity η = 5 × 10−3 g/cm·s. The mi-
croparticle radius is 10% of the vein diameter. A move-
ment trajectories of an iron spherical microparticle un-
der the condition that H0 � 3 Oe, are shown in Figs. 1
and 2.

Analyzing the microparticle coordinates on the basis
of the results given above, it is clear that if the mi-
croparticle is injected into a vein under conditions of
a bloodstream (Fig. 1), the localization of the micropar-
ticle takes 5 s, the maximum amplitude of oscillations
around the stationary point with a coordinate of 0.28 cm
is 0.88 cm and 0.28 cm in the stable oscillating regime
– takes 3 s. After changing the blood viscosity coeffi-
cient by the water viscosity coefficient η = 10−2 g/sm·s
(Fig. 2), the position of the stationary point becomes
equal to 0.55 cm, and the maximum amplitude of os-
cillations around the stationary point has increased to
1.88 cm and to 0.49 in the stable oscillating regime. Ap-
proaching the stabilized regime takes 2.5 s.

The figures above represent the microparticle trajec-
tory motion in a liquid stream, when condition (14) is
satisfied. The case where condition (14) is not valid is
given in Fig. 3.

In Fig. 3, we can see that, if condition (14) is satisfied,
the microparticle localization takes place (trajectory 3)
in a vicinity of the stationary point Z0 (line 1), and the
oscillation amplitude stay within the narrow range of the
Z0 area. In addition, the oscillations occur in the stable
regime with a clear damping after 4 s, which testifies that
the microparticle has been trapped. In the case where
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condition (14) is not valid, the influence of the magnetic
trap on the magnetic particle is insignificant, and the
oscillation amplitude goes beyond the permissible range.

The analysis of the plots shows that, in the chosen
range of initial data, the system really manifests the
properties of a magnetic trap, by keeping the magnetic
microparticle in a localized area of the magnetic field.
It is clear that the time required for the system to ap-
proach the stable localized regime is changeable and de-
pends on the initial conditions, which depend, in turn,
on parameters of the system such as the microparticle
radius, liquid dynamic viscosity, material density, exter-
nal magnetic field frequency etc. Moreover, a negligible
change of one of the parameters causes to the significant
changes, for instance, of the amplitude and the coordi-
nate, where the oscillation of the the microparticle takes
place.

The figures show that the switching-on of the mag-
netic field leads to the localization of a microparticle. It
carries out oscillations within a narrow interval of coor-
dinates around the local position. The range of radii of
the spherical microparticle, for which it can be localized,
is 3 × 10−2–6 × 10−2 cm (6–12% of the vein diameter).
In this case, the particle localization is possible within
0 < z < 30 cm and 0 < x < 0.5 cm. The time of lo-
calization is from 2 s to 5 s for the field H0 � 6 Oe at
a particle radius of 3 × 10−2 cm and H0 � 2 Oe at a
particle radius of 6× 10−2 cm.

4. Conclusion

The analytical and numerical results of studies of the
dynamics of the motion of a ferromagnetic microparticle
show that it is possible to reach a local minimum of the
potential energy, by using the method of rapidly oscil-
lating fields [9]. This allows one to carry out the local-
ization of a spherical ferromagnetic microparticle at the
given spatial point by a magnetic trap for a wide range
of parameters such as the microparticle radius, density,
saturation magnetization of a microparticle material, os-
cillation frequency of a magnetic field, and speed and
viscosity of flowing blood in a vein. The localization
of a ferromagnetic microparticle can be reached at the
magnetic field frequency ω = 100 Hz and its strength

H0 � 2 Oe for vessels, whose diameters are close to the
diameter of a human vein.
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ЛОКАЛIЗАЦIЯ СФЕРИЧНОЇ ФЕРОМАГНIТНОЇ
МIКРОЧАСТИНКИ ПIД ДIЄЮ ШВИДКО
ОСЦИЛЮЮЧОГО МАГНIТНОГО
ПОЛЯ В ПОТОЦI РIДИНИ

О.Ю. Горобець, М.М. Потьомкiн

Р е з ю м е

Запропоновано модель магнiтного пiнцета в зовнiшньому
швидко осцилюючому магнiтному полi, яка дозволяє дослi-
джувати рух магнiтом’якої феромагнiтної мiкрочастинки в ма-
гнiтнiй пасцi та локалiзувати її в умовах потоку рiдини. Зро-
блено оцiнки сили та частоти зовнiшнього швидко осцилюючо-
го магнiтного поля, а також розмiри сферичної мiкрочастинки.
Розраховано траєкторiю руху сферичної мiкрочастинки.
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