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PROJECTED GROSS–PITAEVSKII EQUATION
FOR RING-SHAPED BOSE–EINSTEIN CONDENSATES

We propose an alternative implementation of the projected Gross–Pitaevskki equation adapted
for a numerical modeling of the atomic Bose–Einstein condensate trapped in a toroidally shaped
potential. We present an accurate efficient scheme to evaluate the required matrix elements and
to calculate the time evolution of the matter wave field. We analyze the stability and accuracy
of the developed method for equilibrium and nonequilibrium solutions in a ring-shaped trap
with an additional barrier potential corresponding to recent experimental realizations.
K e yw o r d s: Bose–Einstein condensation, Gross–Pitaevskii equation, spectral methods.

1. Introduction

The Gross–Pitaevskii equation (GPE) is the most
widely used mathematical tool to model atomic Bose–
Einstein condensates (BEC) and their dynamics at
zero temperature [1, 2]. Various modifications have
been proposed to extend the applicability of GPE
for a nonperturbative treatment of finite temperature
effects and nonequillibrium dynamics. Such meth-
ods are commonly termed classical-field (or 𝐶-field)
methods. Most notable methods of this class are trun-
cated Wigner approximation [3] and the projected
Gross–Pitaevskii equation (PGPE) [4, 5]. The latter
will be the main focus of the present work. A wide
range of physical problems addressed with PGPE and
its modifications includes, in particular, the Bose-
condensation and quasicondensation [6–8], dynami-
cal generation [9] and decay [10] of quantum vortices,
and dissipative bosonic Josephson effect [11].

From the numerical point of view, the projected
Gross–Pitaevskii equation belongs to the class of
pseudospectral methods. It relies on the reformula-
tion of the GPE in the spectral basis of single-par-
ticle states, and the frequent transformations between
coordinate and spectral representations are at the
core of the numerical procedure. Such an approach
requires explicit knowledge of the basis states in order
to efficiently transform the condensate wave function
between the two representations. It is therefore quite
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natural that existing realizations of PGPE are based
on the eigenstates of a three-dimensional harmonic
oscillator potential [4,5,12]. This limits the applicabi-
lity of such realizations to the traps which can be well
approximated by the harmonic oscillator and account
for any nonharmonic part as a small perturbation.

In the present work, we propose an extension of the
PGPE formalism to describe the Bose–Einstein con-
densates trapped in toroidally shaped traps. While
the single particle states of a toroidal trap cannot
be obtained analytically, we show here that PGPE
can be formulated equally well in terms of approxi-
mate eigenstates and produce physically relevant re-
sults. We verify the accuracy and time stability of the
developed approach and demonstrate that the made
approximations do not introduce significant errors.
The developed approach can be straightforwardly ex-
tended to include dynamical noise terms and to solve
the stochastic projected Gross–Pitaevskii equation
(SPGPE). This will allow us to model a dynamical
evolution of finite-temperature toroidal condensates.

2. PGPE Model for a Toroidal System

We consider a system that is characterized by the
mean-field Gross–Pitaevskii Hamiltonian operator
𝐻GP [1, 2]:

𝐻GP 𝜓(r, 𝑡) =

[︂
− ~2∇2

2𝑀
+ 𝑉trap(r) + 𝛿𝑉 (r, 𝑡)+

+ 𝑔|𝜓(r, 𝑡)|2
]︂
𝜓(r, 𝑡). (1)
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with the nonlinear interaction parameter 𝑔 =
= 4𝜋~2𝑎/𝑀 , where 𝑎 is the 𝑠-wave scattering length,
and 𝑀 is the atom mass. The potential 𝑉trap(r) is a
cylindrically symmetric ring-shaped trap formed by a
combination of a shifted harmonic potential in the ra-
dial direction and another harmonic potential in the
vertical direction [13, 14]:

𝑉trap(r) =
𝑀

2

[︀
𝜔2
𝑟(𝑟 − 𝑟0)

2 + 𝜔2
𝑧𝑧

2
]︀
, (2)

where we use cylindrical coordinates r = {𝑟, 𝜃, 𝑧},
𝑟 =

√︀
𝑥2 + 𝑦2. The additional time-dependent poten-

tial 𝛿𝑉 (r, 𝑡) is considered as a (small) perturbation
to the trap potential. It can represent, for example, a
moving barrier as in experiments of Refs. [14, 15].

The classical field or 𝐶-field methods are based
on the concept of splitting the many-particle system
into highly occupied low-energy modes described by
the coherent classical field 𝜓(r, 𝑡) and sparsely occu-
pied incoherent high-energy modes forming a thermal
bath. Such splitting is conveniently represented in the
basis of single-particle eigenstates 𝜑𝑛 of the trapping
potential 𝑉trap

𝐻0𝜑𝛼 =

[︂
−~2∇2

2𝑀
+ 𝑉trap(r)

]︂
𝜑𝛼 = 𝐸𝛼𝜑𝛼, (3)

where 𝛼 represents a set of quantum numbers that
characterize the single-particle eigenstates 𝜑𝛼. The
classical field 𝜓(r, 𝑡) is then a coherent superposition
of these states with energies below the chosen cut-off
energy 𝑒cut

𝜓(r, 𝑡) =
∑︁
𝛼∈𝐶

𝑐𝛼(𝑡)𝜑𝛼(r), (4)

𝐶 = {𝛼 : 𝐸𝛼 ≤ 𝑒cut}.

The choice of the cut-off energy may be a complicated
problem for finite temperature calculations (see, e.g.,
[16,17]). In the case of zero temperature, this param-
eter only determines the basis size and the overall
accuracy of decomposition (4).

Unfortunately, for the ring-shaped potential (2), we
cannot solve the single-particle problem (3) analyti-
cally. Instead we can choose a basis that only approx-
imately diagonalizes the Hamiltonian 𝐻0. We define
the basis states for the ring-shaped system as

𝜑𝛼(𝑟, 𝜃, 𝑧) =
1√
2𝜋𝑟

𝜙(𝜔𝑟)
𝑛 (𝑟 − 𝑟0)𝜙

(𝜔𝑧)
𝑚 (𝑧)𝑒𝑖𝑙𝜃, (5)

where 𝛼 contains now three quantum numbers 𝛼 →
→ {𝑛, 𝑙,𝑚}, and 𝜙

(𝜔)
𝑛 (𝑥) are normalized eigenstates

of a one-dimensional harmonic oscillator with fre-
quency 𝜔:

𝜙(𝜔)
𝑛 (𝑥) =

√︃
𝑏

2𝑛
√
𝜋𝑛!

𝐻𝑛

(︁𝑥
𝑏

)︁
𝑒−

𝑥2

2𝑏2 ,

where 𝑏 =
√︀
~/𝑀𝜔 is the characteristic oscillator

length, 𝐻𝑛 is the Hermite polynomial of the order
𝑛. This basis (5) is not orthonormalized due to its ra-
dial dependence. The approximate orthogonality can
be ensured, if

√︀
~/𝑀𝜔𝑟 ≪ 𝑟0 (see Appendix A for

more details). The Hamiltonian 𝐻0 is also not fully
diagonalized by the chosen basis, but rather takes the
form

⟨𝜑𝑛′𝑙′𝑚′ |𝐻0|𝜑𝑛𝑙𝑚⟩ =

=
[︁
(𝐸(𝑟)

𝑛 + 𝐸(𝑧)
𝑚 )𝛿𝑛𝑛′ + 𝐸

(𝜃)
𝑙 𝐼𝑛𝑛′

]︁
𝛿𝑚𝑚′𝛿𝑙𝑙′ ,

where

𝐸(𝑟)
𝑛 = ~𝜔𝑟

(︂
𝑛+

1

2

)︂
, 𝐸(𝑧)

𝑚 = ~𝜔𝑧

(︂
𝑚+

1

2

)︂
,

𝐸
(𝜃)
𝑙 =

~2

2𝑀𝑟20

(︂
𝑙2 − 1

4

)︂
,

𝐼𝑛𝑛′ =

∞∫︁
0

𝑑𝑟
𝑟20
𝑟2
𝜙(𝜔𝑟)
𝑛 (𝑟 − 𝑟0)𝜙

(𝜔𝑟)
𝑛′ (𝑟 − 𝑟0). (6)

The matrix element 𝐼𝑛𝑛′ formally diverges at 𝑟 →
→ 0. It can still be meaningfully approximated, if we
restrict the integration to the region of finite support
of the oscillator functions and use again the condition√︀
~/𝑀𝜔𝑟 ≪ 𝑟0 (see Appendix B for more details). In

this case, 𝐼𝑛𝑛′ is also close to the identity matrix,
and we can approximately define the single-particle
energy spectrum as

𝐸𝑛𝑚𝑙 = 𝐸(𝑟)
𝑛 + 𝐸(𝑧)

𝑚 + 𝐸
(𝜃)
𝑙 . (7)

Using this approximate spectrum and the chosen cut-
off energy, we define the 𝐶-region and truncate ba-
sis (4)

𝐶 = {𝑛,𝑚, 𝑙 : 𝐸(𝑟)
𝑛 + 𝐸(𝑧)

𝑚 + 𝐸
(𝜃)
𝑙 ≤ 𝑒cut},

which also fixes the maximal value of each of the
quantum numbers 𝑛max, 𝑚max, 𝑙max.
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The density of states which corresponds to spec-
trum (7) can be calculated analytically as follows:

𝜌(𝜖) =
4

3

√
2𝑀𝑟0

~3𝜔𝑟𝜔𝑧
𝜖3/2. (8)

More details on this derivation can be found in Ap-
pendix C.

The density of states can be also estimated in the
quasiclassical approximation

𝜌𝑞𝑐(𝜖) =

∫︁
𝑑r𝑑p

(2𝜋~)3
𝛿(𝜖− 𝐸(r,p)) =

=
𝑀3/2

√
2𝜋2~3

∫︁
𝑉≤𝜖

𝑑r
√︀
𝜖− 𝑉 (r), (9)

where 𝐸(r,p) is the energy of a classical particle in
the potential 𝑉 (r) = 𝑉trap(r) + 𝛿𝑉 (r). The integral
in (9) can be calculated analytically for the pure ring
trap potential (2) and energies 𝜖 < 𝑀𝜔2

𝑟𝑟
2
0/2 pro-

ducing the same expression as above. In general, the
closeness of estimates (8) and (9) shows how good
the real spectrum of Eq. (3) is reproduced by the ap-
proximate basis states (5). From the density of states
(8), one may also see that the number of basis states
in 𝐶-region (and, consequently, the numerical com-
plexity of the calculations) grows with the cut-off as
𝑁𝐶 ∼ 𝑒

5/2
cut .

If we completely neglect the incoherent region (all
single-particle states above the cut-off), then the clas-
sical field 𝜓(r, 𝑡) will be a solution to the projected
Gross–Pitaevskii equation (PGPE) [5, 12]:

𝑖~
𝜕𝜓(r, 𝑡)

𝜕𝑡
= 𝒫𝐻GP𝜓(r, 𝑡), (10)

where 𝒫 is a projection operator to the 𝐶-space

𝒫𝜓(r, 𝑡) =
∑︁
𝛼∈𝐶

𝜑𝛼(r)

∫︁
𝑑r′𝜑*𝛼(r

′)𝜓(r′, 𝑡).

In the spectral basis, the equation for expansion
coefficients 𝑐𝛼 reads

𝑖~
𝑑𝑐𝛼
𝑑𝑡

= (𝐸(𝑟)
𝑛 + 𝐸(𝑧)

𝑚 )𝑐𝛼 + 𝐸
(𝜃)
𝑙 𝐷𝛼 + 𝐹𝛼, (11)

where

𝐷𝛼 =

∫︁
𝑑r𝜑*𝛼(r)

𝑟20
𝑟2
𝜓(r, 𝑡), (12)

𝐹𝛼 =

∫︁
𝑑r𝜑*𝛼(r)

[︀
𝛿𝑉 (r, 𝑡) + 𝑔|𝜓(r, 𝑡)|2

]︀
𝜓(r, 𝑡). (13)

In order to numerically solve Eq. (11), we need
an efficient accurate way to transform the solution
between the coordinate and spectral representations.
The integrals containing harmonic oscillator states
can be accurately approximated by the Gauss–Her-
mite quadrature. The general form of the 𝑁𝑄 point
quadrature rule is

∞∫︁
−∞

𝑑𝑥𝑒−𝑥2

𝑓(𝑥) ≈
𝑁𝑄∑︁
𝑗=1

𝑤𝑗𝑓(𝑥𝑗),

where 𝑥𝑗 and 𝑤𝑗 are the quadrature points and
weights. This quadrature rule is exact, if 𝑓(𝑥) is a
polynomial with degree below 2𝑁𝑄−1. The transfor-
mation of any function 𝜓(r) to the basis representa-
tion is then constructed as follows:

𝑐𝑛𝑙𝑚 =

∫︁
𝑑r𝜑*𝑛𝑙𝑚(r)𝜓(r) =

=
∑︁
𝑗𝑘𝑠

𝑤
(𝑟)
𝑗 𝑤(𝑧)

𝑠 𝛿𝜃𝑈𝑗𝑛𝑊
*
𝑘𝑙 𝑌𝑠𝑚𝜓(𝑟𝑗 , 𝜃𝑘, 𝑧𝑠),

where we introduce the rescaled quadrature weights

𝑤
(𝑟)
𝑗 = 𝑤𝑗𝑏𝑟𝑒

(𝑟𝑗−𝑟0)
2/𝑏2𝑟 , 𝑤(𝑧)

𝑠 = 𝑤𝑠𝑏𝑧𝑒
𝑟2𝑠/𝑏

2
𝑧 ,

with

𝑏𝑟 =

√︂
~

𝑀𝜔𝑟
, 𝑏𝑧 =

√︂
~

𝑀𝜔𝑧
.

The integration in the azimuthal direction is per-
formed with a usual trapezoidal rule on a uniform grid
with spacing 𝛿𝜃. The transformation matrices are de-
fined as the basis states evaluated on the quadrature
grid:

𝑈𝑗𝑛 = 𝜙(𝜔𝑟)
𝑛 (𝑟𝑗−𝑟0), 𝑊𝑘𝑙 = 𝑒𝑖𝑙𝜃𝑘 , 𝑌𝑠𝑚 = 𝜙(𝜔𝑧)

𝑚 (𝑧𝑠).

The backward transformation to the spatial represen-
tation is then performed as follows:

𝜓(𝑟𝑗 , 𝜃𝑘, 𝑧𝑠) =
∑︁
𝑛𝑚𝑙

𝑈𝑗𝑛𝑊𝑘𝑙 𝑌𝑠𝑚 𝑐𝑛𝑙𝑚.

For more details on the transformations between
the coordinate and spectral representations and the
calculation of matrix elements, we refer to Ref. [12]. It
is worth noting that, in practical realizations, the
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transformation with the matrix 𝑊𝑘𝑙 can be replaced
with a Fast Fourier Transform for a better perfor-
mance. We however prefer to keep this transforma-
tion matrix here for clarity.

In order to perform a time evolution of Eq. (11), we
build a computational scheme similar to the split-step
Fourier transform (SSFT) method which is widely
used for the GPE modeling [18]. This method im-
plements a time evolution operator exp(−𝑖𝐻GP𝑡/~)
to propagate the condensate wave function in time.
Adapting this scheme to PGPE (11) and using a
second-order Trotter decomposition for the time evo-
lution operator, a basic time evolution step 𝑐𝑛𝑙𝑚(𝑡) →
→ 𝑐𝑛𝑙𝑚(𝑡 + 𝛿𝑡) can be outlined as the following se-
quence:

1: 𝑐′𝑛𝑙𝑚 = exp

[︂
− 𝑖𝛿𝑡
2~

(𝐸(𝑟)
𝑛 + 𝐸(𝑧)

𝑚 )

]︂
𝑐𝑛𝑙𝑚(𝑡),

2: 𝑑𝑗𝑙𝑚 = exp

[︃
− 𝑖𝛿𝑡
2~
𝐸

(𝜃)
𝑙

𝑟20
𝑟2𝑗

]︃∑︁
𝑛

𝑈𝑗𝑛𝑐
′
𝑛𝑙𝑚,

3: 𝑓𝑗𝑘𝑠 =
∑︁
𝑙𝑚

𝑊𝑘𝑙𝑌𝑠𝑚𝑑𝑗𝑙𝑚,

4: 𝑓 ′𝑗𝑘𝑠 = exp

[︂
− 𝑖𝛿𝑡

~
(︀
𝛿𝑉 (𝑟𝑗 , 𝜃𝑘, 𝑧𝑠, 𝑡) + 𝑔|𝑓𝑗𝑘𝑠|2

)︀]︂
𝑓𝑗𝑘𝑠,

5: 𝑑′𝑗𝑙𝑚 =
∑︁
𝑘𝑠

𝑤(𝑧)
𝑠 𝛿𝜃𝑊 *

𝑘𝑙𝑌𝑠𝑚𝑓
′
𝑗𝑘𝑠,

6: 𝑐′′𝑛𝑙𝑚 =
∑︁
𝑗

𝑤
(𝑟)
𝑗 𝑈𝑗𝑛 exp

[︃
− 𝑖𝛿𝑡
2~
𝐸

(𝜃)
𝑙

𝑟20
𝑟2𝑗

]︃
𝑑′𝑗𝑙𝑚,

7: 𝑐𝑛𝑙𝑚(𝑡+ 𝛿𝑡) = exp

[︂
− 𝑖𝛿𝑡
2~

(𝐸(𝑟)
𝑛 + 𝐸(𝑧)

𝑚 )

]︂
𝑐′′𝑛𝑙𝑚.

We note that, in order to calculate the term which
includes the integral 𝐷𝛼 defined by Eq. (12), we need
to perform a partial transformation and use the co-
ordinate representation in 𝑟 together with a spectral
representation in 𝜃 and 𝑧.

3. Numerical Verification

In order to test the developed numerical approach, we
model the toroidal trap of the experiment [14]. The
parameters of the trap potential are then defined as
follows: 𝜔𝑟/2𝜋 = 188 Hz, 𝜔𝑧/2𝜋 = 472 Hz, 𝑟0 =
= 19.5 𝜇m. The total number of atoms in BEC is𝑁 =
= 4×105, and the corresponding chemical potential is
estimated as 𝜇 ≈ 10~𝜔𝑟. The barrier is approximated

0 50 100 150 200

0

0.5

1

1.5

2

2.5

3
10
4

0 50 100 150 200

-0.02

0

0.02

0.04

0.06

0.08

0.1

Fig. 1. Left panel: Density of states for the ring-shaped po-
tential without a barrier from Eq. (8) (dashed blue line) and
(9) (solid yellow line). Right panel: Blue (dark grey) line shows
relative error of Eq. (8) for a homogeneous ring, yellow (light
grey) line is the same, but for a ring with additional barrier
potential

by the following potential which is considered as time-
independent for the purposes of the present study:

𝛿𝑉 (r) = 𝑉𝑏Θ(𝑥)𝑒−
𝑦2

2𝜆2 ,

where Θ(𝑥) is the Heaviside step function, 𝜆 = 6𝜇m
is the 1/𝑒2 half-width of the barrier, and we choose
the barrier height to match the value of the chemical
potential 𝑉𝑏 = 10~𝜔.

The main requirement for the validity of our ap-
proach is 𝑏𝑟 ≪ 𝑟0. For the trap parameters defined
above, we get 𝑏𝑟/𝑟0 ≈ 0.04. First, we test the quality
of our basis representation by evaluating the density
of states and comparing it to the analytic expression
(8). The result is shown in Fig. 1. It shows that the
energy spectrum of a toroidal trap (without a bar-
rier) is reproduced very accurately for energies up to
100~𝜔𝑟. The discrepancy is expectedly higher, when
the barrier potential is taken into account. The rela-
tive error is, however, within 2% in the high-energy
region, which is very good for such a simple approx-
imation and justifies the cut-off definition based on
the the approximate spectrum (7).

Next, we calculate the ground state of the system
with a barrier by propagating PGPE (11) in the imag-
inary time. This is done for different values of 𝑒𝑐𝑢𝑡
to see the effect of a basis size on the accuracy of
the calculated ground state. The results are shown in
Fig. 2. In order to estimate the error, we compare
the coordinate space representation of the obtained
solutions to the solution of a three-dimensional GPE
obtained on a very dense coordinate grid with the
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Fig. 2. Ground state solution of PGPE on the quadrature
points in the 𝑧 = 0 plane (a). Relative error of the solution
in ccoordinate space along the radial direction away from the
barrier for four different values of the energy cut-off and, conse-
quently, different basis sizes: 𝑒cut = 20~𝜔𝑟 (7282 basis states),
𝑒cut = 25~𝜔𝑟 (12576 basis states), 𝑒cut = 30~𝜔𝑟 (19676 basis
states), 𝑒cut = 40~𝜔𝑟 (39970 basis states) (b). Same as (b) but
along the barrier direction (c)

usual SSFT method. We see that, for all chosen values
of the cut-off energy, our numerical procedure pro-
duces reasonable approximations of the condensate
ground state. The error converges rapidly with in-
creasing the basis size and reaches saturation around
𝑒cut = 30~𝜔𝑟. We conclude that this is the optimal
cut-off energy for such system and use only this value
for the rest of this section. It is worth noting that,
in realistic finite-temperature calculations, the choice
of the cut-off energy is a nontrivial problem, and its
definition is related to the temperature of the sys-
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Fig. 3. Energy per particle (Left panel) and the total number
of atoms (Right panel) monitored during the real time evolu-
tion of PGPE. The initial state for the evolution is chosen as
equilibrium state (solid blue lines) or a nonequilibrium state
(dashed red lines) with the same initial number of particles
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Fig. 4. Evolution of the angular momentum projection ⟨𝐿𝑧⟩
modeled with PGPE (solid blue line) and grid-based GPE
(dashed red line)

tem [10, 11, 19]. For the purposes of the present fea-
sibility study, which does not address any real finite-
temperature processes, the cut-off value is considered
only as a measure of the basis size and, consequently,
the quality of a spectral representation of the conden-
sate wave function.

While PGPE, in general, conserves the total energy
and the normaization of the wave function (which is
the total number of particles in the system), we can-
not prove that this conservation laws are preserved
in basis (5) which is only approximately orthogonal.
This may lead to an accumulation of numerical errors
and, as a result, to a drift of the conserved quanti-
ties. Such effects can be even stronger in the presence
of the barrier potential, as the single particle spec-
trum is shifted. We therefore check next that the en-
ergy and the atom number are reasonably conserved
on a time scale of the experiment which is around
3 seconds in [14]. In order to prepare a nonequilib-
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rium state, we add a random complex noise uniformly
distributed across all basis states to the stationary
state. We then renormalize the obtained state to get
a state with the same number of atoms, but with
the higher energy than the ground state. Figure 3
shows the evolution of the energy per particle and
the number of particles in time for the initial equilib-
rium and nonequilibrium states. The relative drift of
these quantities on the time scale of the experiment is
about 0.2% for the nonequilibrium state. In the evo-
lution of the stationary state, no noticeable drift is
observed. Stability of the conserved quantities even
for nonequilibrium states shows the applicability of
the proposed time evolution scheme and the overall
consistency of the developed algorithm on physically
relevant time scales.

We perform the next test in order to further verify
the accuracy of the nonequilibrium dynamics repro-
duced by our evolution scheme. We prepare the initial
state by adding a phase circulation to the station-
ary ground state introducing a single quantum of the
angular momentum to the system. The time evolu-
tion of such state efficiently mimics the instability of
persistent current states in a ring with a barrier. As
our equation does not contain any explicit dissipa-
tion mechanism, such instability manifests as oscil-
lations of the average angular momentum projection
⟨𝐿𝑧⟩. Such unstable evolution was modeled with our
evolution scheme of PGPE and with the grid-based
GPE for comparison (see Fig. 4). We see a nearly per-
fect match of the two results. It is worth mentioning
that the value of ⟨𝐿𝑧⟩ can be calculated in the ba-
sis representation exactly, as the basis states (5) are
eigenfunctions of the 𝐿𝑧 operator.

4. Conclusions

We have developed an implementation of the pro-
jected Gross–Pitaevskii equation adapted for Bose–
Einstein condensates in toroidal traps. It is based on
approximate eigenstates of a single-particle Hamilto-
nian which nevertheless closely reproduces the spec-
trum of the trap.

We have also proposed a time propagation scheme
for PGPE which is similar to the well-established
split-step Fourier transform method. This scheme
can be applied to both real and imaginary time evo-
lutions of PGPE. It was thoroughly tested and is
shown to produce stable and accurate results. Such
fully explicit time evolution algorithm is straight-

forward to complement with time-dependent noise
terms and to realize the stochastic projected Gross–
Pitaevskii equation. This will allow the modeling of
various fintie-temperature processes in BEC which is
the main application of PGPE models. We therefore
believe that the proposed method can be especially
useful for the modeling of the temperature-induced
decay of persistent currents in BEC and will help to
resolve the existing discrepancies between theory and
experiment [14, 15, 20, 21].

From the performance point of view, the advantage
of PGPE is that it needs to be propagated on a rela-
tively small prescribed basis, much smaller than the
typical number of points in three-dimensional grid-
based calculations. For the chosen value of the cut-
off energy, the basis size is about 20 k states. If com-
pared to grid-based calculations, the minimally ac-
ceptable three-dimensional grid size for the system
under study can be estimated as 128 × 128 × 32,
which leads to more that 500 k grid points. On the
other hand, however, the effect of a small basis size
for PGPE is compensated by the additional computa-
tional cost of frequent transformations. Without per-
forming a detailed performance study, we only note
that the practical computational times were compa-
rable for our implementations of PGPE and grid-
based GPE.

APPENDIX A
Approximate Orthogonality of the Basis

Basis (5) is only approximately orthonormalized due to its ra-
dial dependence. The overlap integral of two basis functions
is

𝑆𝛼𝛼′ =

∫︁∫︁∫︁
𝑟𝑑𝑟 𝑑𝜃 𝑑𝑧𝜑𝛼(𝑟, 𝜃, 𝑧)𝜑𝛼′ (𝑟, 𝜃, 𝑧) =

= 𝛿𝑙𝑙′𝛿𝑚𝑚′

∞∫︁
0

𝑑𝑟𝜙
(𝜔𝑟)
𝑛 (𝑟 − 𝑟0)𝜙

(𝜔𝑟)
𝑛′ (𝑟 − 𝑟0) =

= 𝛿𝑙𝑙′𝛿𝑚𝑚′

∞∫︁
−𝑟0

𝑑𝑟𝜙
(𝜔𝑟)
𝑛 (𝑟)𝜙

(𝜔𝑟)
𝑛′ (𝑟). (A1)

The oscillator functions have finite support defined by the clas-
sical turning points 𝑅𝑛 =

√︁
2𝑛~
𝑀𝜔𝑟

. Outside these points, the
function is exponentially small. Therefore, if 𝑟0 > 𝑅𝑛, 𝑅𝑛′ ,
then we can approximate the overlap integral as follows

𝑆𝛼𝛼′ = 𝛿𝑙𝑙′𝛿𝑚𝑚′

⎡⎣𝛿𝑛𝑛′ −
−𝑟0∫︁

−∞

𝑑𝑟𝜙
(𝜔𝑟)
𝑛 (𝑟)𝜙

(𝜔𝑟)
𝑛′ (𝑟)

⎤⎦ =

= 𝛿𝑙𝑙′𝛿𝑚𝑚′

[︃
𝛿𝑛𝑛′ +𝒪

(︃(︂
𝑟0

𝑏𝑟

)︂𝑛+𝑛′

𝑒
−(

𝑟0
𝑏𝑟

)2
)︃]︃

≈ 𝛿𝛼𝛼′ , (A2)
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where 𝑏𝑟 =
√︀

~/𝑀𝜔𝑟 ≪ 𝑟0 is a necessary requirement for
approximate orthogonality.

APPENDIX B
Matrix 𝐼𝑛𝑛′ and the Approximate Spectrum

Here, we analyze the matrix elements 𝐼𝑛𝑛′ defined by (6)
and show the validity of the approximate spectrum (7). More
specifically, in order to define the cut-off energy, we need
to approximate the high-energy region of the spectrum. The-
refore, we are interested mainly in the behavior of 𝐼𝑛𝑛′ for
𝑛, 𝑛′ ≫ 1. In this region, the basis functions are rapidly oscil-
lating, and integral (6) can be approximated using stationary
phase arguments [22, 23]:

𝐼𝑛𝑛′ =

∞∫︁
0

𝑑𝑟
𝑟20
𝑟2

𝜙
(𝜔𝑟)
𝑛 (𝑟 − 𝑟0)𝜙

(𝜔𝑟)
𝑛′ (𝑟 − 𝑟0) ≈

≈ 𝛿𝑛𝑛′
1

2

[︂
𝑟20

(𝑟0 +𝑅𝑛)2
+

𝑟20
(𝑟0 −𝑅𝑛)2

]︂
≈

≈ 𝛿𝑛𝑛′

[︂
1 + 3

𝑅2
𝑛

𝑟20

]︂
, (B1)

where 𝑅𝑛 =
√︁

2𝑛~
𝑀𝜔𝑟

are the classical turning points of the
oscillator states, which are, at the same time, the points of
stationary phase. The approximation is only valid, if the inte-
grand 𝑟20/𝑟

2 is a smooth continuous function, and both points
of stationary phase are within the integration region. This im-
poses the additional restriction 𝑅𝑛 < 𝑟0. With result (B1), we
get the following spectrum:

𝐸𝑛𝑚𝑙 = 𝐸
(𝑟)
𝑛 + 𝐸

(𝑧)
𝑚 + 𝐸

(𝜃)
𝑙 + 3~𝜔𝑟

𝑏4𝑟
𝑟40

𝑛

(︂
𝑙2 −

1

4

)︂
,

where 𝑏𝑟 =
√︀

~/𝑀𝜔𝑟. The condition 𝑏𝑟 ≪ 𝑟0, which was im-
posed to ensure the orthogonality of the basis states, allows us
to neglect the last term and to justify the approximate spec-
trum (7).

APPENDIX C
Derivation of the Density of States

Here, we show the relations between the density of states (8),
the approximate spectrum (7), and the quasiclassical integral
(9). We start with the spectrum (7):

𝐸𝑛𝑚𝑙 = ~𝜔𝑟

(︂
𝑛+

1

2

)︂
+ ~𝜔𝑧

(︂
𝑚+

1

2

)︂
+

+
~2

2𝑀𝑟20

(︂
𝑙2 −

1

4

)︂
.

We are mostly interested in the high-energy behavior of the
spectrum. Therefore, to simplify the calculations we shift the
spectrum so that the ground state (𝑛 = 𝑚 = 𝑙 = 0) has zero
energy:

𝐸̃𝑛𝑚𝑙 = ~𝜔𝑟𝑛+ ~𝜔𝑧𝑚+
~2𝑙2

2𝑀𝑟20
.

The number of states with energies 𝐸̃ < 𝜖 is defined as the sum

𝑁(𝜖) =
∑︁

𝐸̃𝑛𝑚𝑙<𝜖

1.

The simplest way to calculate this sum is to consider 𝑛, 𝑚, and
𝑙 as continuous variables and convert it to the integral

𝑁(𝜖) =

∫︁∫︁∫︁
𝐸̃𝑛𝑚𝑙<𝜖

𝑑𝑛 𝑑𝑚𝑑𝑙.

This integral yields

𝑁(𝜖) =
8

15

√
2𝑀𝑟0

~3𝜔𝑟𝜔𝑧
𝜖5/2. (C1)

The density of states is then calculated as the derivative of the
above expression:

𝜌(𝜖) =
𝑑𝑁(𝜖)

𝑑𝜖
=

4

3

√
2𝑀𝑟0

~3𝜔𝑟𝜔𝑧
𝜖3/2. (C2)

Another approach to calculate the density of states is based
on the quasiclassical approximation. The energy of the classical
particle in the potential 𝑉 (r) = 𝑉trap(r) is

𝐸(r,p)=
𝑝2

2𝑀
+ 𝑉 (r)=

𝑝2

2𝑀
+

𝑀

2

[︀
𝜔2
𝑟(𝑟 − 𝑟0)

2 + 𝜔2
𝑧𝑧

2
]︀
.

The density of states is then defined by the following integral:

𝜌𝑞𝑐(𝜖) =

∫︁
𝑑r𝑑p

(2𝜋~)3
𝛿(𝜖− 𝐸(r,p)) =

=
𝑀

𝜋2~3

∫︁
𝑉 ≤𝜖

𝑑r

∫︁
𝑑𝑝 𝑝2𝛿

(︀
𝑝2 − 2𝑀 [𝜖− 𝑉 (r)]

)︀
=

=
𝑀3/2

√
2𝜋2~3

∫︁
𝑉 ≤𝜖

𝑑r
√︀

𝜖− 𝑉 (r) =

=
𝑀3/2

√
2𝜋2~3

∫︁
𝑉 ≤𝜖

𝑑r
√︁

𝜖−𝑀/2 [𝜔2
𝑟(𝑟 − 𝑟0)2 + 𝜔2

𝑧𝑧
2] =

=
2
√
2𝑀𝑟0𝜖3/2

𝜋~3𝜔𝑟𝜔𝑧

∫︁
𝑟2+𝑧2≤1

𝑑𝑟𝑑𝑧
√︀

1− 𝑟2 − 𝑧2 =

=
2
√
2𝑀𝑟0𝜖3/2

𝜋~3𝜔𝑟𝜔𝑧

2

3
𝜋 =

4

3

√
2𝑀𝑟0

~3𝜔𝑟𝜔𝑧
𝜖3/2, (C3)

where we have used the condition 𝜖 < 𝑀𝜔2
𝑟𝑟

2
0/2. In this way,

we have obtained the density of states which is the same as
Eq. (C2). It is worth noting that two derivations are based on
rather different approximations.
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ПРОЕКТОВАНЕ
РIВНЯННЯ ГРОСА–ПIТАЄВСЬКОГО
ДЛЯ БОЗЕ-ЕЙНШТЕЙНIВСЬКИХ
КОНДЕНСАТIВ КIЛЬЦЕВОЇ ФОРМИ

Запропоновано альтернативну реалiзацiю проектованого
рiвняння Гроса–Пiтаєвського, адаптовану для атомарних
бозе-ейнштейнiвських конденсатiв у пастках тороїдальної
форми. Продемонстровано точну та ефективну схему обчи-
слення матричних елементiв i розрахунку часової еволюцiї
хвильової функцiї конденсату. Проаналiзовано точнiсть та
стiйкiсть рiвноважних i нерiвноважних розв’язкiв для кiль-
цевої пастки з додатковим бар’єром, що вiдтворює конфi-
гурацiю iснуючих експериментiв.

Ключовi слова: бозе-ейнштейнiвськi конденсати, рiвняння
Гроса–Пiтаєвського, спектральний метод.
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